

AIAC-2021-176 Konokman & Kaya

1

Ankara International Aerospace Conference

11th ANKARA INTERNATIONAL AEROSPACE CONFERENCE AIAC-2021-176

8-10 September 2021 - METU, Ankara TURKEY

SOLUTION OF THE MODIFIED POINT MASS TRAJECTORY MODEL
USING OBJECT ORIENTED PROGRAMMING BY MODERN FORTRAN

Hüseyin Emrah Konokman 1
TÜBİTAK SAGE
Ankara, Turkey

Mustafa Kaya 2
Ankara Yıldırım Beyazıt University

Ankara, Turkey

ABSTRACT

Object oriented programming techniques using Modern Fortran are demonstrated for the
solution of the modified point mass trajectory model. Fundamental concepts of this technique
were demonstrated and the unified modeling language charts were given for the explicit
integration methods including Euler and 4th order Runge-Kutta methods and for the modified
point mass trajectory model. Using the developed code, trajectories of the 35 mm TP-T
projectile were calculated.

INTRODUCTION

For the solution of the moving objects, one of the most general method is 6-degrees of freedom
equations of motion model with point mass approximation. However, the solution of this model
could be time consuming for the spin stabilized projectiles. Modified point mass trajectory
model for the spin stabilized projectile, which is also given by STANAG 4355 Edition 3, 2009
was derived by [Lieske et.al (1966)]. This model is not as time-consuming to solve compared
to 6-DOF model and it provides enough accuracy.

There are mainly two types of programming techniques: Procedural (procedure based)
programming and object-oriented programming. Codes developed according to the procedure
based programming are a bit faster than object-oriented ones but since object-oriented
programming provides ease of further development and maintenance of the code and reuse
of parts (classes) of the code, object-oriented programming technique becomes popular also
in scientific computing.

For the solution of science and engineering problems, Fortran language was mostly used for
years after 1950s. With Fortran 90 standard (after Fortran 90 it is also called as Modern
Fortran) the modularity and derived types (encapsulation features) were added. Fortran 2003
included many object oriented programming (OOP) features such as type bound procedure
and procedure pointer. Then 2008 standard provided the most of the important OOP features
such as inheritance and polymorphism by adding extended type, abstract type and deferred
binding, etc. Because Fortran language was (and is continuing to be) developed especially for
the numerical calculations it is the fastest language for scientific calculations and numerical
solutions compared to other languages. Learning, writing and reading it is easy (its syntax is
simple), it is modern (it supports modularity, object-oriented programming and parallel

1 Chief Research Engineer, Email: emrah.konokman@tubitak.gov.tr
2 Assoc. Professor in Aerospace Engineering, Email: mukaya@ybu.edu.tr

AIAC-2021-176 Konokman & Kaya

2

Ankara International Aerospace Conference

programming guaranteed by its standard), it has a huge source of codes and libraries in open
literature, and it is standard (it has an ANSI standard, which is updated according to the user
needs and new modern techniques) and all compilers follow and apply the standardization
rules.

There are four main principles of object oriented programming, which are encapsulation and
information hiding, abstraction, inheritance and polymorphism. Encapsulation and information
hiding is that all important information is contained inside the object, and only selected
information is supplied to the outside. In a Fortran code, encapsulation is provided by “module”
construct and derived types. “Private” statement is used to hide the information or procedures
and “public” statement gives access to them from outside of the module. Abstraction is used
to hide unnecessary details from the user providing the user to handle the complexity. Data
abstraction is constituted by abstract data types and by derived types in a Fortran code [Metcalf
(1995)]. Components of an object are all included in the derived type of that object and the
structure for that object can be generated referring its derived type. Components of the object
are encapsulated in its derived type. “Derived type” was first introduced by Fortran 90 and type
bound procedure, which is one of the main steps through the object-oriented programming,
was included by 2003 standard. Inheritance allows classes to inherit features of other classes
[Educative (2021)], that is, it provides deriving new classes from an existing class using the
common data and procedures. Inheritance enhances the reusability of the codes. In Fortran,
“type extension” (extended type), which came with 2008 standard, provides the inheritance.
By means of polymorphism concept, the object of different types can be accessed through the
same interface [Stackify (2021)]. Each type can provide its own, independent implementation
of this interface. Polymorphism concept is implemented using “abstract type” and “extend”ing
this abstract type in Fortran, which was first introduced by 2008 standard.

