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ABSTRACT 

Cartesian grid method for inviscid flows was a very popular and powerful tool in late 80’s for its 
robustness, quick solution convergence and automatic grid adaption around complex geometries. In 
last decade, by the help of ingenious approaches and fast computers, the method is born out of its 
ashes. In this paper, it is aimed to generate locally refined hierarchical Cartesian grids for two-
dimensional irregular geometries to provide solutions, which are easy to realize and accurate in the 
case of inviscid compressible flows around such geometries. Automatic Cartesian grid generation 
methodology is implemented in object-oriented FORTRAN programming language. Dynamic quadtree 
data structure algorithm is used to store the parent/child and cell/neighbor connectivities. The grid 
typically begins with a single root cell, and grows by a recursive subdivision of each cell into its four 
children which is done in coarsening part of the FORTRAN 90 subroutines. The goals are to enhance 
automatic grid generation, to increase convergence rate with multi-grid method and to facilitate 
solution adaptation with least squares reconstruction scheme on inviscid flows. As a benchmark test 
case, supersonic flow around a Ni-bump construction gave the opportunity to test the shock wave 
capturing capability of GeULER for a solid body bordered by two solid walls. 
 

INTRODUCTION 

Cartesian grid method for inviscid flows was a very popular and powerful tool in late 80’s for its 
robustness, quick solution convergence and automatic grid adaption around complex geometries.  
There has been a renewal of vigor towards the application of adaptive Cartesian grid generation 
algorithms especially to the problems involving complex geometries [De Tullio et al., 2007; De 
Zélicourt et al., 2009; Ebeida et al., 2010; Fujimoto et al., 2009; Hartmann et al., 2008; Liang 2012]. In 
comparison with body-fitted grid generation schemes, adaptation of inherently non-body-fitted 
Cartesian grid generation techniques to complex geometries is very easy to implement. With regard to 
traditionally used unstructured grid methods, the Cartesian grid methods use exclusive line iteration 
technology and multi-grid techniques on complex geometries. The procedure is also very quick in 
comparison with the other unstructured grid generation techniques. In external flow solvers, the 
Cartesian cell method is a beneficial technique for a fast representation of two dimensional flows 
[Kara, Kutlar, and Aksel, 2013a]. The employed cut-cell methodology can be found in the author’s 
previous paper [Kara, Kutlar, and Aksel, 2013b]. Current study focuses on the generation of locally 
refined hierarchical Cartesian grids applicable to Euler equations involving two-dimensional irregular 
geometries providing solutions relatively easy to realize and accurate for the case of compressible 
flows. As the benchmark case, uniform channel flow over a circular arc bump is tested. The circular 
arc chord length is taken as equal to the channel height. A thin bump with thickness of 4 % is selected 
among Ni’s studies [Ni, 1982] so that two oblique shock waves can be captured.  
 

METHOD 

Considering an arbitrary control cell the conservative integral form of Euler equations is generated 
using Gauss divergence theorem as follows: 
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where  is the cell area, F is the inviscid flux vector, n is the normal vector, S is perimeter of the 

contour surrounding . Q represents the vector of any conserved variable such as density, ρ, x- and y-
velocity components, u and v, respectively or total energy, E. 

Semi-discrete form of Eq. (1) can be written as the sum of the fluxes through each cell as follows: 

 

The residuals, Res, of each cell can be defined in the following equation: 

 

Left hand side of Eq. (3) is discretized in time (Δt) as the finite difference of conserved variable 
between step number m+1 and step number m: 

 

In the solver, explicit time stepping scheme is used and Taylor series expansion for this second order 

 scheme is given by neglecting higher order terms: 

 

In the integration of the flow solver, n-stage time stepping scheme using Runge Kutta (RK) method 
with the first order accuracy is used, which is given as:  

 

            ....       

 

where n is the RK stage number, CFL is the Courant-Friedrichs-Levy number and α’s are the stage 
coefficients. 

