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ABSTRACT 

In space operations like Active Space-Debris Removal, it is necessary to grasp a tumbling 
object with unknown inertia properties using robotic arms. Having an estimation of the inertia-
properties of the grasped object is crucial for stabilizing the space-robot and performing the 
removal operation. In this paper, the momentum conservation laws are used to develop the 
momentum-based generalized form of the estimation equation. The developed formulation is 
used then to extract a linear regressor form required for the estimation of unknown inertia-
parameters of the grasped object. Despite the previous works the presented formulation can 
be used to calibrate the inertia-parameters of space-robots. 
 

INTRODUCTION 

Autonomous space robots offer the operational flexibility required for future space missions, 
encompassing tasks such as inspection, refueling, and manipulation. However, compared to 
ground robots, the dynamic coupling between the manipulator and its base introduces 
additional complexity to the dynamics modeling and motion planning [Xu, 2011]. These 
complexities arise not only from mathematical intricacies but also from uncertainties and 
variations in the Inertia Parameters (IPs). Uncertainties stem from the fact that IPs calculated 
based on CAD models can be subject to errors of up to 5 percent [Lampariello, 2005]. 
Additionally, fuel consumption and the capture of unknown objects, such as space debris, 
introduce further uncertainties associated with the IPs of a space manipulator throughout its 
lifecycle. In particular, these uncertainties impact the detumbling process during the capture of 
unknown objects like space debris [B. Dou, 2022]. Due to the strong coupling between the 
dynamics of the manipulator and its base, these uncertainties diminish the effectiveness of 
conventional reaction-free methods like Reaction Null Space (RNS) control, and may even 
result in instability of the spacecraft's base.  

Generally, two different approaches are employed to address the stabilization and control 
problem of space robots in the presence of IP uncertainties. The first approach utilizes an 
adaptive control scheme to mitigate the sensitivity of the space robot's stability and control 
performance to model accuracy. References such as [Thai Chau, 2013] and [Shuanfeng, 2013] 
employ an identification approach to adapt the RNS control scheme (ARNS) during the 
capturing phase of space debris. Similarly, [Chu, 2018] proposes an integrated strategy for 
path planning and control by adapting the time-variable matrix of the momentum equation to 
construct a reactionless path planning algorithm. Furthermore, [Zhan 2022] develops an RNS-
based adaptive law for detumbling the grasped debris, while also achieving control and 
stabilization of the base. 
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Some researchers have adopted another approach to address these uncertainties, which 
involves the identification and reduction of such uncertainties [Zhang, 2023]. Despite the 
research conducted using the first approach, the main challenge in this alternative lies not only 
in identifying the IPs (Inertial Parameters) of the debris but also in identifying the IPs of the 
spacecraft's elements. This issue holds significant importance as the spacecraft itself is 
susceptible to IP uncertainties due to fuel consumption or CAD model estimation errors. 
References such as [Lampariello, 2000] and [Lampariello, 2005] have utilized the Newton-
Euler formulation in conjunction with optimization techniques to identify the IPs of a space 
manipulator. However, their formulation lacks an explicit identification formula, and the 
utilization of optimization techniques affects the practicality of their proposed method for real-
time applications like Active Space Debris Removal (ASDR). To overcome these challenges, 
[Nabavi, 2015] employed the Lagrange formulation of equations of motion and developed a 
generalized formulation for the identification of multi-body space systems, which exhibits 
linearity with respect to the mass and inertia matrices. The authors further extended their work 
to investigate the identifiability characteristics of a space manipulator and propose a method 
for identifying all IPs of the serially-linked space manipulator [Nabavi, 2017]. They discovered 
that in space-robotic applications, the IPs of the spacecraft appear in the dynamic equations 
in a combined form known as barycentric forms. These references adopt a Force-Based 
Approach (FBA), which utilizes equations of motion derived either through the Newton-Euler 
formulation or the Lagrange formulation to identify the IPs of space manipulators.  