The book of Rouson, D., Xia, J., Xu, X. (2011) explains object oriented design of the scientific
software mainly using Fortran and also using C++. As this book states, two languages
dominate the scientific computing, which are Fortran and C++. Simon Management Group
(2006) gives an HPC survey stating that the United States Department of Defense High
Performance Computing users had indicated that approximately 85% write in C/C++/C#, while
nearly 60% write in Fortran. However, in recent years Fortran loses popularity among
mechanical, civil and aerospace engineers in Turkey. Because of the ease of code
development using present libraries, Matlab is very popular especially in the defence industry.
Even Python has no much usage for computational codes. Although the code development
may be much more easy and faster compared to the lower level languages Fortran and C++,
since Matlab codes are much slower, the computational cost in terms of the time becomes
excessive for the lifetime usage of these codes.

The aim of this study is the development of the numerical solution of the modified point mass
trajectory model and demonstration of the object oriented programming techniques using
Modern Fortran for this solution.

METHOD

Modified Point Mass Trajectory Model

Equation of motion of the projectile center of mass is given as equation (1).

𝑚u̇ = DF + LF + MF + 𝑚g + 𝑚Λ (1)

where DF is the drag force vector, LF is the lift force vector, MF is the Magnus force, 𝑚g is the
weight and 𝑚Λ is the force vector due to Coriolis acceleration, and these are given in the
following equations.

DF = −
𝜋𝜌𝑑2

8
(𝐶𝐷0 + 𝐶𝐷𝛼2𝛼𝑒

2)𝑣 ∙ v (2)

LF =
𝜋𝜌𝑑2

8
(𝐶𝐿𝛼 + 𝐶𝐿𝛼3𝛼𝑒

2)𝑣2 ∙ αe (3)

MF = −
𝜋𝜌𝑑3𝑝𝐶𝑚𝑎𝑔−𝑓

8
(αe × v) (4)

AIAC-2021-176 Konokman & Kaya

3

Ankara International Aerospace Conference

𝑚g = −𝑚𝑔0 [

𝑥1/𝑅
1 − 2𝑥2/𝑅

𝑥3/𝑅
] (5)

𝑚Λ=2m(𝝎 × u) (6)

u=u𝟎 + ∫ u̇𝑑𝑡

𝒕

𝟎

 (7)

v=u - w (8)

where x is the position vector, u is velocity vector, w is the wind vector, v is the velocity vector

with respect to the air, αe is vector of the yaw of repose. 𝐶𝐷0, 𝐶𝐷𝛼2, 𝐶𝐿𝛼, 𝐶𝐿𝛼3 and 𝐶𝑚𝑎𝑔−𝑓 are

the aerodynamic coefficients, which are the drag coefficient, induced drag coefficient, lift
coefficient, cubic lift coefficient, Magnus force coefficient and spin damping coefficient,
respectively.

Equation for the spin of the projectile is given as below.

𝑑𝐩

𝑑𝑡
=

𝜋𝜌𝑑4𝑣𝐶𝑠𝑝𝑖𝑛

8𝐼𝑥
𝐩 (9)

The yaw of repose vector is given as below.

αe = −
8𝐼𝑥𝑣𝐶𝑠𝑝𝑖𝑛

𝜋𝜌𝑑3(𝐶𝑀𝛼 + 𝐶𝑀𝛼3𝛼𝑒
2)𝑣4

 (10)

Additionally, position vector of the projectile with respect to the ground-fixed coordinate system
is calculated as below.

x=x𝟎 + ∫ u𝑑𝑡

𝒕

𝟎

 (11)

Figure 1. Ground Fixed Coordinate System for the Problem

For the ground fixed coordinate system as shown in Figure 1, the scalar form of equations of
motion can be obtained as the following equations from equation (1).

