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ABSTRACT 

A data consistency method for a medium weight utility helicopter flight test program is being 
developed by flight mechanics group in Turkish Aerospace. The primary aim of this method is 
to aid flight mechanics and autopilot design for T625 helicopter during flight testing phase. This 
paper summarizes the initial progress on data compatibility analysis. Primary method for 
compatibility check is chosen as the Kalman Filter so that noise can be removed from data 
when the data is available as a measurement, and data can be estimated or observed when it 
is not directly measured by the flight test instrumentation suit. This work presents the general 
procedure for data process, with some selected analysis cases. 

INTRODUCTION 

A detailed and correct set of flight test data is necessary for model validation and system 
identification studies of an aircraft. In reality; however, the flight test data almost always have 
systematic and/or random measurement errors. Data consistency check should be performed 
in order to evaluate the quality of the data and the detected errors must be removed. A 
comprehensive data consistency check procedure is often disregarded by the analyst, despite 
being a vital step before flight data analysis. Consistent flight data could very well determine 
the success or failure of any given analysis method. Moreover, inconsistent data can lead to 
faulty evaluations about the flight characteristics of an aircraft which possesses a huge risk in 
terms of flight safety and cost especially for new development programs.  

Consistency check is a natural extension of first principles based mathematical modeling. 
Translational dynamic and rotational kinematic equations provide a credible mathematical 
model basis for analysis. In cases where the model equations are as reliable as 6 DoF 
relations, Kalman Filter algorithm provides a powerful way of filtering and/or observing the 
required data. Although several reliable methods exist for consistency check like the maximum 
likelihood estimator or least squares, this work utilizes Kalman Filter approach due to its online 
estimation ability [Evans et al., 1985].  

A simple and valid mathematical model is the key for the approach described in this paper. A 
valid mathematical model more or less eliminates the errors due to modeling uncertainty. Then, 
inconsistencies in the measurement data can be explained by the measurement errors. Bias, 
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scale factor, time shift and drift are classified as systematic errors and they can arise from a 
couple of reasons. These reasons include but are not limited to axes misalignment, location 
offset and asynchronous sampling. On the other hand, drop out, disturbance and quantization 
errors are classified as random errors and they can originate from loss of telemetry, 
interference with outsources or sensor resolution [Tischler and Remplr, 2006]. 

The studies of state estimation of an aircraft goes back in 70’s [Wingrove, 1972] [Klein and 
Schiess, 1977].  NASA developed a generic state estimation program, called SMACK, based 
on Wingrove’s work [Bach, 1991]. It is useful for estimating wind and correcting sensor 
measurements. SMACK is utilized in order to examine and correct data consistency errors in 
a flight test data of the Bo-105 helicopter [Fletcher, 1990]. The state estimation is not limited 
to aircraft itself, but also it can include human-pilot model parameters [Schiess and Rolan, 
1975] or maneuvers of a missile target [Tang and Borrie, 1984]. Furthermore, state estimation 
usage dramatically increased in robotics applications [Xiong and Chu, 2006] [Nasir et  al., 
2017] and spacecraft studies [Soken and Sakai, 2015] [Abreu, Oliveira and Neto, 2020].  

In this study, the data compatibility check is performed by using the Kalman Filter for T625 
helicopter flight test data using the minimum set of state variables for dynamic and kinematic 
equations. First, main rotor azimuth measurement consistency is checked using linear Kalman 
Filter for driveshaft rotational kinematics and dynamics. Input prediction capability of Kalman 
Filter is also demonstrated using the same rotational shaft kinematic model. Then, the data 
compatibility check is performed for the helicopter using extended Kalman Filter for the rigid 
body dynamics equations of motion. Additionally, wind speed is estimated based on the rigid 
body equations of motion in body-fixed coordinate system, demonstrating the Kalman Filter’s 
observation capabilities. 

METHOD 

Mathematical Models 

Kalman Filter is an optimal estimator under the least-squares assumption [Thrun, Burgard and 
Fox, 2005]. It is essentially a specialized Bayes Filter algorithm for unimodal probability 
distributions. Kalman Filter requires a mathematical model for predicting the states, and 
measurement model for correcting the state estimates. A process noise covariance matrix and 
a measurement noise covariance matrix are used to weigh the trustworthiness of prediction 
and measurement updates. 

