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A QUAD-TREE BASED AUTOMATIC ADAPTIVE CARTESIAN GRID GENERATOR
WITH APPLICATIONS ON MULTI-ELEMENT AIRFOILS

ABSTRACT

Cartesian methods are a special branch of unstructured techniques under the general grid generation
methodology.  In this  study,  it  is  aimed to improve automatic  grid  generation using Cartesian grid
generation technology. Cartesian grids are generated by using a cell-based data structure. Quad-tree
data structure is constructed in order to connect the Cartesian cells to each other.  This dynamic data
structure stores connectivity  information for  each cell  and can create  or  destroy cells  repeatedly,
anywhere in the flow domain as the programmer wills. The solution algorithm is implemented in object-
oriented FORTRAN programming language and the code employs Cartesian grid technique to model
complex  geometries.  The  grid  typically  begins  with  a  single  root  cell,  and  grows  by  a  recursive
subdivision of each cell into its four children which is done in coarsening part of the FORTRAN 90
subroutines. Any kind of adaptation is very easy to accomplish in Cartesian grid generation. Four
multi-element airfoil test cases; a two-element airfoil (NLR-7301 airfoil/flap geometry), a three-element
airfoil  (30P-30AG),  a four-element airfoil  (BOEING model TR-1332) and a five-element airfoil,  are
presented at the end of the paper to clarify the use of  some special Cartesian algorithms, namely
inside/outside test, cut/split cell determination and curvature adaptation algorithm.

INTRODUCTION

In computational fluid dynamics (CFD), a proper grid is to be obtained on the physical domain of the
problem.  Basically,  there  are  three  main  grid  generation  techniques  employed:  structured,
unstructured and Cartesian methods. Cartesian methods are simply a special class of unstructured
methods. They were first proposed at the beginning of the 1970's as an alternative to structured and
ordinary unstructured methods [Peskin, 1972] and they have recently become one of the popular and
widely used methods in CFD [Bai, Li, Zou and Wang, 2007; Berger and Aftosmis, 2012; Ji, Lien and
Yee, 2010; Kupiainen and Sjögreen, 2009; Liu, Zhao, Hu, Goman and Li, 2013; Sang and Yu, 2011].
The aim was to enhance automatic grid generation and facilitate solution adaptation.

The governing equations are discretized on a Cartesian grid which does not conform to the
immersed boundaries. This immensely simplifies grid generation task and also retains the relative
simplicity of the governing equations in Cartesian coordinates. In addition, this method also has a
weighty advantage over the conventional body-fitted approach in simulating flows such as with moving
boundaries, complicated shapes, or involving topological changes.

Structured  and  ordinary  unstructured  methods  rely  on  user  interference  to  some  extent.
Cartesian methods, on the other hand, permit automatic grid generation. Therefore, in order to handle
problems  and  reduce  the  user  intervention  through  the  grid  generation  process,  both  the  grid
generation and adaptation processes are automated. In this respect, what remains to the user as a
task is the suitable definition of the problem.

METHOD

The  code utilizes Cartesian grid techniques to model complex geometries, regardless of the body
shape, and regardless of number of bodies. An important advantage of Cartesian methods is that any
kind of adaptation can easily be implemented. Hence, relatively high accuracy levels can be achieved
with a relatively low number of cells. This saves computational time and memory allocation required
significantly.
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Cartesian grid generation

In  the  literature,  there  are  various  methods  used  for  fluid  flow  problems  to  identify  connectivity
information  such  as  two  dimensional  arrays,  linked  lists,  binary  trees,  quad-tree  data  structures
[Çakmak, 2009]. In this study, the Cartesian grid is obtained by using the quad-tree approach in two
dimensions. In the quad-tree approach, a square containing the whole domain is divided into its four
quadrants to form the grid in a tree structure.

The multiplication of the maximum length by the user-defined size factor defines the whole
domain size. This domain size is actually the length of each edge of the root cell. A uniform grid for the
two dimensional Cartesian geometry is obtained by dividing squares successively starting from this
root cell to the smallest “child” cells so that these child cells have an appropriate cell size near the
solid body. This gives a multi-grid system with fine cells near the solid body, where higher resolution is
needed for high gradients [Çakmak, 2009]. Each child is geometrically contained within the boundaries
of the parent cell, and is located logically below the parent cell in the tree by one-level rule.  Arbitrary
subdivisions of the cells are premitted during the process, only requiring that the newly created cells
be non-overlapping polygons that fill the space occupied by the mother cell. To take advantage of the
smooth grid that can be achieved, the root cell is taken to be a square Cartesian cell, and cell division
is obtained by isotropically splitting each cell into four, equal area children. The illustration in Figure 1
defines a simplified four-level quad-tree class. Since N-sided cut cells are obtained by “cutting” them
out of their background Cartesian cell, they are always logically locatable in the tree [Samet, 1988].