R

South

Ωz

r

1

2

3

x

y

z

V
αt

X

North

AIAC-2021-176 Konokman & Kaya

4

Ankara International Aerospace Conference

𝑑𝑢1

𝑑𝑡
= −

𝜋𝜌𝑑2

8𝑚
[𝐶𝐷0 + 𝐶𝐷

𝛼2
(𝛼𝑒)2] 𝑣𝑣1 +

𝜋𝜌𝑑2

8𝑚
(𝐶𝐿𝛼 + 𝐶𝐿

𝛼3 𝛼𝑒
2) 𝑣2𝛼𝑒1 − 𝑔0

𝑋1

𝑅

−
𝜋𝜌𝑑3𝑝𝐶𝑚𝑎𝑔−𝑓

8𝑚
(𝛼𝑒2𝑣3 − 𝛼𝑒3𝑣2) − 2Ω[sin(𝑙𝑎𝑡)𝑢3 + cos(𝑙𝑎𝑡) sin(𝐴𝑧)𝑢2]

(12)

𝑑𝑢2

𝑑𝑡
= −

𝜋𝜌𝑑2

8𝑚
[𝐶𝐷0 + 𝐶𝐷

𝛼2
(𝛼𝑒)2] 𝑣𝑣2 +

𝜋𝜌𝑑2

8𝑚
(𝐶𝐿𝛼 + 𝐶𝐿

𝛼3 𝛼𝑒
2) 𝑣2𝛼𝑒2 − 𝑔0 (1 −

2𝑋2

𝑅
)

−
𝜋𝜌𝑑3𝑝𝐶𝑚𝑎𝑔−𝑓

8𝑚
(𝛼𝑒3𝑣1 − 𝛼𝑒1𝑣3) − 2Ω[cos(𝑙𝑎𝑡) sin(𝐴𝑧)𝑢1 + cos(𝑙𝑎𝑡) cos(𝐴𝑧) 𝑢3]

(13)

𝑑𝑢3

𝑑𝑡
= −

𝜋𝜌𝑑2

8𝑚
[𝐶𝐷0 + 𝐶𝐷

𝛼2
(𝛼𝑒)2] 𝑣𝑣3 +

𝜋𝜌𝑑2

8𝑚
(𝐶𝐿𝛼 + 𝐶𝐿

𝛼3 𝛼𝑒
2) 𝑣2𝛼𝑒3 − 𝑔0

𝑋3

𝑅

−
𝜋𝜌𝑑3𝑝𝐶𝑚𝑎𝑔−𝑓

8𝑚
(𝛼𝑒1𝑣2 − 𝛼𝑒2𝑣2) − 2Ω[cos(𝑙𝑎𝑡) cos(𝐴𝑧) 𝑢2 − sin(𝐴𝑧)𝑢1]

(14)

where

𝑢𝑖 =
𝑑𝑋𝑖

𝑑𝑡
 𝑖 = 1, 2, 3 (15)

Moreover, the scalar form of spin rate can be obtained from equation (9) as below.

𝑑𝑝

𝑑𝑡
=

𝜋𝜌𝑑4𝑝𝑣𝐶𝑠𝑝𝑖𝑛

8𝐼𝑥
 (16)

The components of yaw of repose vector are obtained as below.

𝛼𝑒1 = −
8𝐼𝑥𝑝(𝑣2�̇�3 − 𝑣3�̇�2)

𝜋𝜌𝑑3(𝐶𝑀𝛼 + 𝐶𝑀𝛼3𝛼𝑒
2)𝑣4

 (17)

𝛼𝑒2 = −
8𝐼𝑥𝑝(𝑣3�̇�1 − 𝑣1�̇�3)

𝜋𝜌𝑑3(𝐶𝑀𝛼 + 𝐶𝑀𝛼3𝛼𝑒
2)𝑣4

(18)

𝛼𝑒3 = −
8𝐼𝑥𝑝(𝑣1�̇�2 − 𝑣2�̇�1)

𝜋𝜌𝑑3(𝐶𝑀𝛼 + 𝐶𝑀𝛼3𝛼𝑒
2)𝑣4

(19)

Furthermore, 𝑣 is the velocity of the projectile relative to air and its components are as below.
𝑣𝑖 = 𝑢𝑖 − 𝑤𝑖 𝑖 = 1, 2, 3 (20)

where 𝑤 is tthe wind velocity.

Additionally, the gravitational acceleration is obtained according to the position on Earth as

𝑔0 = 9.80665(1 − 0.0026 cos(2𝑙𝑎𝑡)) 𝑚/𝑠2, the angular speed of the Earth is Ω = 7.292115 ∙
10−5 𝑟𝑎𝑑/𝑠, the radius of the Earth sphere approximating the geoid is 𝑅𝑧 = 6356766 𝑚, lat is
the latitude of the launch point of the projectile and Az is the azimuth of 1 axis.