The main idea behind this work is to use simple and dependable prediction models with low 
process noise covariance in order to effectively estimate and eliminate measurement errors. 
Following analysis cases use two different simple dynamic/kinematic prediction update 
models. First model is the driveshaft dynamics and the second model is the 6 DoF translational 
dynamics and rotational kinematics of a rigid body in space. Accompanying measurement 
models for both models are also presented in this chapter for the sake of completeness. 

The driveshaft dynamics of the main rotor fits the requirements of this paper in terms of its 
simplicity and accountability. A Taylor Series Expansion of the main rotor shaft position results 
in the dynamic relations. If the expansion is used up to the third term, position-velocity-
acceleration relation can be easily put forward as a linear first order differential equation set. 

 

𝝍𝒕+𝟏 = 𝝍𝒕 + �̇�𝒕𝚫𝒕 + �̈�
𝒕

𝚫𝒕𝟐

𝟐
 

�̇�𝒕+𝟏 = �̇�𝒕 + �̈�𝒕𝚫𝒕 

(1) 

 

Measurement or observation equations for this case is both the angular position itself and 
angular velocity. Angular position is measured with the help of a tachometer (TAC) installed 
on helicopter main rotor shaft and the angular velocity measurement comes from the Engine 
Control Unit (ECU). Moreover, tachometer provides angular velocity data too. Thus, all states 
are measured and measurement equations for state variables are just equalities. The input, 
state and measurement vectors for main rotor driveshaft dynamics is then; 
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𝒖 = �̈� 

𝒙 = [𝝍 �̇�]
𝑻
 

𝒛 = [𝝍 �̇�]
𝑻
 

(2) 

 

Hence, the linear system is formed as; 

 

𝑨 = [
𝟏 𝒅𝒕
𝟎 𝟏

]             𝑩 = [
𝒅𝒕𝟐

𝟐
𝒅𝒕] (3) 

 

Beside state estimation, another usage of Kalman Filter is the input estimation. Actually, this 
is achieved by introducing the input as another state of the system. The state and the output 
matrices can be modified as in the reference [Verhaegen & Verdult, 2012]; 

 

�̂� = [
𝑨 𝑩
𝟎 𝑰

]            �̂� = [𝑪 𝟎] 

 
(4) 

And, augmented states becomes; 

 

�̂� = [𝒙  𝒖]𝑻 (5) 

 

The nonlinear system is represented in Equation 6. In this case, 𝒖𝒎is the measured input 

vector, 𝒘 is the noise in the input measurements, and 𝒗 is the noise in the output 
measurements. Translational dynamics and rotational kinematics are adapted from the 
equations of motion of a helicopter given in reference [Jategaonkar, 2006]. 

 

�̇�(𝒕) = 𝒇(𝒙(𝒕), 𝒖𝒎(𝒕) − 𝒘(𝒕)) 

𝒚(𝒕) = 𝒈(𝒙(𝒕)) 

𝒛(𝒕𝒌) = 𝒚(𝒕𝒌) + 𝒗(𝒕𝒌) 

(6) 

 

�̇� =  −𝒒𝒘 + 𝒓𝒗 − 𝒈𝒔𝒊𝒏𝜽 + 𝒂𝒙 

�̇� =  −𝒓𝒖 + 𝒑𝒘 + 𝒈𝒄𝒐𝒔𝜽𝒔𝒊𝒏𝝓 + 𝒂𝒚 

�̇� =  −𝒑𝒗 + 𝒒𝒖 + 𝒈𝒄𝒐𝒔𝜽𝒄𝒐𝒔𝝓 + 𝒂𝒛 

�̇� = 𝒑 + 𝒒𝒔𝒊𝒏𝝓𝒕𝒂𝒏𝜽 + 𝒓𝒄𝒐𝒔𝝓𝒕𝒂𝒏𝜽 

�̇� = 𝒒𝒄𝒐𝒔𝝓 − 𝒓𝒔𝒊𝒏𝝓 

�̇� = 𝒒𝒔𝒊𝒏𝝓𝒔𝒆𝒄𝜽 + 𝒓𝒄𝒐𝒔𝝓𝒔𝒆𝒄𝜽 

 

 

 

(7) 

 

Equations 7 constitute the prediction model for a helicopter flight. Since the linear acceleration 
and the angular rate data are available as measurement, the state variables can be estimated 
using these relations. State variables are the body velocities, Euler angles and wind speed in 
body frame. Both body velocities and Euler angles are measured directly; thus, their 
measurement models are just equalities. However, the measurement update of wind states is 
made through the freestream measurements, which are indicated airspeed, angle of attack 
and angle of sideslip. 
The inputs, states and measurements for the 6 DoF model used in this work can be 
summarized in Equation 8. 