       
Figure 1:  An Illustration of quad-tree data structure

Each cell in the Cartesian grid is classified as; inside the body, cut or split by the body and
outside of the body, or in the outer boundary based on the information found at the corners of that cell.
With this approach, very small cells can appear in the grid. The only limit placed on the cell size is that
a node that is within a very small (machine-zero level) tolerance of a body is considered on that body,
which in effect ‘pulls’ the body out to the node. The remaining cell areas vary as much as six orders of
magnitude from one cell  to its immediate neighbor.  These neighbors are necessary because they
balance the size of the cells to give accurate results, especially near the solid boundary.

As a first step, an initial uniform grid is formed in the solution domain which will be refined in
the later stages to form the grid on which the solution is to be performed. Generation of the initial grid
begins with the creation of the ‘root’ cell. Its size is determined from the size of the flow field and by
what the user determines to be the coarsest acceptable grid for that flow field. Then, cells without
children, initially just the root cell, are refined until the grid reaches the coarsest acceptable grid. This
grid serves as the initial grid for cases in which no body is cut out of the grid. The procedure for
computing the intersections of the body with the grid depends upon how the body has been defined.
The next step after the initial grid generation is the box adaptation. An imaginary rectangular box is
generated around the input geometry and finer grids are flagged for refinement near the input body.
Thirdly, the corners of sufficiently small cells are tested whether they are inside the boundary of the
given geometry or not. This is called inside-outside testing. This step is obligatory for Cartesian grids
because the cells that are cut by the given geometry are determined by this test. The last step in the
grid generation process is the curvature adaptation. The purpose of the curvature adaptation is to
ensure that  regions  of  a body that  have high curvatures  are resolved enough to be represented
accurately [Siyahhan, 2008]. In a previous study [Kara, Kutlar and Aksel, 2013], two distinct test cases
are presented to clarify the use of the methodology in detail. Sample grids around an airfoil obtained
to clarify these four steps is shown in Figure 2. Detailed and close-up view of the curvature-adapted
airfoil (Figure 2-d)  can be seen in Figure 10. 
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Figure 2: Sample grids around a five-element airfoil. (a) initial uniform grid, 
(b) box adaptation, (c) cut/split cell adaptation, (d) curvature adaptation

A flowchart implementation in Figure 3 shows a combination of recursively defined algorithms
for creating the final grid using the object-oriented [Akın, 2003] FORTRAN programming language.
The marching-squares algorithm, the bridge between the adaptations and the initial grid generation,
will be explained in detail.

Figure 3: Flowchart diagram of the algorithms written in FORTRAN language

3
Ankara International Aerospace Conference

a) b)

d)c)



AIAC-2013-027                             Kara, Kutlar & Aksel

Marching-squares algorithm

Next to the solid boundary, cut and split cell locations are determined by marching-squares
method [Çakmak, 2010]. These locations are selected automatically from the table given in Figure 4.
The algorithm starts with the calculation of the square indices of each computational cells. The values
are summed to calculate a total square index, then the cut edges are determined. An example for
numbering of cut points of a computational cell is shown in Figure 4, the total index of the cell is 11
and the cut edges are the first and the second edges. The exact cut points are flagged as p0 and p1.
These two points are necessary to determine the exact shape of the computational cut cell  by the
region. Also, the pseudocode for the determination of split cells is given in Figure 5.

Figure 4: Line table of the marching square method written in FORTRAN and a sample cut cell

Figure 5:     Pseudocode for the determination of cut and split cells   
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RECURSIVE SUBROUTINE SQUAREINDEX(CELL)

IF (CELL IS NOT COMPUTATIONAL) THEN
CALL SQUAREINDEX(EACH CHILDREN OF THE CELL)

END IF

ALLOCATE MEMORY FOR THE SQUARE INDEXES
INITIALIZE THE REFINING INDICATORS AND SQUARE INDEXES TO ZERO

IF (CELL IS OUTSIDE) THEN
SQUARE INDEX OF THE CELL IS ZERO

ELSE IF (CELL IS INSIDE) THEN
SQUARE INDEX OF THE CELL IS 15

ELSE IF (CELL IS CUTCELL) THEN
ASSIGN THE SQUARE INDEX WITH RESPECT TO CORNER COUNTS

END IF

ASSIGN INTERSECTION NUMBERS OF THE CORNERS OF THE CELL

..... SOME CELL OPERATIONS .....

