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ABSTRACT

The path of a flapping airfoil during upstroke and down-
stroke is optimized for maximum thrust and propulsive ef-
ficiency. Unsteady, low speed laminar flows are computed
using a Navier-Stokes solver in a parallel computing en-
vironment based on domain decomposition. The periodic
flapping motion of the airfoil is described by a combined
plunge and pitching motions, and the phase shift between
them. A gradient based algorithm is employed for opti-
mization. Definition of the periodic flapping motion with
a new parameter, flatness coefficient, s, provides high en-
hancement in the thrust generation. For high thrust, the
airfoil stays at high effective angle of attack values for
short durations.

INTRODUCTION

Based on observations of flying birds and insects, and
swimming fish, flapping wings have been recognized to
be more efficient than conventional propellers for flights
of very small scale vehicles, socalled microair vehicles
(MAVs) with wing spans of 15 cm or less. The current
interest in the research and development community is to
find the most energy efficient airfoil adaptation and flap-
ping wing motion technologies capable of providing the
required aerodynamic performance for a MAV flight.

Recent experimental and computational studies investi-
gated the kinematics, dynamics and flow characteristics
of flapping wings, and shed some light on the lift, drag and
propulsive power considerations[9, 14]. Water tunnel flow
visualization experiments on flapping airfoils conducted
by Lai and Platzer[15] and Jones et al.[16] provide a con-
siderable amount of information on the wake characteris-
tics of thrust producing flapping airfoils. In their experi-
ments, Anderson et al.[17] observed that the phase angle
between pitch and plunge oscillations plays a significant
role in maximizing the propulsive efficiency. NavierStokes
computations performed by Tuncer et al.[19, 18, 11] and
by Isogai et al.[13, 10] explore the effect of flow separa-
tion on the thrust generation and the propulsive efficiency
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Figure 1: Flapping-wing MAV model(Jones and Platzer)

of a single flapping airfoil in combined pitch and plunge
oscillations.

Jones and Platzer[6] recently demonstrated a radiocon-
trolled micro air vehicle propelled by flapping wings in a
biplane configuration (Figure 1). The experimental and
numerical studies by Jones et al.[6, 7, 8] and Platzer and
Jones[12] on flappingwing propellers points at the gap
between numerical flow solutions and the actual flight
conditions over flapping wings.

Most recently, Kurtulus et al.[1] obtained optimum pa-
rameters to generate maximum lift during a flapping mo-
tion of an airfoil in hovering flight, by using numerical
and analytical models. The wake structures and hydrody-
namic performance of finite aspect-ratio flapping foils are
explored by Dong et al.[2]. The results of their numerical
simulations indicate that the wake topology of the rela-
tively low aspect-ratio foils is significantly different from
that observed for infinite/large aspect-ratio foils.

In our earlier studies[19, 11], the average thrust coefficient
of a NACA0012 airfoil flapping sinusoidally in combined
plunge and pitch was first obtained for a range of reduced
frequencies and amplitudes of the flapping motion. The
computational and experimental findings show that thrust
generation and propulsive efficiency of flapping airfoils are
closely connected to the flapping motion and flow param-
eters. In a later study[5], we employed a gradient based
optimization of flapping motion parameters; flapping fre-
quency, the amplitude of the pitch and plunge motions,
and the phase shift between them to maximize the thrust
and/or the propulsive efficiency of flapping airfoils.
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Figure 2: Domain decomposition with 3 partitions

In these studies, the periodic flapping motion is assumed
to be sinusoidal, where the pitch and plunge positions are
based on the projection of a vector rotating on a unit cir-
cle. It should be noted that the sinusoidal motion imposes
the maximum plunge and pitch velocities at the mean
plunge and pitch positions. In this study, the sinusoidal
periodic motion is relaxed by replacing the unit circle with
an ellipse, and introducing the flatness coefficient as the
ratio of the axes of the ellipse. First, the thrust production
of a flapping airfoil in plunge only is studied parametri-
cally, and distinguishing features of the flatness coefficient
are identified at a fixed frequency. Then, the optimization
method developed earlier[4] is employed to optimize a lin-
ear combination of the thrust and the propulsive efficiency
of an airfoil undergoing a combined plunge and pitch os-
cillations. The optimization variables are taken to be the
pitch amplitude, α0, the phase shift between the pitch
and plunge motions, φ, and the plunge and pitch flatness
coefficients, sh and sα. Unsteady flow solutions required
to evaluate the gradients of the objective function by per-
turbation of the optimization variables are computed in
parallel in a computer cluster.