AIAC-2021-160                                          Arslan & Okcu 

4 
Ankara International Aerospace Conference 

 

𝒖 = [𝒂𝒙 𝒂𝒚 𝒂𝒛 𝒑 𝒒 𝒓 𝒂𝒙𝒘𝒊𝒏𝒅
 𝒂𝒚𝒘𝒊𝒏𝒅

 𝒂𝒛𝒘𝒊𝒏𝒅
]

𝑻
 

𝒙 = [𝒖 𝒗 𝒘 𝝓 𝜽 𝝍 𝒖𝒘𝒊𝒏𝒅 𝒗𝒘𝒊𝒏𝒅 𝒘𝒘𝒊𝒏𝒅]𝑻 

𝒛 = [𝒖 𝒗 𝒘 𝝓 𝜽 𝝍 𝑽 𝜶 𝜷]𝑻 

(8) 

 

Kalman Filter 

Kalman Filter can be applied to linear and nonlinear systems. For nonlinear systems, the state 
and output equations are linearized around the point of interest and the algorithm proceeds as 
in the linear case.  The Kalman Filter implementation for nonlinear systems is called extended 
Kalman Filter. In order not to create confusion, linear Kalman Filter method is abbreviated as 
KF and extended Kalman Filter is abbreviated as EKF. Since the driveshaft can be easily 
modelled as linear, in this case, KF usage is assessed as appropriate. On the other hand, 6 
DoF equations of motion include nonlinearities and, therefore, EKF implementation is 
preferred. 

Equation 9, shows the general prediction model form or the prediction update step used in KF. 
Equation 10 is defined as the measurement update step. 𝑨𝒕 and 𝑩𝒕 are the linear model state 
and input matrices corresponding to time t. 𝝁𝒕̅̅ ̅ represents the mean state prediction and 𝝁𝒕 is 

the updated mean state prediction using measurements. 𝚺 and �̅� represent the covariance of 
the state variables for prediction step and measurement update step. Note that, KF algorithm 
represents the state belief at any given instant as a mean vector and a covariance matrix since 
the unimodal probability distribution assumption for all the variables involved has been done 
beforehand. 𝒛𝒕 is measurement vector and 𝑲𝒕 is the Kalman gain. KF algorithm updates both 
mean and covariance prediction at every step, resulting in a state belief in a stochastic 
framework. 

 

�̅�𝒕 = 𝑨𝒕𝝁𝒕−𝟏 + 𝑩𝒕𝒖𝒕−𝟏 

�̅�𝒕 = 𝑨𝒕𝚺𝒕−𝟏𝑨𝒕
𝑻 + 𝑹𝒕 

 

(9) 

𝑲𝒕 = �̅�𝒕𝑪𝒕
𝑻(𝑪𝒕�̅�𝒕𝑪𝒕

𝑻 + 𝑸𝒕)
−𝟏

 

𝝁𝒕 = 𝝁𝒕̅̅ ̅ + 𝑲𝒕(𝒛𝒕 − 𝑪𝒕𝝁𝒕̅̅ ̅) 

𝚺𝒕 = (𝑰 − 𝑲𝒕 𝑪𝒕)𝚺�̅� 

(10) 

 

Similar to Equations 9 and 10, in EKF, prediction update step is represented in Equation 11, 
and measurement update step is shown in Equation 12. 𝑷 is the state covariance matrix, 𝑸 is 

the covariance matrix which characterizes the input noise, and, 𝑹 is the measurement noise 
covariance matrix for the outputs.  𝚽 represents the state transition matrix and 𝚿 is its integral. 
For linearization, Jacobian matrices are defined in Equation 14. In this study, Jacobian 
matrices are found by taking analytical derivatives for each state equation in order to eliminate 
errors as much as possible; however, as expected, it is very time consuming to derive the 
formulas, and it is recommended to use numerical derivation for complex mathematical 
models. 

