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ABSTRACT 

A numerical analysis of the linear stability problem of supersonic flat plate boundary-layers is 
undertaken. The problem is of importance in the design of aerodynamic configurations such 
as orbital reentry vehicles and ICBMs. Perturbation equations are obtained for three-
dimensional disturbance environment starting from the equations of motion for compressible 
flow, comprising momentum equations in Cartesian coordinates, energy equation and equation 
of state. With homogeneous boundary-conditions at the wall and the freestream, an eigenvalue 
problem results. The perturbation equations are solved for a two-dimensional flat plate 
boundary-layer using a Shooting Method with calorically perfect gas assumption. Unlike low-
speed boundary-layers, where the most unstable wave is always two-dimensional according 
to Squire’s theorem, in high-speed boundary-layers the most unstable wave is oblique for 
Mach numbers roughly above 2.0. In addition to the Tollmien-Schlichting mode of instability 
that is also present in low-speed boundary-layers, a second mode of instability occurs (Mack 
mode) whenever there is supersonic flow relative to the disturbance phase speed. 
 

INTRODUCTION 

Laminar-turbulent transition is an important phenomenon in fluid dynamics and aerodynamics 
with a large number of engineering applications. The reason is that it has very important effects 
on heat transfer and skin friction drag. Reduction of heating rates for the orbital reentry vehicles 
and ICBMs [Anderson, 1990], reduction of drag on the high subsonic-speed commercial 
aircraft wings are only few of areas that a good knowledge about transition is essential. 

The Linear Stability Theory is mainly concerned with individual sine waves propagating in the 
boundary-layer parallel to the wall. These waves, referred to as the instability waves, were first 
explained by Rayleigh (1887) and Prandtl (1921) as small, regular oscillations traveling in the 
laminar boundary-layer. A complete theory of boundary-layer instability was studied by 
Tollmien (1929) and the total amplification of the most unstable frequencies was calculated by 
Schlichting (1933). That is why, the instability waves are also known as Tollmien-Schlichting 
waves. Besides, the first demonstrations of the existence of these waves were done by 
Schubauer and Skramstad (1948) through their well-known experiments. According to these, 
T-S waves are the first stage of the transition process.  
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Compressibility makes this problem not only more realistic for most flow regimes, but also 
fundamentally more complex. The studies on this aspect start with Küchemann (1938), with 
an effort to try to build a compressible linear stability theory. Lees and Lin (1946) followed with 
theoretical investigations. It has been shown that a necessary condition for the existence of an 
unstable disturbance is:  

[
𝒅

𝒅𝒚
(𝝆

𝒅𝑼

𝒅𝒚
)]

𝒚=𝒚𝒔

= 𝟎,       (1) 

provided that 𝑈(𝑦𝑠) > 𝑈∞ − 𝑎∞, where 𝜌 is the density, 𝑈 the streamwise mean velocity 

component of the flow, 𝑦 the normal distance from the wall and 𝑦𝑠 is the location where the 
above equality is satisfied. This is the Generalized Inflection Point Theorem and is the 
extension of the well-known Inflection Point Theorem (or Rayleigh’s Theorem) in 
incompressible flow. 

Mack [Mack, 1984] outlined a complete numerical investigation for compressible laminar 
boundary-layers and discovered higher modes at supersonic speeds. Whenever the following 
condition holds: 

�̃� =
𝑈−𝑐𝑟

𝑎
> 1,        (2) 

i.e. whenever there is a relative supersonic region in the flow, there exists an infinite number 
of unstable modes (or wave numbers). The first of these modes is related to the Tollmien–
Schlichting mode in incompressible flow, but the higher or additional modes have no 
incompressible counterparts. The first of these additional modes has been referred to as the 
Mack mode. Unlike incompressible flow, where a two-dimensional disturbance is the most 
unstable at any Reynolds number according to Squire’s theorem, for supersonic flow, the most 
unstable disturbance is always oblique [Özgen and Atalayer Kırcalı, 2008]. While the most 
unstable disturbances are oblique for the Tollmien-Schlichting mode of instability, the most 
unstable disturbances are two-dimensional for the Mack mode.  

In this study, the linear stability analysis for a two-dimensional boundary-layer in zero pressure 
gradient is performed for planar (2-D) or oblique (3-D) waves. Calorically perfect gas and 
adiabatic wall assumptions are made. 
 