NUMERICAL METHOD

Unsteady viscous flowfields around a flapping airfoil are
computed by solving the Navier-Stokes equations on a
moving C-grid. Unsteady computations are performed in
parallel based on domain decomposition (Figure 2). PVM

message passing library routines are used in the parallel
solution algorithm. The computed flowfields are analyzed
in terms of aerodynamic loads, instantaneous distribution
of flow variables, and unsteady particle traces.

The flapping motion of the airfoil is imposed by moving
the airfoil and the computational grid around it. The
flapping motion of the airfoil in plunge, h, and pitch, α,
is defined by

h = −h0

sh cos(ωt)
√

s2

h
cos2(ωt) + sin2(ωt)

(1)

α = −α0

sα cos(ωt + φ)
√

s2
α cos2(ωt + φ) + sin2(ωt + φ)

s
1

ωt

Figure 3: Definition
of the periodic motion

where s is the flatness coefficient
which describes the elliptic path
a rotation vector traces as shown
in Figure 3. Note that for s =
1, the flapping motion becomes
sinusoidal. Figure 4 shows the
plunge position and the velocity
of the periodic flapping motions
as a function of flatness coeffi-
cient for the plunge motion, sh.
In the case sh = 0.25, the plunge
velocity is maximum in the vicin-
ity of the minimum and maximum
plunge positions, whereas, in the
case sh ≥ 1, the plunge velocity reaches its maximum at
the mean plunge position.
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Figure 4: Plunge position and velocity as a function of sh

Optimization

Optimization process is simply performed marching along
the direction of steepest ascent of an objective function,
O. The direction of the steepest ascent is given by the
gradient vector of the objective function: ~∇O(~vn) =
∂O

∂V1

~v1+ ∂O

∂V2

~v2+· · ·, where Vn’s are the optimization vari-
ables of the objective function. The objective function in
optimization step k is taken as a linear combination of
the average thrust, Ct, and the propulsive efficiency, η,
over a flapping period. β = 0 sets the objective function
to a normalized thrust coefficient:

Ok[Ct, η] = (1 − β)
Ct

Ct + ǫk−1 ~∇Ct · ~Dk−1

(2)
+β

η

η + ǫk−1 ~∇η · ~Dk−1

where ǫ denotes the stepsize along the steepest ascent
direction.

The components of the gradient vector is then evalu-
ated numerically by computing the objective function for
a small perturbation of the optimization variables one at a
time. It should be noted that the evaluation of these vec-
tor components requires an unsteady flow computation
over a few periods of the flapping motion until a periodic
behavior is reached. Once the unit vector in the ascent
direction is evaluated by ~D =

~∇O

~∇O
, the step △~V = ǫ ~D

is to be determined. Reference [4] suggests a way to pre-
dict the stepsize ǫ based on the gradients in the current
and previous optimization steps.

2
Ankara International Aerospace Conference



AIAC-2005-011 M. Kaya & I. H. Tuncer
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Figure 5: Thrust and efficiency for sh = 0.25 − 2.0

Parallel Computation

A coarse parallel algorithm based on domain decom-
position is implemented in a master-worker paradigm.
The computational C-grid is decomposed into overlap-
ping subgrids (shown as partitions in Figure 2), and the
solution on each subgrid is obtained in parallel. Inter-
grid boundary conditions at the overlapping boundaries
(shown as buffer zones in Figure 2) are exchanged among
subgrid processes. In addition, in the optimization pro-
cess, the gradient vector components are evaluated in
parallel. PVM (version 3.4.5) library routines are used
for inter-process communication. Computations are per-
formed in a PC cluster operating on Linux.

RESULTS

In this work, the unsteady laminar flowfields are first com-
puted at a low Mach number of 0.1 and a Reynolds num-
ber of 10000 for a parametric study in terms of flatness
coefficient for flapping motions in plunge only. Optimiza-
tion studies for combined plunge and pitch motions are
then carried out. The optimization variables are chosen
as the pitch amplitude, the phase shift between the pitch
and plunge motions, and the plunge and pitch flatness
coefficients. The reduced frequency of the periodic mo-
tion, k ≡ ωc

U∞

, and the plunge amplitude, h0, are kept
fixed at k = 1 and h0 = 0.5 in both parametric and opti-
mization studies. The corresponding unsteady flowfields
are analyzed in terms of particle traces, the variation of
the thrust/drag coefficient, and the average thrust and
the propulsive efficiency.