 

𝒙(𝒌 + 𝟏) = 𝒙(𝒌) + ∫ 𝒇(𝒙(𝒕), 𝒖𝒎(𝒌))𝒅𝒕
𝒕𝒌+𝟏

𝒕𝒌

 

𝑷(𝒌 + 𝟏) = 𝚽(𝒌 + 𝟏)𝑷(𝒌)𝚽𝑻(𝒌 + 𝟏) + 𝚿(𝒌 + 𝟏)𝑩(𝒌)𝑸(𝒌)𝑩𝑻(𝒌)𝚿𝐓(𝒌 + 𝟏) 

 

(11) 

𝑲(𝒌) = 𝑷(𝒌)𝑪𝑻(𝒌)[𝑪(𝒌)𝑷(𝒌)𝑪(𝒌) + 𝑹(𝒌)]−𝟏 

𝒙(𝒌) = 𝒙(𝒌) + 𝑲(𝒌)[𝒛(𝒌) − 𝒈(𝒙(𝒌))] 

𝑷(𝒌) = [𝑰 − 𝑲(𝒌)𝑪(𝒌)]𝑷(𝒌) 

(12) 
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𝜱(𝒌) = 𝒆𝑨(𝒌)𝜟𝒕 

𝜳(𝒌) =
𝜱(𝒌) − 𝑰

𝑨(𝒌)
 

 

(13) 

𝑨(𝒌) =  
𝝏𝒇(𝒙(𝒌),𝒖(𝒌))

𝝏𝒙(𝒌)
           𝑩(𝒌) =  

𝝏𝒇(𝒙(𝒌),𝒖(𝒌))

𝝏𝒖(𝒌)
          𝑪(𝒌) =  

𝝏𝒈(𝒙(𝒌))

𝝏𝒙(𝒌)
 (14) 

 

In addition, it is worth to mention that while calculations of state transition matrix and its integral 
in Equation 11, exponential and division operations with the state matrix caused numerical 
instabilities and errors. Therefore, it is decided to neglect high order terms in the Taylor Series 
Expansion of state transition matrix as in the reference [Gelb, 2010]. Hence, the state 
covariance matrix calculation is approximated as; 

 

𝑷 = (𝑰 + 𝑨𝜟𝒕)𝑷(𝑰 + 𝑨𝜟𝒕)𝑻 + 𝑩𝑸𝑩𝑻𝜟𝒕 (15) 

 

Results & Discussion 
Firstly, MR azimuth and MR speed estimations are performed by using KF. TAC and ECU 
sensors are used for azimuth and speed measurements, respectively. In this case, the input 
to the linear model is the acceleration of MR which is not measured and remains as unknown; 
however, since the MR speed is expected as constant throughout the test, there should not be 
any acceleration too. Therefore, zero input is fed into the model with a sufficiently large process 
noise covariance matrix. The measured and the estimated values for MR azimuth and the MR 
speed are shown in Figure 1. Note that the azimuth values are plotted as de-trended due to 
visual aims. It is clearly seen that although artificial differences are applied to initial values, the 
states quickly converge to measured values and follow the signals smoothly. 

 

Figure 1: MR azimuth estimation (on the left) and MR speed estimation (on the right) with KF 

Secondly, the input is estimation is performed by introducing the inputs as another states. In 
this case, the input is chosen as the MR speed and; therefore, after the estimation, it can be 
compared with the measured values. Hence, the mathematical model consists of only one 
equation and state matrix has size of 1. It is emphasized that MR speed measurements are 
not used in this procedure, but only MR azimuth measurement data is used. The estimated 
MR speed and the measurements from different sensors are shown in Figure 2. At the start, a 
small difference is applied here too. The results show that the input of the system can be 
estimated. In this case, it is noticed that the estimation quality is very dependent on the 
measurement noise covariance matrix. If the variance is large in order to be conservative, the 
estimation cannot capture the local fluctuations. The best value for the noise covariance matrix 
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is found by trial and error. In addition, it can be seen that there are sudden movements in the 
estimated signal. This is due to low resolution of TAC sensor. Abrupt changes in the azimuth 
data make its derivative unrealistic, and hence, speed estimate tries to fit that derivative value. 
In order to eliminate this phenomena, a smoothing should be applied to the azimuth data as a 
preprocess. However, it is not preferred at this stage because estimated MR speed value is 
not used in a further study. 