THEORY 

Mathematical Modeling
The mathematical model of the compressible stability problem starts with the 3-D Navier-
Stokes equations for a compressible boundary-layer over an adiabatic flat plate. In this respect, 
the momentum, energy, continuity equations and the equation of state for a viscous, heat 
conducting, perfect gas in Cartesian coordinates are subject to method of small disturbances 
for linearization. Accordingly, each instantaneous flow property, i.e. velocity, pressure, 
temperature, density, viscosity and thermal conductivity is split into a steady mean (basic) and 
an unsteady fluctuating component [Özgen and Atalayer Kırcalı, 2008]: 

𝜙∗(𝑥∗, 𝑦∗, 𝑧∗, 𝑡∗) = ϕ∗(𝑥∗, 𝑦∗, 𝑧∗) + �̂�∗(𝑥∗, 𝑦∗, 𝑧∗, 𝑡∗),   (3) 

where 𝝓∗ represents any one of 𝒖∗, 𝒗∗, 𝒘∗ (velocity components in Cartesian coordinates); 

𝒑∗, 𝑻∗, 𝝆∗ (pressure, temperature and density); 𝝁∗ (viscosity) and 𝒌∗ (thermal conductivity). The 
following assumptions are made: 

• Disturbances are small so quadratic or higher order terms involving perturbation 
quantities are neglected, 

• Parallel flow assumption, i.e. 𝑼∗ = 𝑼∗(𝒚∗) and 𝑾∗ = 𝑾∗(𝒚∗) only and 𝑽∗ = 𝟎 for the 
mean, basic flow. 

• Temperature, 𝑻∗ is a function of normal distance 𝒚∗ only, i.e. 𝑻∗ = 𝑻∗(𝒚∗) and fluid 
properties, 𝝁∗, 𝒌∗, 𝑪𝒑

∗ , 𝑪𝒗
∗  are functions of temperature only. 
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Velocities are non-dimensionalized by 𝑈𝑒
∗ (boundary-layer edge velocity) and lengths are made 

dimensionless by 𝐿∗ = √𝜈∗𝑥∗/𝑈𝑒
∗ (Blasius length scale). Temperature, density, pressure, 

viscosity and heat conduction coefficient are non-dimensionalized by their respective 
freestream values, 𝑇𝑒

∗, 𝜌𝑒
∗, 𝑝𝑒

∗, 𝜇𝑒
∗ , 𝑘𝑒

∗. Therefore, Reynolds number is defined as 𝑅𝑒 = 𝜌𝑒
∗𝑈𝑒

∗𝐿∗ 𝜇𝑒
∗⁄ . 

The mean laminar flow is assumed to be influenced by a disturbance composed of a number 
of normal modes, which are propagating (traveling) waves of the form: 

�̂�(𝑥, 𝑦, 𝑧, 𝑡) = �̅�(𝑦)𝑒𝑖(𝛼𝑥+𝛽𝑧−𝜔𝑡).    (4) 

In the above, 𝛼 and 𝛽 are x and z components of the wave number vector �⃗� , and 𝜔 is the 
complex frequency defined as 𝜔 = 𝛼𝑐 with 𝑐 = 𝑐𝑟 + 𝑖𝑐𝑖 representing the complex wave velocity 
according to the temporal amplification formulation. The magnitude of the wave number vector 

is 𝑘 = √𝛼2 + 𝛽2 and the wave angle is 𝜓 = tan−1(𝛽 𝛼)⁄ . The disturbance amplitude of the 

relevant variable is defined by �̅�(𝑦). The real part of the complex frequency 𝜔𝑟 = 𝛼𝑐𝑟, is the 
circular frequency of the disturbance, while its imaginary part 𝜔𝑖 = 𝛼𝑐𝑖, is the amplification rate. 

The imaginary part of the complex wave velocity 𝑐𝑖 , is the amplification factor determining a 
stable (𝑐𝑖 < 0), a neutrally stable (𝑐𝑖 = 0), or an unstable (𝑐𝑖 > 0) disturbance, while its real 

part 𝑐𝑟, is the phase velocity.  

Substitution of the normal modes into the dimensionless, linearized system of equations and 
performing necessary algebra leads to the set of perturbation equations. The details of this 
procedure and the resulting equations are given in detail in [Malik and Anderson, 1991; Özgen 
and Atalayer Kırcalı, 2008].  