WRITE CORNER LOCATIONS OF THE CELL WITH RESPECT TO ITS TYPE
DETERMINE SPLIT CELLS

END SUBROUTINE  SQUAREINDEX

integer, dimension(16,6) :: lineTable 

lineTable(1,:) = (/-1, -1, -1, -1, -1, -1/) !0
lineTable(2,:) = (/0 ,  3, -1, -1, -1, -1/) !1
lineTable(3,:) = (/1 ,  0, -1, -1, -1, -1/) !2
lineTable(4,:) = (/1 ,  3, -1, -1, -1, -1/) !3
lineTable(5,:) = (/2 ,  1, -1, -1, -1, -1/) !4
lineTable(6,:) = (/2 ,  1,  0,  3, -1, -1/) !5
lineTable(7,:) = (/2 ,  0, -1, -1, -1, -1/) !6
lineTable(8,:) = (/2 ,  3, -1, -1, -1, -1/) !7
lineTable(9,:) = (/3 ,  2, -1, -1, -1, -1/) !8
lineTable(10,:) = (/0 ,  2, -1, -1, -1, -1/) !9
lineTable(11,:) = (/3 ,  2,  1,  0, -1, -1/) !10
lineTable(12,:) = (/1 ,  2, -1, -1, -1, -1/) !11
lineTable(13,:) = (/3 ,  1, -1, -1, -1, -1/) !12
lineTable(14,:) = (/0 ,  1, -1, -1, -1, -1/) !13
lineTable(15,:) = (/3 ,  0, -1, -1, -1, -1/) !14
lineTable(16,:) = (/-1, -1, -1, -1, -1, -1/)
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RESULTS AND DISCUSSION

Quad-Tree Data Structure Verification Results 

The efficiency of quad-tree data structure is verified by comparing with other techniques to treat data
structure [Sul and Kwon, 2012]. Test grid is generated by initial cell refinement. Level 3 grid has 256
nodes and 64 cells. Level 5 grid has 4096 nodes and 1024 cells. Level 8 grid has 262144 nodes and
65536 cells. The grid levels are shown in Figure 6. Data size and generating time of each level and
each data structure are tabulated in Table 1. Quad-tree data structure is about five times more efficient
in time at level 5 grid and ten times more efficient in time at level 8 grid with respect to linked list data
structure.

Figure 6:  Test Grid; (a) initial grid, (b) level 3, (c) level 5, (d) level 8 

Level Time Time Compared to Level 3 Data Size

Two Dimensional Array 3 0.015 s - 420 kb
Binary Tree 3 1.033 s - 400 kb
Linked list 3 0.016 s - 308 kb
Quad-Tree 3 0.010 s - 11 kb
Two Dimensional Array 5 2.703 s 180.2 772 kb
Binary Tree 5 - - -
Linked list 5 1.459 s 91.19 532 kb
Quad-Tree 5 0.270 s 20.7 169 kb
Two Dimensional Array 8 28m30.54 s 114036 26 Mb
Binary Tree 8 - - -
Linked list 8 3m10.28 s 11892.5 10 Mb
Quad-Tree 8 11.04 s 1104 11 Mb

Table 1:  Comparisons of the performance of quad-tree data structure with   [Sul and Kwon, 2012]  
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Example Grids 

Four cases are exemplified to demonstrate the effectiveness of the adaptive grid generation scheme
on multi-element airfoils. In all these cases, six successive divisions are applied to generate uniform
mesh with one cut-cell adaptation cycle and three curvature adaptation cycles; both can be increased
for denser grids. The critical  grids on highly skewed, curved and splitted elements are shown in a
close-up view (Figure 7-10).

Case 1:

Figure 7:  Adaptive Cartesian grid around 
NLR-7301 airfoil/flap geometry [  Arlinger and Larsson, 1997]   and a close-up view  

Case 2:

Figure 8:  Adaptive Cartesian grid around 
30P-30AG airfoil [Anderson and Bonhaus, 1995] and close-up views
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Case 3:

Figure 9:  Adaptive Cartesian grid around
BOEING Model TR-1332 airfoil [Brune, 1994] and close-up views

Case 4:

Figure 10:  Adaptive Cartesian grid around a five-element airfoil [Petrov, 1980] and close-up views
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CONCLUSION

In  the  present  study,  it  is  aimed to enhance  automatic  grid  generation  using Cartesian  Methods.
Quad-tree  data  structure  is  selected  in  order  to  maintain  faster  computation.  An  adaptive
refinement/coarsening  scheme  for  generating  the  final  grid  is  prepared  by  using  some  special
Cartesian algorithms, namely inside/outside test, cut/split cell determination and curvature adaptation
algorithm and resultantly,  a  “hands-off”  grid  generator  is  implemented in  FORTRAN programming
language. At the end of the study, these adaptation techniques are applied on four different multi-
element  airfoil  cases.  Grid  generation  improvements  near  the  highly  skewed  and  highly  curved
elements are obtained. The developed grid generator is currently being extended to apply on three
dimensional cases.
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