On the other hand, some references utilize a different approach known as the Momentum-
Based Approach (MBA), which is based on the conservation of momentum law. MBA was 
initially introduced by [Murotsu, 1994] for identifying the IPs of an object captured by a space 
manipulator, achieved by moving one arm at each time instant. This approach has also been 
employed by [Ma, 2008] to identify the IPs of the space shuttle (as the base) when its robotic 
arms are in motion. These studies, including [Zhang, 2020] and [Zhang, 2020], primarily focus 
on the identification of IPs for individual bodies such as debris or the manipulator's base. 

This paper focuses on research regarding the identification of all Inertia Parameters (IPs) of 
space manipulators using the Momentum-Based Approach (MBA). By employing 
mathematical manipulations, an explicit regressor form of the identification process is derived 
to facilitate the analysis of properties such as linearity and identifiability. This equation is 
particularly useful in the pre-capturing phase for calibrating the IPs of the space robot. 
Calibration is crucial to reduce model uncertainties during the capturing and post-capturing 
phases. It is observed that while the equations of motion exhibit linearity with respect to the 
masses and moments of inertia of the space robot, they are not linear with respect to the center 
of masses. However, it is demonstrated that if only the IPs of a single element of the space 
manipulator are unknown, a linearized form of the problem can be achieved. To validate the 
results, the dynamics of the space robots have been simulated in C#, and the results have 
been passed to the identification code (Figure 1). The accuracy of the simulation module has 
been further investigated for specific cases by comparing it to the results obtained using MSC-
ADAMS, demonstrating the reliability of the process. The simulations show that the developed 
code can identify all the IPs of the space debris in less than 20 seconds, which is highly suitable 
for online applications such as Active Space Debris Removal (ASDR). 

 
Fig. 1 – The simulation and identification process 
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MATHEMATICAL MODEL 

Mathematical terms and definitions 

In this section, some mathematical terms used in this paper for the mathematical modeling of 
the space-manipulator, are presented. 

Definitions 1 – For a symmetric  3 × 3 matrix A, the vector 𝐴  is defined as 

𝐴 = [𝑎11 𝑎12 𝑎13 𝑎22 𝑎23 𝑎33    ]
𝑇 

Definition 2 - Mass Vector of a space-manipulator: 

�⃗⃗⃗� = [𝑚0 𝑚1  …𝑚𝑖 … 𝑚𝑛  ]
𝑇 

Definition 3 - Inertia vector of a space-manipulator is as 

𝐼 = [𝐼0⃗⃗⃗ ⃗
𝑇
 𝐼1⃗⃗ ⃗
𝑇
 … 𝐼𝑛⃗⃗⃗⃗

𝑇
  ]
𝑇

 

Definition 4 - First order moment vector is defined as 

𝑚𝑟⃗⃗⃗⃗ ⃗⃗𝑐 = [𝑚0𝑟𝑐0
𝑇  … 𝑚𝑛𝑟𝑐𝑛

𝑇  ]
𝑇
 

Definition 5 – Skew-Symmetric Matrix of vector 𝑟 = [𝑟1 𝑟2 𝑟3]𝑇: 

�̃� = [

0 −𝑟3 𝑟2
𝑟3 0 −𝑟1
−𝑟2 𝑟1 0

] 

Definition 6 – For vector 𝑟 = [𝑟1 𝑟2 𝑟3]𝑇 : 

[𝑟] = [

𝑟1 𝑟2 𝑟3 0 0 0

0 𝑟1 0 𝑟2 𝑟3 0

0 0 𝑟1 0 𝑟2 𝑟3

] 