Parametric Study

The flatness coefficient of plunge, sh varies in the range
0.25−2.0 (Figure 5). The figure shows the computed av-
erage thrust coefficients and propulsive efficiencies. It is
observed that sh = 0.25 case produces the highest thrust
at the highest efficiency. The sinusoidal plunge motion
and the flowfield for sh = 1.0 is given in Figure 6. The
characteristic leading edge vortices developing during the
upstroke and the downstroke of the plunging motion, and
their shedding into the wake are clearly observed. In Fig-
ure 7, the flowfield for sh = 2.0 is given. In this case,
the plunge velocities are higher at the mean plunge po-
sitions, and in a period, the airfoil stays longer at the
minimum and maximum positions than that of the sinu-
soidal motion. The main features of the flow are the same
as the previous case, except the leading edge vortices are
observed to be stronger.
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Figure 6: Plunge motion and flowfield for sh = 1.0
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Figure 7: Plunge motion and the flowfield for sh = 2.0
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Figure 8: Plunge motion and the flowfield for sh = 0.25
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Figure 9: Time variation of drag as a function of sh

In the case sh = 0.25 (Figure 8), where the airfoil reaches
high plunge velocities at the minimum and maximum
plunge positions, the leading edge vortices follow a com-
pletely different trajectory. As observed in the particle
traces, the formation of the leading edge vortex on the up-
per surface is delayed, and as the airfoil starts its upstroke,
the vortex is now forced to go over the leading edge down
to the lower surface, and convects downstream. The same
behavior is observed during the downstroke, which is not
shown.

Figure 9 shows the time variation of the drag/thrust coef-
ficient for a few periods of the flapping motion. As seen,
a periodic behavior develops along flapping periods. The
maximum thrust (minimum drag) values for sh = 2.0 and
sh = 0.25 cases are observed to be higher than those for
sh = 1.0 case. Considering the plunge velocities shown in
Figure 4, higher thrust values are associated with the high
instantaneous plunge velocities and the resulting suction
pressures created at the leading edge [19]. The double
dip in the drag coefficient for sh = 0.25 is attributed to
the passage of the vortex over the leading edge.

Table 1: Optimization cases and variables

Case β h0 k α0(
o) sα sh φ(o)

1 0.0 0.5 1.0 V 1.0 V V

2a 0.0 0.5 1.0 5.0 V V V

2b 0.0 0.5 1.0 5.0 V V V

3 0.0 0.5 1.0 10.0 V V V

4 0.5 0.5 1.0 V 1.0 V V

5 1.0 0.5 1.0 V 1.0 V V

Optimization Study

Optimization studies are performed on an airfoil flap-
ping in combined plunge and pitch. Table 1 summa-
rizes the optimization cases studied. V denotes the op-
timization variables used in the case study. In Cases
1-3, the objective function is taken to be the average
thrust coefficient(β = 0.0). In Case 4, the average thrust
coefficient and the propulsive efficiency are given equal
weights(β = 0.5). The last optimization Case 4 is per-
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Figure 10: Optimization steps for Case 1

formed for maximizing propulsive efficiency(β = 1.0). In
Case 2, there are two different starting points for opti-
mization, a and b. Corresponding optimization processes
for sinusoidally flapping motions (sh = 1.0 and sα = 1.0)
are also performed to see the effect of the flatness co-
efficient. Our numerical experimentation showed that sh

and sα values greater than 5.0 and less than 0.2 produced
convergence problems in the solver due to large acceler-
ations of plunge and pitch motions. Therefore, in the
optimization studies, sh and sα are constrained within
the range 0.2− 5.0. In all the optimization cases, parallel
computations take about 20−30 hours of wall clock time
using 4 − 8 processors.