The resulting equations are then transformed into a system of first order differential equations 
through the following variable definitions: 

𝑍1 = 𝛼�̅� + 𝛽�̅�    𝑍2 = 𝑍1
′     𝑍3 = �̅�                      

𝑍5 = �̅�                  𝑍6 = 𝑍5
′     𝑍7 = 𝛼�̅� − 𝛽�̅�        

𝑍4 = �̅� 𝛾𝑀2⁄

𝑍8 = 𝑍7
′          

  (5) 

where the Mach number is defined as 𝑀 = 𝑈𝑒
∗ √𝛾𝑅∗𝑇𝑒

∗⁄ , 𝛾 being the ratio of specific heats and 

𝑅∗ being the gas constant. The system of equations can be expressed as: 

𝑍𝑖
′ = ∑ 𝑎𝑖𝑗𝑍𝑗

8
𝑗=1 ,   𝑖 = 1,8,    (6) 

where, 𝑎𝑖𝑗 are the elements of the coefficient matrix and prime (′) denotes derivate with respect 

to 𝑦. The boundary conditions are: 

𝑍1(0) = 𝑍3(0) = 𝑍5(0) = 𝑍7(0) = 0   (𝑛𝑜 𝑠𝑙𝑖𝑝),   (7) 

𝑍1, 𝑍3, 𝑍5, 𝑍7 ⟶ 0   𝑎𝑠   𝑦 ⟶ ∞   (𝑓𝑟𝑒𝑒𝑠𝑡𝑟𝑒𝑎𝑚).   (8) 

Two-dimensional basic flow equations are solved for velocity (𝑈), temperature (𝑇) and their 

derivatives with respect to 𝑦. These equations are: 

For the velocity field: 

2(𝜇′𝑈′ + 𝜇𝑈′′) + 𝐹𝑈′ = 0,      (9) 

For the temperature field: 

2 (
𝜇

𝑃𝑟
𝑇′)

′
+ 𝐹𝑇′ = −2(𝛾 − 1)𝑀2𝜇(𝑈′)2.    (10) 

Prandtl number is defined as 𝑃𝑟 = 𝜇∗𝐶𝑝
∗ 𝑘∗.⁄  Also notice that 𝜌𝑇 = 1 in the current formulation.  

The boundary conditions are: 

𝐹(0) = 𝐹′(0) = 0,   𝑇′(0) = 0,      (11) 

𝐹′ ⟶ 1, 𝑇 ⟶ 1   𝑎𝑠   𝑦 ⟶ ∞.      (12) 

Temperature dependent fluid properties are calculated using empirical formulae for example 

Sutherland’s viscosity law [Malik and Anderson, 1991]. 
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Solution Techniques
Equations (6) and the boundary conditions given in equations (7) and (8) constitute a 
characteristic value problem (i.e. eigenvalue problem) for the variables (𝛼, 𝛽, 𝜔, 𝑅𝑒). The 
problem is solved with the Shooting Method and Gram-Schmidt Orthonormalization defined in 
detail by [Özgen and Atalayer Kırcalı, 2008]. 

The stability diagrams, which are among the main goals of the study, are obtained using 
Newton Iteration in two variables. This method requires two initial points on the curve so that 
the iteration can proceed in the specified Reynolds number direction. These points can be 
found by using a function minimization routine employing the Simplex Method. 

A FORTRAN code has been written by implementing the methods mentioned above, in order 
to solve the linear stability problem and hence, to obtain certain combinations of the 

eigenvalues (𝛼, 𝛽,𝜔, 𝑅𝑒). The program is capable of solving the eigenvalue problem for either 
two-or-three dimensional sinusoidal disturbances using temporal amplification theory. 
 

RESULTS AND DISCUSSION 

Figure 1 represents the velocity and temperature profiles obtained numerically. The distribution 
of (𝑈′ 𝑇⁄ )′ is presented in Figure 2, where (𝑈′ 𝑇⁄ )′ = 0 yields the generalized inflection point. 
It can be observed that, the generalized inflection point moves away from the wall as the Mach 
number increases, which is known to have a destabilizing effect. 

  

Figure 1: Velocity and temperature profiles for compressible flat-plate boundary-layers. 

The existence of the Mack mode and the effect of wave three-dimensionality (wave angle) is 
depicted in Figure 3 for 𝑀 = 4.  In Figure 3a, the wave is purely two-dimensional (𝜓 = 0°) and 
both instability modes can be seen. Tollmien-Schlichting mode is observed at lower wave 
numbers, while the Mack mode is visible at the higher wave numbers. For this wave orientation, 
both modes have similar critical Reynolds numbers and amplification factors. However, when 

the wave angle is slightly increased to 20°, the Mack mode is observed to undergo strong 
stabilization (reducing amplification factors and increasing critical Reynolds number) as shown 
in Figure 3b. When the wave angle is further increased to 60°, the Mack mode no longer exists, 
meaning that it is totally stabilized, Figure 3c. Meanwhile, Tollmien-Schlichting mode 
continuously destabilizes (amplification factors increase, critical Reynolds numbers decrease) 
with increasing wave angle until 60°, although the range of unstable wave numbers remain 

nearly constant. At the highest wave angle of 80°, although the critical Reynolds number 
continues to decrease, the range of unstable wave numbers and amplification factors 
decrease, Figure 3d. 
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Figure 2: Second derivative of velocity and the generalized inflection point. 