Space-Manipulator Modeling and Kinematics 

In this work the model presented in Fig. 2 is used to model the Space-Manipulator. The model 
consists of N elements, indexed from 0 (base) to n (outmost arm), all hinged sequentially with 
revolute joints. We assume that all elements are rigid, and gravity gradient torque, joints 
friction, and other external disturbances have negligible effects. The model of each element of 
the space manipulator is presented in Fig. 3. In this model  a body frame Σ0, positioned at its 

joint position to the element 1, is attached to the base. All other elements (𝑖 = {1…𝑛}) have 
their own body frames Σ𝑖, attached to their hinge point to their previous element (𝑖 − 1). The 

body frames (Σ𝑖 ‘s) are such that the joint to the next element is on the x axis of the Σ𝑖 and the 
rotation of the element 𝑖 happens around the z axis. The position of the center of mass for 

each element 𝑖 in inertia frame is considered as 𝑟𝑖 and in body frame (Σ𝑖) is presented as 𝑟𝑐𝑖. 

Also, the position joints in inertia frame are presented as 𝑝𝑖.  

Assuming that the X⃗⃗⃗ as the state vector of the spacecraft, the kinematic constraints of space 
manipulator’s elements can be presented mathematically by (1): 

 v⃗⃗i = Jvi X⃗⃗⃗,        �⃗⃗⃗�i = Jωi X⃗⃗⃗        (1) 

Where  v⃗⃗i and �⃗⃗⃗�i are, respectively, the linear and rotational velocities of the 𝑖𝑡ℎ element of the 
spacecraft and,  Jvi and  Jωi are the Jacobians. Using the model presented in Fig. 3, the CoM 

position of the 𝑖𝑡ℎ element of the space-manipulator (𝑟𝑖) can be presented as 

𝑟𝑖 = 𝑝𝑖 + 𝑅𝑖𝑟𝑐𝑖          (2) 

The time derivative of (2) is: 

v⃗⃗i = ṗ⃗⃗i + Ri�̇�ci + �̇�𝑖𝑟𝑐𝑖          (3) 

The time derivative of pin position (ṗ⃗⃗i) depends on the pin positions of elements and position 

of base but it is not dependent on CoMs of the space-manipulator. On the other hand, �̇�ci is 

zero while last term dependent to the CoM of element i.  So, by comparing (3) and (1), the 𝐽𝑣𝑖 

can be divided into CoM dependent term (CoM of the element i) and CoM free term: 

𝐽𝑣𝑖 = 𝐽𝑝𝑖 + 𝐿(𝑟𝑐𝑖)         (4 
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Figure 2 - Schematic of a space-manipulator 
capturing an object 

Figure 3 - Schematic of each element 
of space-manipulator 

 

Using (1) the linear momentum of a multi-body system like space-manipulators can be written 
as: 

 �⃗⃗� = ∑ 𝑚𝑖𝑉𝑖
𝑛
𝑖=0 = ∑ 𝑚𝑖𝐽𝑣𝑖

𝑛
𝑖=0 �̇⃗�        (5) 

�⃗⃗� = ∑ (𝐼𝑖𝜔𝑖 +𝑚𝑖𝑟i × �⃗�i)
𝑛
𝑖=0   

 

Formulation of All IPs Identification Problem 

As an identification problem, it is desired to present the MBA-based dynamic equations in the 
regressor form (6) which is appropriate for Least-Square based algorithms like Recursive Least 
Squares (RLS). 

[
Φ1u
Φ2u

] θ⃗⃗u = τ⃗⃗ − [
Φ1k
Φ2k

] θ⃗⃗k         (6) 

In this equation, Φ1u and Φ2u are the regressor terms related to unknown IPs and Φ1k and Φ2k 

are the regressor terms related to unknown IPs. θ⃗⃗k and θ⃗⃗u presents known and unknown IPs 
respectively. 