The full path of the optimization process of Case 1 is given
in Figure 10. The initial guesses for the optimization are
based on our previous experiments. As shown, as the op-
timization variables are incremented along the gradient of
the objective function, the average thrust coefficient in-
creases gradually, and a maximum value of Ct = 0.638 is
reached at sh = 5.0, α0 = 20.3o and φ = 99.6o. The cor-
responding propulsive efficiency is 20.6%. Starting points
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Figure 11: Effective angle of attack variation and un-
steady drag/thrust coefficient for Case 1

and results of all the optimization cases are given in Ta-
ble 2. An optimization process for sinusoidal flapping with
variables α0 and φ provides a much lower average thrust
coefficient of Ct = 0.144, and twice higher efficiency of
η = 42.5% at α0 = 8.3o and φ = 89.8o. It should be
noted that the flatness coefficient for plunging motion,
sh = 5.0, increases the thrust 4 times at the expense of
reduced efficiency. Effective angle of attack and drag(-
thrust) along a period of the optimum motion for Case
1 and the corresponding sinusoidal plunge are shown in
Figure 11. In agreement with the previous studies[3, 4],
the maximum effective angle of attack occurs around mid-
plunge locations which is also the instant when the thrust
is maximum. Note that the maximum effective angle of
attack for Case 1 is about 3 times greater, and its duration
is shorter than that of sinusoidal flapping.

Instantaneous particle traces along the upstroke in a pe-
riod of the optimized flapping motion for Case 1, and
the motion is given in Figure 12. It is clearly seen that
the flowfield is highly vortical with strong leading edge
vortices. It can be concluded that the high suction in-
duced over the airfoil chord is responsible for the max-
imum thrust. It should be noted that, the airfoil stays
longer at the minimum and maximum plunge positions
than it does in a sinusoidal plunging.

In Cases 2 and 3, the flatness coefficient of pitch, sα, is
included into the set of optimization variables whereas the
pitch amplitude is kept fixed at α0 = 5.0 and 10.0 degrees
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Figure 12: Optimized flapping motion and the flowfield
for Case 1
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Figure 13: Effective angle of attack variation and unsteady drag/thrust coefficient for Cases 2 and 3
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Figure 14: Effective angle of attack variation and unsteady drag/thrust coefficient for Cases 2 and 3 with sinusoidal
plunging and pitching

in order to isolate the effects of flatness coefficients. For
α0 = 5o, there are two distinct starting points for plunge
and pitch flatness coefficients. sh and sα are both initially
equal to 1.0 for case 2a, and equal to 0.5 for case 2b. It
is interesting that the plunge flatness coefficient starting
from sh = 1.0 converges to the constraint sh = 5.0 while
the initial guess of sh = 0.5 leads to the convergence of
sh = 0.2 which is the other constraint. The flatness co-
efficient for pitching has also an interesting convergence.
The optimization process commencing with sα = 1.0 ends
at sα = 2.0 whereas sα starting from 0.5, converges to
the constraint sα = 5.0. It seems that high sh values
are associated with low sα values whereas low sh occurs
if sα is high. However, the optimized motion in Case 2a
with higher sh and lower sα provides a higher thrust of
Ct = 0.399 with a lower efficiency of η = 9.50% than
the optimized motion in Case 2b in which the thrust is,
Ct = 0.261, and the propulsive efficiency is, η = 21.8%.
As sh increases, the thrust increases but the efficiency
drops. The optimized variables of Case 3, for which the
pitch amplitude is now set α0 = 10o, are close to those
of Case 2a(Table 2). It may be concluded that flatness
coefficients, sh and sα are no very sensitive to α0.

The variation of effective angle of attack and unsteady
drag coefficient along a flapping period are given in Fig-
ure 13 for Cases 2 and 3. Figure 14 shows the correspond-

ing optimized effective angle of attack and drag history
for sinusoidal flapping. In spite of the fact that the pitch
amplitude for Case 2 is half of that for Case 3, as observed
from Figure 13, Case 2a and 3 give a similar variation of
effective angle of attack along a flapping period. The
computed average thrust and propulsive efficiency values
of these cases are also close to each other. Effective angle
of attack seems to be a well defined parameter to estimate
the thrust and efficiency of flapping airfoils. There are
two instants of maximum effective angle of attack during
a flapping stroke for Case 2b since the flatness coefficient
for plunging is sh = 0.2. Effective angle of attack vari-
ation of the optimized sinusoidal flapping at α0 = 5.0o

and α0 = 10.0o are similar as seen from Figure 14. In
Case 2b, the maximum thrust occurs near maximum and
minimum plunge positions where the effective angle of
attack is maximum.