During execution of the flow solver, Cartesian grid based structure makes it easier to locally refine or 
coarsen grids on the critical regions such as shock-based discontinuities, stagnation points, shear 
layers, etc. This phenomenon is called as solution adaptation which increases the accuracy of the 
results. Two characteristic lengths, ς, of the control cell are used to gain possession of changing 
conservative variables from one cell to its neighboring cells by: 

 

where subscripts D and C stand for divergence and curl of the velocity vectors, respectively. The 
standard deviation of these two characteristic lengths, are calculated for entire solution domain by: 

 

where N is the total number of solution domain cells. Cells are flagged for refinement or coarsening 

using the threshold values  and  for refinement and coarsening respectively, following the criteria 

below: 

if   and  refine  

if    and  coarsen  

 is taken as 1 and  is taken as 0.1 [Çakmak, 2009]. 

 

RESULTS 

The numerical calculations are performed on the developed GeULER (cartesian Grid generator with 
eULER solver) code in a personal computer with an Intel

®
 Core 

TM
 I5 3470 3.20-GHz processor, 12 

GB RAM and a FORTRAN Compiler. The five times solution-based refinement meshing result of 
GeULER is shown in Figure 1. One should note that higly-refined cells near the wall and near the 
shock locations are executed during the solver’s iteration steps. Supersonic flow with 1.4 free-stream 
Mach number is incident over Ni-bump. Grid generator and flow solver inputs are given in Table 1. 
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Figure 1: Five level solution adaptation around circular arc bump with thickness ratio 4 % 

 

Cartesian Grid 
Outer boundary size factor 1.1 
Number of successive divisions to generate uniform grid 2 
Boundary size factor for box-adaptation (in x&y directions) 1.2 
The size of the cells with respect to maximum body dimension 0.01 
Cut-cell adaptation cycle 2 
Curvature adaptation cycle 2 
Initial cell number (before adaptation) 91856 
Final cell number (after five cycles of solution adaptation) 1901241 
Maximum level of cell 10 

Boundary Conditions 
Mach Number 1.4 
Angle of Attack (º) 0.0 
Specific heat ratio of the fluid 1.4 

Solution Parameters 
Solution scheme for the flux AUSM 
Multiplication criteria for refinement 0.05 
Safety coefficient for CFL number 1.0 
Number refinement and coarsening cycle 0,1,2,3,4,5 
Multi-grid Cycle Number 7 
Residual exponent for the limit of convergence -14 

Table 1: Input file for Ni-Bump 

Figure 2 (a) represents the convergence results of supersonic Ni-bump test cases with V-cycle multi-
grid scheme. The procedure iteratively solves the problem till logarithm of root-mean-square (rms) of 
the density residual drops below a predefined value (in Figure 2, 10

-14
 is selected). Figure 2 (b) shows 

the convergence of V-cycle and saw-tooth cycle multi-grid methods with respect to the solution without 
multi-grid method for no solution refinement but this figure does not elicit the difference between the 
multi-grid methods. As one can see in the Figure 2 (c), V-cycle converges much faster than saw-tooth 
cycle while using solution refinement techniques, and as expected, five solution refinement cycle with 
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V-cycle multi-grid method makes about four times faster convergence with respect to solution with no 
multi-grid. 

 

Figure 2:  Supersonic test case, Ni-bump : (a) Convergence histories for V-cycle; (b) residuals versus 
CPU time with no SR and (c) with five SR; M∞ = 1.4, θ = 0.0º 

The time and RAM use information for no solution refinement and five solution refinement levels is 
tabulated in Table 2. Interestingly, V-cycle halves the convergence rate of saw-tooth cycle for the wall 
bounded circular arc bump study. The reference studies of Çakmak [Çakmak, 2009] and Şahin [Şahin, 
2011] encourage the use of saw-tooth cycle rather than V-cycle because of high-memory occupation 
of forcing function in V-cycle multi-grid scheme. The question is which one should be sacrificed; 

(a) 

(b) 

(c) 
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elapsed time or high RAM requirement. That must be answered separately for each validation study 
and the most appropriate one should be decided. 
 