Numerical Solution and Object Oriented Programming Techniques

For the numerical solution of a ordinary differential equations Euler method is the one of the
simplest ones. Euler method is explicit type solution method, that is it uses variable values
from known step. However, Euler method may give erroneous results for bigger steps.

4th order Runge-Kutta method is mostly used for the integration of the differential equations by
many researchers since it gives relatively good results compared to the integration step size
used. It is also explicit type method however it uses the equation values from the current time
intermediate time step and further time step, so this method increases the accuracy. Since it
is a common method, its formulation is not given in this paper again.

For the numerical integration of ordinary differential equations, a class called step_class was
developed as a Fortran module and it is publicly shared from Github reposity by the author
[Konokman (2021)]. The unified modeling language (UML) diagram of this class is shown by
Figure 2 and the important parts of the code listing are given by Figure 3 (UML diagrams were
drawn by means of ForUML software [Nanthaamornphong et al (2015)]). Differential equations
set is given by a derived type and its deferred procedure. The code listing of the abstract type
of the equation set is given by Figure 4. This class demonstrates the inheritance and
polymorphism concepts. An abstract class (type) called step_abstract_type is first introduced.
This abstract class includes the common variable ds (step size) and abstract interface for the
step procedure, which takes vector (array) of equation set as input and gives vector of step of

AIAC-2021-176 Konokman & Kaya

5

Ankara International Aerospace Conference

the equation set as output. Figure 5 and Figure 6 shows the code listings for the Euler and 4th
order Runge-Kutta methods which are the derived elements of the step class. These step
methods are inherited from step_abstract_type class and “step” procedure for each new step
class implemented via deferred binding. This is provided by Fortran using “deferred” keyword
in “procedure” line of the type boung procedure of abstract type.

Figure 2. Step Class UML Diagram

Figure 3. Step Abstract Type Code Listing

 !!!Abstract step type
 !! The type for a new step method is extended from this abstract type
 type, abstract, public :: step_abstract_type

 contains
 procedure(step_proc), deferred, nopass :: step
 end type step_abstract_type

 abstract interface
 subroutine step_proc(f, t, x, h, dx)
 use :: precision, only: rp !!!rp is the selected real precision, ie
 !! single, double or quadruple precision
 import :: derivative_abstract_type
 class(derivative_abstract_type) :: f !!!The derivative function container
 real(rp), intent(in) :: t !!!Independent variable
 real(rp), intent(in) :: x(:) !!!Vector of the equation set
 real(rp), intent(in) :: h !!!Step size
 real(rp), intent(out) :: dx(:) !!!Vector of one step of the eqn set
 end subroutine step_proc
 end interface

AIAC-2021-176 Konokman & Kaya

6

Ankara International Aerospace Conference

Figure 4. Derivative Abstract Type Code Listing

Figure 5. Euler Step Code Listing

 !!!The equation (derivatives of the equation set) to be integrated
 !! (to be stepped forward)
 ! The type for the equation set to be stepped forward should be
 ! extended from this abstract type
 type, abstract, public :: derivative_abstract_type
 !!!Parameters of the (derivatives of) equation set should be given
 !! by the extended type for that equation set
 contains
 procedure(derivative_proc), deferred :: derivative !!!The procedure of
 !! the derivative equation to be stepped forward. This procedure takes x
 ! input and output xdot
 end type derivative_abstract_type
 !!!Interface for the deferred binding
 abstract interface
 subroutine derivative_proc(self, t, x, xdot)
 import :: derivative_abstract_type, rp
 class(derivative_abstract_type), intent(inout) :: self
 real(rp), intent(in) :: t !!!Independent variable
 real(rp), intent(in) :: x(:) !!!Vector of the equation set
 real(rp), intent(out) :: xdot(size(x)) !!!Vector of the derivatives of
 !! equation set
 end subroutine
 end interface

 !!!Euler step
 type, extends(step_abstract_type), public :: step_euler_type

 contains
 procedure, nopass :: step => step_euler
 end type step_euler_type

…
…
…
 !!!Procedure for simple Euler step
 subroutine step_euler(f, t, x, h, dx)

 implicit none
 class(derivative_abstract_type) :: f
 real(rp), intent(in) :: t
 real(rp), intent(in) :: x(:)
 real(rp), intent(in) :: h
 real(rp), intent(out) :: dx(:)

 real(rp), dimension(size(x)) :: xdot

 call f%derivative(t, x, xdot)

 dx = h * xdot

 end subroutine step_euler

AIAC-2021-176 Konokman & Kaya

7

Ankara International Aerospace Conference

Figure 6. RK-4 Step Code Listing

The “step” procedure needs the equation set to be solved. In order to provide a general
(generic) equation set again an abstract type was used named derivative_abstract_type. Since
equation set provides the derivatives, it was named with pre derivative_. By extending this
class, any equation set with any parameter set can easily be implemented as given below.