The previous optimization cases showed that the thrust
is maximized at relatively low efficiencies. An optimiza-
tion process to optimize both the thrust and the effi-
ciency is performed in Case 4. The objective function
is a linear combination of the average thrust coefficient
and the propulsive efficiency with equal weights. The op-
timized flapping motion (Table 2) results in Ct = 0.264
and η = 42% whereas the optimized sinusoidal flapping
motion produces higher efficiency at a low thrust value.
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Table 2: Starting points and results of optimization cases

Case

1

2a

2b

3

4

5

Starting Conditions

α0(
o) sα sh φ(o)

5.00 1.0 1.0 90.0
5.00 1.0 1.0 90.0
5.00 0.5 0.5 90.0
10.0 2.5 1.0 90.0
5.00 1.0 1.0 90.0
5.00 1.0 1.0 90.0

Motion based on the Elliptic Path

α0(
o) sα sh φ(o) Ct η[%]

20.3 1.0 5.0 99.6 0.64 21
5.00 2.0 5.0 88.7 0.40 9.5
5.00 5.0 0.2 99.9 0.26 22
10.0 2.5 5.0 85.2 0.51 13
13.7 1.0 2.1 96.2 0.26 42

21.9 1.0 1.0 91.0 0.078 64

Sinusoidal Flapping

α0(
o) φ(o) Ct η[%]

8.34 89.8 0.15 43
5.00 89.3 0.13 32

10.0 86.7 0.15 48
12.1 84.6 0.14 53

20.7 80.9 0.083 62
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Figure 15: Effective angle of attack variation and unsteady drag/thrust coefficient for Case 4

Similar to Cases 1-3, the flatness coefficient of plunge
enhances the thrust generation significantly. Figure 16
shows the optimized flowfield and the flapping motion for
Case 4. The formation of the leading edge vortices when
the airfoils passes from h = 0.0 is seen in the figure.
However, the flowfield is observed to be less vortical than
in Case 1. Figure 15 gives the effective angle of attack
variation and the unsteady drag history. Like in Case 1,
the maximum effective angle of attack happens during a
short duration at the mid-plunge position. For sinusoidal
flapping, the maximum effective angle of attack occurs
slightly earlier than the mid-plunge instant.

The objective function in Case 5 is the propulsive effi-
ciency. An interesting convergence is observed in this
case(Table 2). Flatness coefficient of plunge, starting
from sh = 2.0 converged to about sh = 1.1, which is
almost sinusoidal plunging. One may conclude that if
pitching is sinusoidal, then, plunging must also be si-
nusoidal for maximum efficiency. The converged effi-
ciency, η = 64.1%, is maximized at the pitch amplitude,
α0 = 21.9o, and at the phase shift, φ = 90o. The fact
that the maximum propulsive efficiency producing opti-
mum phase shift occurs near φ = 90o is consistent with
previous optimization studies[3, 5, 4] about sinusoidally
flapping airfoils. In Figure 17, the instantaneous particle
traces of the optimum motion along a flapping period are
given. In contrast to the flowfield observation in Cases
1 and 4, the leading edge formation is prevented, which
maximizes the propulsive efficiency. The unsteady flow
becomes more streamlined with the motion of the airfoil.

The corresponding effective angle of attack variation and
unsteady drag are given in Figure 18. For an efficient
flapping, the effective angle of attack at the mid-plunge
location is set about 0 deg[4].

Table 2 gives a summary of the optimized flap-
ping motions based on both the elliptic and circular
path(sinusoidal motion). As seen from the table, flat-
ness coefficients of plunge and pitch, sh and sα, provide
high enhancement in the thrust generation. Case 4 clearly
shows that thrust may be increased without decreasing
the propulsive efficiency.

CONCLUDING REMARKS

A new periodic flapping motion which is based on plunge
and pitch flatness coefficients, is introduced to optimize
the thrust and propulsive efficiency of flapping airfoils.
The optimization of thrust generation and propulsive ef-
ficiency together is achieved with a weighted and normal-
ized objective function. Thrust generation of a flapping
airfoil is maximized at large flatness coefficients with large
leading edge vortices forming and shedding into the wake.
The airfoil stays at high effective angle of attacks dur-
ing short durations in the upstroke and the downstroke.
Propulsive efficiency of the flapping airfoils may be in-
creased by reducing the effective angle of attack, and
consequently by preventing the formation of leading edge
vortices. Further research is in progress to introduce addi-
tional parameters in the definition of the flapping motion,
and to optimize the thrust generation of flapping airfoils.
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Figure 16: Optimized flapping motion and the flowfield
for Case 4
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Figure 17: Optimized flapping motion and the flowfield
for Case 5
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Figure 18: Effective angle of attack variation and unsteady drag/thrust coefficient for Case 5
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