Case 

no 

Refinement (Ref) no Multi-grid scheme Time RAM Use 
1 0 - 3 min. 20 sec. 0.18 Gb 
2 0 V-cycle 2 min. 28 sec. 0.54 Gb 
3 0 Saw tooth cycle 2 min. 45 sec. 0.43 Gb 
4 5 - 152 min. 33 sec. 1.34 Gb 
5 5 V-cycle 38 min. 39 sec. 4.93 Gb 
6 5 Saw tooth cycle 76 min. 25 sec. 3.43 Gb 

Table 2: Comparison of the results for supersonic inviscid flow around Ni-Bump 

As shown in Figure 3 and 4, four test cases are performed to capture shock waves precisely. The final 
test case with five solution refinement levels (Figure 4 (b)) is isolated from others and compared with 
an experimental result [Ni, 1982] and a numerical result [Sert et al., 2004] for validation and 
verification, respectively. 

 

 
 

 
Figure 3: GeULER results of Mach number contours around Ni-bump using AUSM with (a) no solution 

refinement (b) one solution refinement; M∞=1.4 and θ=0.0º 

(a) 

(b) 
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Figure 4: GeULER results of Mach number contours around Ni-bump using AUSM with (a) three 

solution refinement, (b) five solution refinement; M∞=1.4 and θ=0.0º 

As shown in Figure 5, GeULER results capture both oblique shock waves in the same locations as 
these two references. The incident flow is compressed at the leading edge of the Ni-bump. As Mach 
contours show, the flow increases speed from M=1.2 to 1.6 over the surface of the bump. This 
acceleration weakens by this wave emittance along the surface so that the leading-edge shock 
softens and curves in downstream. If the walls are investigated, the leading shock wave bounces back 
off the walls and this reflected shock weakens the expanding flow by passing through it. At the trailing 
edge of the Ni-bump, a weaker (with respect to leading edge shock) recompression shock wave 
reflects. Entire domain is supersonic with maximum Mach number of 1.7 that occurs after the trailing 
edge of the Ni-bump and minimum Mach number of 0.85 near the leading edge. 

 

 

 

 

 

 

(a) 

(b) 
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Figure 5: Mach contours over Ni-bump (a) from an experimental study [Ni, 1982], 

(b) from a numerical study [Sert et al., 2004] and (c) from GeULER solution; M∞=1.4 and θ=0.0º 

(a) 

(b) 

(c) 
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A subsonic flow at free stream Mach number of 0.11 around multi-element BOEING Model TR-1332 
airfoil (see Figure 6) is tested to predict pressure distributions around it with very low Mach number of 
0.11. Mach contours of the flow are depicted by using the developed GeULER code. Details can be 
found in authors’ most recent paper [Kara et al., 2015]. 

 

  

 
Figure 6: (a) Box adapted grid, (b) solution adapted grid and (c) Mach contours around BOEING 

Model TR-1332 by GeULER code [Kara et al., 2015] 

(a) (b) 

(c) 
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CONCLUSION 

In the present study, modern Cartesian cut-cell based grid generation techniques are applied to two-
dimensional inviscid compressible flows around irregular geometries. A quadtree data structure is 
employed to store the information with an easy path for parent-child and cell-neighbor relations. Ray-
Casting method, cut-cell determination, curvature adaptation algorithms are studied on adaptively 
refined schemes. The grid generator is joined to Euler solver for compressible flow solutions. Five 
stage Runge-Kutta time stepping scheme is used in temporal discretization algorithm. Spatial 
discretization is constructed using cell-centered finite volume definitions of Euler equations in two-
dimensions. Gradients of the corresponding primitive variables are reconstructed by least-squares 
algorithm and its gradient limiter. GeULER is constructed by Liou’s Advection Upstream Splitting 
Method (AUSM) numerical construction scheme. Full Approximation Storage (FAS) multigrid scheme 
is used to increase the convergence rate. Second order flux construction scheme is employed for the 
conserved variables in two dimensions and used in conjunction with multi-grid techniques. The 
capability of GeULER is validated by test case of Ni-Bump. The continuing study is currently being 
extended to three dimensional compressible flows.  
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