Figure 7 shows the UML diagram of the class developed for the solution of the modified point
mass trajectory model. It is inherited from derivative abstract type given in Figure 4. All the
parameters are included in the extended type named motion_mod_point_mass_dt_type.
These parameters can easily be got by means of using a “constructor”. Figure 8 shows the
code listing of the class for the modified point mass trajectory model.

 !!!RK4 step
 type, extends(step_abstract_type), public :: step_rk4_type

 contains
 procedure, nopass :: step => step_rk4
 end type step_rk4_type

…
…
…

 !!!Procedure for 4th order Runge-Kutta step
 subroutine step_rk4(f, t, x, h, dx)

 implicit none
 class(derivative_abstract_type) :: f
 real(rp), intent(in) :: t
 real(rp), intent(in) :: x(:)
 real(rp), intent(in) :: h
 real(rp), intent(out) :: dx(:)

 real(rp), dimension(size(x)) :: xdot1, xdot2, xdot3, xdot4
 real(rp) :: ho2

 ho2 = 0.5_rp * h

 call f%derivative(t, x, xdot1) !!!1st RK4 step
 call f%derivative(t + ho2, x+ho2*xdot1, xdot2) !!!2nd RK4 step
 call f%derivative(t + ho2, x+ho2*xdot2, xdot3) !!!3rd RK4 step
 call f%derivative(t + h, x+h*xdot3, xdot4) !!!4th RK4 step

 dx = h*(xdot1 + 2._rp*xdot2 + 2._rp*xdot3 + xdot4)/6._rp

 end subroutine step_rk4

AIAC-2021-176 Konokman & Kaya

8

Ankara International Aerospace Conference

Figure 7. Modified Point Mass Equation of Motion Class UML Diagram

AIAC-2021-176 Konokman & Kaya

9

Ankara International Aerospace Conference

Figure 8. Code Listing of motion_mod_point_mass_dt_type Developed for the Solution of the
Modified Point Mass Trajectory Model

!!!Extend derivative_abstract_type for the equation of motion according to
!! modified point mass trajectory model

 type, extends(derivative_abstract_type) :: motion_point_mass_dt_type
 real(rp) :: ae1, ae2, ae3
 real(rp) :: altitude, w1, w2, w3
 real(rp) :: mass, d, Ix
 real(rp) :: lat, Az
 real(rp), dimension(:), allocatable :: Mach, &
 CD0, &
 CDa2, &
 CLa, &
 CLa3, &
 Cmag_f, &
 Cma, &
 Cma3, &
 Cspin

 contains
 procedure :: derivative => motion_point_mass_dt
 end type motion_point_mass_dt_type
…
…
…

subroutine motion_mod_point_mass_new(self, mass, d, Ix, ae1, ae2, ae3, lat, Az,&
w1, w2, w3, aerofile)

 implicit none
 class(motion_mod_point_mass_dt_type), intent(inout) :: self
 real(rp), intent(in) :: ae1, ae2, ae3, mass, d, Ix
 real(rp), intent(in) :: lat, Az
 real(rp), intent(in) :: w1, w2, w3
 character(*), intent(in) :: aerofile

 call drag_data_mod_point_mass(self%Mach, self%CD0, self%CDa2, &
 self%CLa, self%CLa3, self%Cmag_f, &,
 self%CMa, &
 self%Cma3, self%Cspin, aerofile)
 self%ae1 = ae1
 self%ae2 = ae2
 self%ae3 = ae3

 self%w1 = w1
 self%w2 = w2
 self%w3 = w3
 self%mass = mass
 self%d = d
 self%Ix = Ix
 self%lat = lat
 self%Az = Az

 end subroutine motion_mod_point_mass_new

AIAC-2021-176 Konokman & Kaya

10

Ankara International Aerospace Conference

Figure 8. Code Listing of motion_mod_point_mass_dt_type Developed for the Solution of the
Modified Point Mass Trajectory Model (Continued)