Where �⃗⃗� denotes the linear momentum. Using (4), The linear momentum term in (5) can be 
written as 

�⃗⃗� = ∑ 𝑚𝑖(𝐽𝑝𝑖 + 𝐿(𝑟𝑐𝑖))
𝑛
𝑖=0 �̇⃗�        (7) 

For a serially linked manipulator [7] showed that 

𝐿(𝑟𝑐𝑖)�̇⃗� = 𝐵𝑖
′ (�̇⃗�) 𝑟𝑐𝑖         (8) 

So, Eq. 7 can be rewritten as: 

�⃗⃗� = ∑ 𝑚𝑖𝐽𝑝𝑖 �̇⃗�
𝑛
𝑖=0 + ∑ 𝐵𝑖′𝑚𝑖𝑟⃗⃗⃗⃗⃗⃗ ⃗⃗𝑐𝑖

𝑛
𝑖=0        (9) 

This equation is linear w.r.t mass vector and first moment vector.  

For the angular momentum term (�⃗⃗�), it is necessary to transfer the In a similar fashion, the 
angular momentum of the space-manipulators can be written as: 

 �⃗⃗� = ∑ 𝐼𝑖𝜔𝑖
𝑛
𝑖=0 +𝑚𝑖𝑟i × �⃗�i = ∑ 𝐼𝑖𝐽𝜔𝑖�̇⃗�

𝑛
𝑖=0 + ∑ 𝑚𝑖�̃�𝑖𝐽𝑣𝑖�̇⃗�

𝑛
𝑖=0     (10) 

Using definitions 3 and 6, the first part of (10) can be presented in a linear form w.r.t the inertia 
matrix of the elements of the space-manipulator as 

𝐼𝑖𝐽𝜔𝑖�̇⃗� = [𝐽𝜔𝑖�̇⃗�] 𝐼𝑖
⃗⃗⃗         (11) 

Considering (4), the second part of (10) can be written as: 

𝑚𝑖�̃�𝑖𝐽𝑣𝑖�̇⃗� = 𝑚𝑖�̃�𝑖𝐽𝑝𝑖 �̇⃗� + 𝑚𝑖�̃�𝑖𝐿(𝑟𝑐𝑖)�̇⃗�       (12) 

Using (2), Eq. (12) can be rewritten as 
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𝑚𝑖�̃�𝑖𝐽𝑣𝑖�̇⃗� = (�̃�𝑖𝐽𝑝𝑖 �̇⃗�)𝑚𝑖 + ([𝐽𝑝𝑖 �̇⃗�
̃
]
𝑇

Ri + �̃�𝑖𝐵𝑖′)𝑚𝑖𝑟𝑐𝑖 +𝑚𝑖𝑅𝑖�̃�𝑐𝑖𝐵𝑖′𝑟𝑐𝑖   (13) 

Combining (10), (11) and (13) the angular momentum of space-manipulator can be written as: 

�⃗⃗� = ∑ ((�̃�𝑖𝐽𝑝𝑖 �̇⃗�)𝑚𝑖 + ([𝐽𝑝𝑖 �̇⃗�
̃
]
𝑇

Ri + �̃�𝑖𝐵𝑖
′ + 𝑅𝑖�̃�𝑐𝑖𝐵𝑖′)𝑚𝑖𝑟𝑐𝑖 + [𝐽𝜔𝑖�̇⃗�] 𝐼𝑖

⃗⃗⃗)𝑛
𝑖=0   (14) 

This equation is linear with respect the masses (𝑚𝑖) and inertias (𝐼𝑖) of all elements of the 
spacecraft. However, appearance of 𝑟𝑐𝑖 in the coefficient of term 𝑚𝑖𝑟𝑐𝑖 makes (14), nonlinear 

with respect to the first moment vector of the elements of the spacecraft.  

Equation (14) can be helpful in the process of the calibration of IPs of the spacecraft to remove 
the uncertainties related to on-ground measurements or IPs changes during the space 
operations. However, during the capturing of the space-debris it can be assumed that 
calibration is performed in pre-capture phase and identification of IPs of the debris is the focus 
of the identification process.  

 

Special form of IPs Identification Problem – One Unknown Element 

In this section, it will be shown that if just one element of the space-manipulator has unknown 
IPs, it is possible to find a linear form of equations of motion w.r.t unknown IPs.  