 

Figure 2: MR speed (input) estimation with KF 

Finally, the body and the wind states are estimated by using EKF. Since the nonlinearities are 
wanted to be included in the model for further studies, EKF method is selected.  The 
measurement data is obtained from AHRS, and therefore, the accuracy of measured signals 
are very high. In this case, body accelerations and body rates are measured and those values 
are fed into the model. The results for body velocity 𝒘 and body pitch angle 𝜽 are demonstrated 

in Figure 3 and Figure 4, respectively. It is noted that 3𝜎 bounds are drawn for the estimated 
value and it indicates that the true value is in that region with 99.7% probability. At this point, 
it should be underlined that since this study is conducted for real flight test data, the true value 
is unknown. The results show that although there is an initial difference, 5 m/s for 𝒘 and 5 

degrees for 𝜽, the estimation values converge immediately and follow the measured signals. 
It is observed that there are regions at which the variances increase meaning that the 
uncertainty is relatively high. More figures showing the body state estimations are given in the 
Appendix part. 
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Figure 3: The measured and EKF estimated values for body velocity 𝑤 

 

Figure 4: The measured and EKF estimated values for body pitch angle 𝜃 

In Figure 3 and Figure 4, it is very hard to capture the convergence and to differ the measured 

and estimated signals because AHRS accuracy is very high. Therefore, a close look is shown 

in Figure 5 on the left. EKF enhances the 2𝜎 bound from 1 degree to about 0.1 degree. For 

comparison, initial difference is increased and measurement noise covariance matrix is 

increased tenfold on the right plot. Actually, this comparison reveals the power of Kalman filter. 
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Figure 5: On the left, a close view of the measured and EKF estimated values for body pitch 
angle 𝜃. On the right, the measured and EKF estimated values for body pitch angle 𝜃 for 

tenfold increased variance 

In this case, in addition to body states, wind states are estimated too. Unlike body accelerations 

and body rates, wind acceleration data is not available; however, it is added into the input 

vector as zero because the wind speed is expected as nearly constant. In order to estimate 

the wind speed, some flexibility is required for the wind states, and hence, the wind 

acceleration variances in the input noise covariance matrix are chosen as larger values 

compared to others. The wind speed is obtained in body frame and coordinate transformation 

is applied in order to compare with another measurement data. The results are shown in Figure 

6. It should be noted that the measurement data used in EKF comes from Air Data Boom 

(ADB); however, the drawn measured signals in Figure 6 are obtained from the pitot tube 

signals which are used in the pilot display. Therefore, pitot tube signals do not reflect rapid 

fluctuations. In short, comparison for only mean values would make sense. 

 

Figure 6: The measured and EKF estimated values for wind speed and wind direction (0 
degree points the north and positive direction is clockwise) 

Conclusion 

In this study, the data consistency check is performed by using the Kalman Filter for T625 
helicopter flight test data. First, main rotor azimuth and speed measurement consistency is 
checked using KF for driveshaft rotational kinematics and dynamics. Driveshaft model input is 
also estimated in this case. Then, the data compatibility check is performed for the helicopter 
using EKF for the equations of motion and, in addition, wind speed and direction is estimated. 
It can be stated that for both models, the states can be well estimated although some states 
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are not directly measured. It is seen that high accuracy in the measurements positively affects 
the estimates and a dependable mathematical model increases the accuracy even higher. 

Future Work 
The study aims to perform a compatibility check for all possible measured states of the T625 
helicopter in a flight test. After gaining trust to state model, output model and the 
implementation of KF and EKF, some important states of main rotor, wind, inflow and 
empennage can be predicted without any sensor need. At the first stage, the aim is to estimate 
the wind parameters accurately. In the study, the wind parameters are estimated; however, 
measurements that are more trustworthy are needed for comparison.  Next, the blade flapping 
and lagging angle estimations can be performed and the study can move towards model 
validation by estimating MR force & moment. 
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