A main object projectile_type is generated as its UML diagram shown in Figure 9 which
includes derivative_abstract_type for the modified point mass equation and
step_abstract_type for the numerical solution. Code listing showing how to set the equation of
motion and the integration step method as well as whole solution is shown in Figure 10. This
shows the run time polymorphism in Fortran.

 subroutine motion_mod_point_mass_dt(self, t, x, xdot)
 use :: interpolation
 implicit none
 class(motion_mod_point_mass_dt_type), intent(inout) :: self
 real(rp), intent(in) :: t
 real(rp), intent(in) :: x(:)
 real(rp), intent(out) :: xdot(size(x))
 real(rp) :: rho, P, a, Mach, d, m, lat, Az
 real(rp) :: v1, v2, v3, v, ae1, ae2, ae3, ae, Ix
 real(rp) :: CD0, CDa2, CLa, CLa3, Cmag_f, Cma, Cma3, Cspin
 real(rp), parameter :: pi = 3.14159265359_rp
 real(rp), parameter :: g0 = 9.80665_rp
 real(rp) :: g

 lat = self%lat ; Az = self%Az
 g = g0 * (1._rp - 0.0026_rp * cos(2._rp*lat))
 rho = air_density(x(6)) !!!Air density from function using standard atmosphere model
 P = air_pressure(x(6))
 a = speed_of_sound(P, rho) !!!Speed of sound from function using standard atmosphere model
 m = self%mass
 d = self%d
 Ix = self%Ix
 v1 = x(1) - self%w1
 v2 = x(2) - self%w2
 v3 = x(3) - self%w3
 v = sqrt(v1**2 + v2**2 + v3**2)
 Mach = v/a

 !!!Interpolate aerodynamic coefficients
 CD0 = interpolate(self%Mach, self%CD0, Mach)
 CDa2 = interpolate(self%Mach, self%CDa2, Mach)
 CLa = interpolate(self%Mach, self%CLa, Mach)
 CLa3 = interpolate(self%Mach, self%CLa3, Mach)
 Cmag_f = interpolate(self%Mach, self%Cmag_f, Mach)
 Cma = interpolate(self%Mach, self%Cma, Mach)
 Cma3 = interpolate(self%Mach, self%Cma3, Mach)
 Cspin = interpolate(self%Mach, self%Cspin, Mach)

 ae1 = self%ae1 ; ae2 = self%ae2 ; ae3 = self%ae3
 ae = sqrt(ae1**2 + ae2**2 + ae3**2)

 xdot(1) = !!!V1dot (Equation (12))
 xdot(2) = !!!V2dot (Equation (13))
 xdot(3) = !!!V3dot (Equation (14))
 xdot(4) = x(1) !!!x1dot
 xdot(5) = x(2) !!!x2dot
 xdot(6) = x(3) !!!x3dot
 xdot(7) = !!! (Equation (16))
 xdot(8) = sqrt(x(1)**2 + x(2)**2 + x(3)**2) !!!sdot (to obtain total path distance)

 self%ae1 = !!! (Equation (17))
 self%ae2 = !!! (Equation (18))
 self%ae3 = !!! (Equation (19))

 end subroutine motion_mod_point_mass_dt

AIAC-2021-176 Konokman & Kaya

11

Ankara International Aerospace Conference

Figure 9. Projectile Class UML Diagram

Figure 10. Code Listing of the Solution of Projectile Motion

CALCULATIONS AND RESULTS

35 mm TP-T projectile trajectories were calculated using the developed code. The
aerodynamic coefficients and physical properties which are given by Baranowski et.al (2020)
was used. The mass, diameter and axial moment of inertia of the projectile are 0.55 kg, 0.035
and 9.7 10-5, respectively.

The projectile with initial conditions as the quadrant elevation QE is 710 mils and velocity
equals to 1180 m/s was calculated first calculated. It was assumed to be no wind for this
calculation. The trajectories on the vertical plane and horizontal plane are given in Figure 11.
Calculations were performed using 1 s, 0.1 s and 0.01 s time steps and with both Euler and 4th
order Runge-Kutta explicit numerical integration methods. Although it is obvious, Euler explicit

!!!rp is real precision
!!!Get the input
…
…
…
!!!Select and set modified point mass equation of motion as equation set
allocate(projectile%eq_motion :: motion_mod_point_mass_dt_type)
!!!Set integration step method
allocate(projectile%c :: step_rk4_type)
!allocate(projectile%c :: step_euler_type)