Without loss of generality, assume that the last element of space-manipulator has unknown 

IPs. Then (9) can be used to calculate the linear momentum of the last arm (�⃗⃗�′) as: 

�⃗⃗�′ = �⃗⃗� − ∑ 𝑚𝑖𝐽𝑝𝑖 �̇⃗�
𝑛−1
𝑖=0 − ∑ 𝐵𝑖′𝑚𝑖𝑟⃗⃗⃗⃗⃗⃗ ⃗⃗𝑐𝑖

𝑛−1
𝑖=0 = 𝐽𝑝𝑛 �̇⃗�𝑚𝑛 + 𝐵𝑛′𝑚𝑛𝑟⃗⃗⃗⃗ ⃗⃗ ⃗⃗ �⃗�𝑛    (15) 

Similarly, the angular momentum of the last arm (�⃗⃗�′) can be shown as: 

�⃗⃗�′ = �⃗⃗� −∑((�̃�𝑖𝐽𝑝𝑖 �̇⃗�)𝑚𝑖 + ([𝐽𝑝𝑖 �̇⃗�
̃
]
𝑇

Ri + �̃�𝑖𝐵𝑖
′ + 𝑅𝑖�̃�𝑐𝑖𝐵𝑖′)𝑚𝑖𝑟𝑐𝑖 + [𝐽𝜔𝑖�̇⃗�] 𝐼𝑖

⃗⃗⃗)

𝑛−1

𝑖=0

 

= (�̃�𝑛𝐽𝑝𝑛 �̇⃗�)𝑚𝑛 + ([𝐽𝑝𝑛 �̇⃗�
̃

]
𝑇

Rn + �̃�𝑛𝐵𝑛
′ + 𝑅𝑛�̃�𝑐𝑛𝐵𝑛′)𝑚𝑛𝑟𝑐𝑛 + [𝐽𝜔𝑛�̇⃗�] 𝐼𝑛

⃗⃗⃗⃗    (16) 

From (15) it can be shown that 

𝐵𝑛
′𝑚𝑛𝑟⃗⃗⃗⃗ ⃗⃗ ⃗⃗ �⃗�𝑛 = �⃗⃗�

′ − 𝐽𝑝𝑛 �̇⃗�𝑚𝑛        (17) 

Inserting (17) in (16) yields in 

�⃗⃗�′ = (�̃�𝑛𝐽𝑝𝑛 �̇⃗�)𝑚𝑛 + ([𝐽𝑝𝑛 �̇⃗�
̃

]
𝑇

)𝑅𝑛𝑚𝑛𝑟𝑐𝑛 + (�̃�𝑛 + 𝑅𝑛�̃�𝑐𝑛)(�⃗⃗�
′ − 𝐽𝑝𝑛 �̇⃗�𝑚𝑛) + [𝐽𝜔𝑛�̇⃗�] 𝐼𝑛

⃗⃗⃗⃗  (18) 

Considering that for two arbitrary 3×1 vectors 𝑟 and �⃗⃗� 

  �̃��⃗⃗� = �̃⃗⃗�𝑇𝑟          (19) 

Equation (18) can be simplified to 

�⃗⃗�′ − �̃�𝑛�⃗⃗�
′ = �⃗⃗�′̃

𝑇

𝑅𝑛𝑟𝑐𝑛 + [𝐽𝜔𝑛�̇⃗�] 𝐼𝑛
⃗⃗⃗⃗        (20) 

Equation (17) can be rewritten as 

�⃗⃗�′ (
1

𝑚𝑛
) − 𝐵𝑛

′ 𝑟𝑐𝑛 = 𝐽𝑝𝑛 �̇⃗�        (21) 

Equations (20) and (21) can be combined in the regressor form of 

[
�⃗⃗�′𝑅𝑛 −𝐵𝑛

′ 0

0 �⃗⃗�′̃
𝑇

[𝐽𝜔𝑛�̇⃗�]
]