 
a) 𝜓 = 0° 

 
b) 𝜓 = 20° 

 
c) 𝜓 = 60° 

 
d) 𝜓 = 80° 

Figure 3: Variation of the stability curves with wave orientation for 𝑴 = 𝟒. 
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Figure 4 reveals several important phenomena. The figure depicts the stability diagrams for 
Mach numbers between 0 and 8, for the wave angles yielding the smallest critical Reynolds 
number, i.e. the most unstable wave orientation. All these curves correspond to the Tollmien-
Schlichting mode because the Mack mode is rapidly stabilized even with very small wave 
orientation, as discussed above.  

It is interesting to note that, while for 𝑀 ≤ 1 the stability diagrams show the characteristics of 
viscous instability (decreasing unstable wave number range with increasing Reynolds 
number), for 𝑀 > 2, they demonstrate inviscid instability characteristics (range of unstable 
wave numbers remaining constant with increasing Reynolds number). This is due to the 
presence of the generalized inflection point, which results in stronger instability according to 
the Generalized Inflection Point Theorem.  

Another interesting observation is that for 𝑀 > 2, the most unstable wave direction remains 

almost constant at around Ψ = 60°. Together with this, for 𝑀 > 4, stability diagrams look very 
similar to each other from many aspects: critical Reynolds numbers, range of unstable wave 
numbers and amplification factors. For these Mach numbers, the unstable wave number range 
is roughly 0 < 𝛼 < 0.1. The critical Reynolds numbers are around 150 − 160 (see also Figure 

5) and the maximum amplification factors are in the vicinity of 𝑐𝑖 = 0.02. These observations 
suggest that the stability characteristics become almost independent of Mach number for 𝑀 >
4 for three-dimensional waves, which are shown to be the most unstable waves, in contrast 
with Squire’s Theorem in incompressible stability.  

Figure 5, summarizes the observations made in Figure 4, in terms of the critical Reynolds 
number and the wave angle. 

Figure 6 shows the comparison of the neutral stability curves obtained for two Mach numbers 
with literature data [Pinna, 2012]. Although very different numerical methods are used in both 
studies ([Pinna, 2012] used a Chebyshev Collocation Method, while Shooting Method is used 
in the present study), the results agree remarkably well. The critical Reynolds numbers and 
the range of unstable wave numbers are in very good agreement. It can also be observed that 
both studies capture the Tollmien-Schlichting mode and the Mack mode at 𝑀 = 4. 
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a) 𝑀 = 0,𝜓 = 0° 

 

b) 𝑀 = 1, 𝜓 = 0° 

 

c) 𝑀 = 2, 𝜓 = 45° 

 

d) 𝑀 = 3, 𝜓 = 55° 

 

e) 𝑀 = 4, 𝜓 = 60° 

 

f) 𝑀 = 5, 𝜓 = 60° 

 

g) 𝑀 = 6, 𝜓 = 60° 

 

h) 𝑀 = 8, 𝜓 = 60° 

Figure 4: Stability curves for the most unstable wave directions. 
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Figure 5: Variation of critical Reynolds number and the most unstable wave angle with Mach 
number. 

 

a) 𝑀 = 2, 𝜓 = 0° 

 

b) 𝑀 = 4, 𝜓 = 0° 

Figure 6: Comparison of neutral stability curves for two-dimensional disturbances with 

literature data [5]. 

 

CONCLUSIONS 

Stability characteristics of compressible flat-plate boundary-layers are determined using the 
Linear Stability Theory. The results confirm that as soon as there is relative supersonic flow, a 
second mode of instability (Mack mode) is observed in addition to the usual Tollmien-
Schlichting mode. The Mack mode is rapidly stabilized as wave angle is increased and only 
the Tollmien-Schlichting mode is observed for higher wave angles. The most unstable wave 

directions are typically around  Ψ = 60° for moderate and high Mach numbers. 

The most interesting and important result of this study is the behavior of the stability curves for 

𝑀 > 4 for oblique waves. The stability characteristics become almost independent of Mach 
number for 𝑀 > 4 for three-dimensional waves (oblique waves), which are also shown to be 
the most unstable waves for these Mach numbers. 

A natural next step would be to include the real gas effects in the analysis with more fidelity 
like in [Malik and Anderson, 1991], where real gas effects have been considered with thermal 
and chemical equilibrium assumption. 
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