…
…
…

 projectile%x(8) = 0._rp
 s = 0._rp !!!Path distance
 t = 0._rp
 do while(s < smax)
 !!!Get the change of vector of equation set (dx) for the time step
 call projectile%c%step(projectile%eq_motion, t, projectile%x, dt, dx)
 !!!Integrate time step
 do i = 1, size(projectile%x)
 projectile%x(i) = projectile%x(i) + dx(i)
 enddo
 s = projectile%x(8)
 t = t + dt
 end do

…
…
…

AIAC-2021-176 Konokman & Kaya

12

Ankara International Aerospace Conference

integration method results were added just to show the lose of accuracy for bigger time steps.
0.1 s and 0.01 s time steps with 4th order Runge-Kutta method provides enough accuracy.
Obtained results are consistent with the results given by Baranowski et.al (2016). Elapsed
times were so short that for 4th order Runge-Kutta method with 0.1 s and 0.01 s time steps
were 0.016 s and 0.078 s on a laptop with i7-7700HQ @ 2.80GHz CPU.

Furthermore, the calculations were carried out for the quadrant elevations of 150 mils, 400 mils
and 650 mils with 10 m/s cross wind. Results are given by Figure 12.

a) Vertical plane

b) Horizontal plane

Figure 11. Trajectories of 35 mm TP-T Projectile for QE = 710 mils with no Wind

AIAC-2021-176 Konokman & Kaya

13

Ankara International Aerospace Conference

a) Vertical plane

b) Horizontal plane

Figure 12. Trajectories of 35 mm TP-T Projectile for QE = 150 mils/400 mils/650 mils with 10
m/s Cross Wind

CONCLUSIONS

This paper demonstrates object oriented coding technique for the solution of the modified point
mass trajectory model by means of Fortran 2008 language. This method provides relatively
easy code maintenance and more importantly the inheritance and polymorphism concepts
ensure the further development of the code, that is to say easy additions of new methods. For
example, other numerical integration methods or other equations of motion models such as 6-
DOF model can easily be added using the same interfaces.

By using Fortran language, calculation results can be obtained very fast as given by this paper,
which may be in the order of 100 to 500 times faster (maybe more according to the code
complexity) compared to Matlab codes.

Authors of this paper strongly recommend the use of Fortran language for the computational
codes and this paper shows a modern way of coding using it.

AIAC-2021-176 Konokman & Kaya

14

Ankara International Aerospace Conference

References

Baranowski, L. (2013), Feasibility Analysis of The Modified Point Mass Trajectory Model For

The Need of Ground Artillery Fire Control Systems, Journal of Theoretical and Applied

Mechanics 51, 3, pp. 511-522, Warsaw 2013

Baranowski, L., Gadomski, B., Szymonik, J., Majewski, P. (2016), Comparison of Explicit and

Implicit Forms of the Modified Point Mass Trajectory Model, Journal of Theoretical and

Applied Mechanics 54, 4, pp. 1183-1195, Warsaw 2016

Baranowski, L., Majewski, P. Szymonik, J., (2020), Explicit form of the “modified point mass

trajectory model” for the use in Fire Control Systems, Bulletin of the Polish Academy of

Sciences Technical Sciences, Vol. 68, No. 5, 2020

Konokman, H. E., (2021), https://github.com/konokadam/Generic-step-for-generic-equation,

2021

Lieske, R. F., Relter, M. L. (1966), Equations of Mortion for a Modified Point Mass Trajectory

(1966), BRL Report No. 1314, March 1966

Metcalf, M. (1995), Abstract Data Types in Fortran 90, CERN-CN /95/1, February 1995

Simon Management Group (2006), HPC Survey Summary

Nanthaamornphong, A., Carver, J., Morris, K., & Filippone, S. (2015). Extracting uml class

diagrams from object-oriented fortran: Foruml. Scientific Programming, 2015

Rouson, D., Xia, J., Xu, X. (2011), Scientific Software Design The Object-Oriented Way,

Cambridge University Press

(2009), The Modified Point Mass and Five Degrees of Freedom Trajectory Models, STANAG

4355 (Ed. 3), 2009

(2021), https://www.educative.io/blog/object-oriented-programming

(2021), https://stackify.com/oop-concept-polymorphism/amp

https://www.educative.io/blog/object-oriented-programming