{
 

 
1

𝑚𝑛

𝑟𝑐𝑛

𝐼𝑛⃗⃗⃗⃗ }
 

 

= {
𝐽𝑝𝑛 �̇⃗�

�⃗⃗�′ − �̃�𝑛�⃗⃗�
′
}      (22) 

In a planar case, the (22) consisting three equations while, in a spatial case, this includes six 
equations. Mathematically, this form is appropriate for identification as it is linear with respect 
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to the IPs. On the other hand, the implementation of (22) requires to measuring or estimating 
the inertial position and the linear and angular velocities of the base. It also needs the angular 
state and the angular velocity vector of the space manipulator elements. The drawback of 
using these equations to identify the IPs of the debris is its reliance on the measurement or 

estimation of the linear and angular velocities of the last arm (�⃗⃗�′, �⃗⃗�′).  

 

Analysis of the presented identification formulation 

Equation 22 shows a linear form of linear and angular momentums with respect to the IPs of 
the spacecraft that makes it appropriate to be used in conjunction of well-known methods like 
Least-Square based method (LS, RLS, WRLS) to identify unknown IPs of the space debris. 
The case studies presented in the following section show that using the presented formulation, 
the IPs of the space-manipulator can be estimated very fast using reliable methods like RLS. 

Practically, there are some parameters in the the presented formulation that cannot be 
measured or estimated. Examination of the right-hand side of Eq. 22 shows that the regressor 

matrix depends on angular Jacobian (𝐽𝜔𝑛), 𝐵𝑛
′ , 𝑅𝑛, and linear momentum of the last arm �⃗⃗�′. 

The terms 𝐽𝜔𝑛 , 𝑅𝑛 and 𝐵𝑛
′  require the measurement of rotational angles and angular rates of 

the arms of the manipulator that can be measured using available sensors. On the other hand, 

the linear momentum of the last arm (�⃗⃗�′) is a parameter that cannot be measured or calculated 
as it relates to the unknown IPs of the last arm.  

The left-hand side of Eq. 22 depends on 𝐽𝑝𝑛 and the pin position of the last arm (�̃�𝑛) which can 

be calculated using the rotation angles of the arms of the manipulator. It also requires angular 

velocities of the arms (�̇⃗�) that generally the sensors of the manipulators are measuring them. 
However, the RHS of equation depends on linear and angular momentums of the spacecraft 
that are not measurable.  

To tackle this problem, a specific feature that space environment provides us is used in this 
research. If the spacecraft remains in free-floating state during the estimation period, then the 
linear and angular momentums of the spacecraft will not change. Additionally, considering the 
fixed relative position of the spacecraft and the debris before the capturing process, the linear 
momentum resulted from their relative motion can be set to zero (before and after the 
grasping): 

�⃗⃗� = ∑ 𝑚𝑖𝑣𝑖
𝑛
𝑖=0 = ∑ 𝑚𝑖𝑣𝑖

𝑛−1
𝑖=0 + �⃗⃗�′ = ∑ 𝑚𝑖𝐽𝑣𝑖�̇⃗�

𝑛−1
𝑖=0 + �⃗⃗�′ = 0    (23) 

So, 

�⃗⃗�′ = −∑ 𝑚𝑖𝐽𝑣𝑖�̇⃗�
𝑛−1
𝑖=0          (24) 

Despite total linear momentum, the total angular momentum is not zero as the debris generally 
have unknown angular momentums. However, as the free-floating flight suggests, the total 
angular momentum remains unchanged during the estimation process. We employed this 
property by using the difference form of the angular-momentum-related terms in (22) to 
substitute the unknown angular momentum of the last arm with their known difference value: 

[
�⃗⃗�′𝑅𝑛 −𝐵𝑛

′ 0

0 ∆𝑃⃗⃗⃗⃗⃗⃗ ′̃
𝑇

∆ [𝐽𝜔𝑛�̇⃗�]
]

{
 

 
1

𝑚𝑛

𝑟𝑐𝑛

𝐼𝑛⃗⃗⃗⃗ }
 

 

= {
𝐽𝑝𝑛∆�̇⃗�

∆�⃗⃗�′ − ∆(�̃�𝑛�⃗⃗�
′)
}     (25) 

In the following sections Eq. 25 is recognized as “difference form” of identification equation to 
distinguish it from the “main form” (Eq. (22)). 
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Table 1– Space-Manipulator parameters 

Element Number 
Mass 
(Kg) 

Inertia around CoM 
 (Kg.m2) 

Xcg(m) Ycg(m) 
𝑙𝑝(m) 

𝑞(𝑡 = 0) 
(Deg) 

�̇�(𝑡 = 0) 
(Deg/s) 

0 2552 7087 -1.75 0.75 -- 0 2 

1 180 245 1.8 -0.06 4 60 1 

2 180 245 1.95 0.02 4 -60 -2 

3 180 245 1.9 -0.03 4 -60 1 

4 934.45 3435 2.3 0.9 -- 60 2 

 

Case Study 

A space manipulator consisting of a base spacecraft equipped with a four serially linked arms 
manipulator is simulated and its results are used for the verification of the identification 
developed formulation and algorithm (Fig. 1). The parameters of the simulated space 
manipulator are presented in Table 1. It is assumed that after grasping the debris by the last 
arm, they will bond to each other and form a new unique element. The IPs of this new element 
are a combination of the IPs of the debris and the last arm. Additionally, after grasping the 
space debris its angular momentum will be transferred to the space manipulator elements. The 
angular velocities of these elements after grasping the debris are assumed to be known as 
presented in Table 1.  

The RLS algorithm with the initial covariance matrix of 𝑃0 = 10
6𝑰 and forgetting factor of 𝜆 =

0.99 has been employed to identify the IPs of the last arm (including debris). To see how the 
“difference form” affects the identification performance compared to the “main form”, both 
forms have been used to identify the IPs of the last arm (including Debris). 

The time variation of the identification of IPs of the last arm using the 'main form' is presented 
in Fig. 4. It is evident that the proposed algorithm successfully identifies all of the IPs of the 
captured debris in parallel in less than 10 seconds. On the other hand, the identification results 
using the difference form (Fig. 5) demonstrate that the difference form reduces the excitation 
level of terms related to the identification of the moment of inertia. This reduction can be 
attributed to the fact that the coefficients of mass and CoM in Eq. (25) are the same as in Eq. 
(22), and the difference form is only applied to the terms related to the moment of inertia. 
Consequently, the mass and CoM are identified first in less than 20 seconds, after which the 
inertia matrix is identified. It can be observed that the identification of the inertia term begins 
approximately after 15 seconds, when the mass and CoM identification converge to their final 
values. Once the identification of the inertia terms begins, it converges relatively quickly in 
about 5 seconds. 

 

Conclusion 

In this paper, the simultaneous identification of IPs for all elements of spacecraft equipped with 
space manipulators is formulated using the MBA approach. The formulation of the problem 
utilizes the conservation laws of linear and angular momentum. As a result, an equation is 
derived that is linear with respect to the masses and inertia matrices of the spacecraft's 
elements. However, due to the presence of center of masses in the regressor matrix, the 
equation is not linear with respect to the center of masses. Nevertheless, it has been 
demonstrated that for space systems with only one element having unknown IPs, a linear form 
of the equation with respect to all IPs can be obtained when the system operates in the free-
floating mode. To address the requirement of measuring the angular and linear momenta of 
the debris, a difference form of the identification equation is developed. Simulation results 
indicate that both the main form and the difference form are capable of identifying IPs. 
However, due to the reduced excitation level in the difference form, the identification process 
takes longer to converge. 
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Figure 4 – Results of identification of mass and CG position assuming known angular 
momentum 

 

Figure 4 – Results of identification of mass and CG position using the difference form 
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