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ABSTRACT

CNNFOIL is a CNN-based machine learning tool that solves flow around the airfoil with a ma-
chine learning methodology. CNNFOIL, which is being developed by our research group, can
predict flowfield around airfoils from different families at transonic regimes. We have improved
the training process and accuracy of the CNNFOIL solver by implementing new loss functions.
In this study, the effects of an L2 -based loss function, a physics-informed loss function based on
continuity equation and a gradient difference loss function on the flow field predictions around
airfoils are investigated. The loss functions are implemented into an encoder-decoder based con-
volutional neural network model. The neural network model is trained with Reynolds-averaged
Navier-Stokes (RANS) based computational fluid dynamics (CFD) simulation results for differ-
ent airfoil shapes at zero angle of attack for 0.7 Mach number flow. Numerical experiments are
carried out with an unseen airfoil shape to assess the effects of loss functions. The performance
of each loss-functions are discussed.

INTRODUCTION

Many deep neural network models are introduced for computationally expensive fluid flow solutions
with the recent advancements in machine learning. In particular, deep learning models make it
possible to obtain accurate enough results quickly. These estimations can be used during time-
consuming optimization and design exploration studies. In recent years, several studies have focused
on predicting the flow field around various objects under diverse flow conditions. Guo et al. [Guo
et al., 2016] achieved significant speedup with a convolutional neural network (CNN) model for the
prediction of velocity fields over 2D and 3D domains. Jin et al. [Jin et al., 2018] proposed a CNN
model to predict velocity fields around a cylinder for low Reynolds number flow. An encoder-decoder
CNN model was developed by Bhatnagar et al. [Bhatnagar et al., 2019] for the prediction of velocity
and pressure fields around airfoils. Another CNN model based on U-net architecture was proposed by
Chen et al. [Chen et al., 2019] for the flow field prediction around various arbitrary shapes in laminar
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flow. Several models based on generative adversarial network (GAN) and CNN were proposed by
Lee et al. [Lee and You, 2019] in order to study unsteady flow field prediction around a circular
cylinder. Sekar et al. [Sekar et al., 2019] studied the prediction of laminar flow fields around airfoils
by utilizing both the CNN and the multilayer perceptron models. Another U-net architecture-based
CNN model was proposed by Thuerey et al. [Thuerey et al., 2020] to predict flow fields around
airfoils for incompressible flows. Apart from flow fields, deep learning methods are also utilized to
predict airfoil lift coefficients. [Zhang et al., 2017] proposed several CNN models to predict the lift
coefficient of a given airfoil shape and the flow conditions. Obtained results demonstrate that both
MLP and CNN models achieve significant results in the prediction task.

Some of the proposed models use complex loss functions [Lee and You, 2019], consisting of physical
law constraints or penalizing the gradient differences [Lee and You, 2019; Bhatnagar et al., 2019],
whereas some models achieve comparable results using only a single L2-based loss function [Guo et
al., 2016; Jin et al., 2018; Chen et al., 2019; Sekar et al., 2019] or a simple L1 loss [Thuerey et
al., 2020]. In the perspective of a deep learning practitioner, the prediction of flow fields around an
object by utilizing a data-driven model is a regression problem. The main goal of a machine learning
algorithm is to minimize the output of the loss function that measures the difference between the
model output and the ground truth. As a consequence of the loss function minimization, the learnable
parameters of the model are set optimum values. In regression tasks, bilateral loss functions such as
L1 and L2 loss functions are shown to be the most suitable ones, rather than unilateral loss functions
such as Hinge loss or logistic loss, which are more suitable in classification tasks [Nie et al., 2018].

In this study, we aim to investigate the implications of different loss functions in a flow field prediction
task by focusing on the following non-mutually exclusive three questions:

1. Do models with L2-based loss functions achieve significant improvements by combining the
loss function with another?

2. Does a physics-informed loss function, i.e., conservation of mass, provide meaningful informa-
tion to the models? Or is this implicitly embedded in L2-based loss function?

3. Does penalizing the gradient differences in the flow field by a loss function, i.e., GDL, provide
other benefits than edge smoothing to the model? Is it necessary to have a specific loss
function in the flow field prediction problem just for this purpose?

In this study, we discuss these three questions by conducting experiments on our previously proposed
encoder-decoder-based convolutional neural network model, CNNFOIL [Duru et al., 2021] for the
prediction of flow fields around airfoils.

METHOD

Numerical experiments are carried out to investigate the effect of loss functions on the flow field
prediction around airfoils. Loss functions are implemented into the previously proposed model,
CNNFOIL [Duru et al., 2021]. CNNFOIL is an encoder-decoder CNN model that aims to predict
pressure coefficient fields around airfoils for 0.7 Mach number flow at zero angle of attack. The
encoder part of the model consists of 8 convolutional layers with 2x2 filter size and a stride of 2,
along with batch normalization layer and ELU (exponential linear unit) activation unit except the
last layer. The decoder part consists of 8 transposed convolution operations having the same filter
size and stride as encoder part, along with the ELU activation unit except for the last layer. Further
details regarding the CNNFOIL can be found in [Duru et al., 2021].

In the present study, CNNFOIL is trained with the solutions of Reynolds-averaged Navier-Stokes
(RANS) based computational fluid dynamics (CFD) simulations for 204 different airfoil shapes in
order to estimate density, x and y components of the velocity, (u, v) around airfoils. An in-house
finite-volumeCFD solver is utilized to solve the compressible RANS equations. The Spalart-Allmaras
turbulence model is used as the turbulence model. Viscous fluxes are evaluated using a second-order
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central discretization scheme. A very accurate second-order HLLC flux scheme [Toro et al., 1994]
is employed for inviscid fluxes. The second-order accuracy is achieved by the application of the
Venkatakrishnan limiter [Venkatakrishnan, 1995]. A backward Euler time integration method with
local time-stepping is employed for the temporal discretization. The generated database is divided
into three sets: 149, 29 and 26 for training, validation and test sets, respectively.

Three loss functions, namely L2, Lc and Lgdl, are used in the study. The contribution of each loss
function to the base model is investigated by weighted combinations of Lc and Lgdl to the overall
loss function. The base model is trained with only L2 loss function which can be expressed as
follows:

L2 =

N∑
n=1

[
(ρn − ρ̂n)2 + (un − ûn)2 + (vn − v̂n)2

]
(1)

where ρ, u, v are the ground truth of density, x-component velocity and y-component of velocity,
and ρ̂, û, v̂ is the model output of those flow variables. N is the number of data points in the flow
field.

Lc loss function applied in the present study is derived from the continuity equation. Lc can be
defined as follows

Lc =
∑
i

∑
j

|(ρeue − ρwuw)− (ρ̂eûe − ρ̂wûw)|+ |(ρnun − ρsus)− (ρ̂nûn − ρ̂sûs)| (2)

Notice that, each pixel of the solution image is treated as a conservation volume. For a cell centered
approach, we need to interpolate for the face values for density and velocity. Flow variables on each
cell face are estimated by averaging the corresponding values from the two opposite side of the cell
face as

Ψe = (Ψ(i, j) + Ψ(i+ 1, j))/2 Ψw = (Ψ(i− 1, j) + Ψ(i, j))/2

Ψn = (Ψ(i, j) + Ψ(i, j + 1))/2 Ψs = (Ψ(i, j − 1) + Ψ(i, j))/2
(3)

where (i, j) denotes the cell indexes on the Cartesian grid. The subscripts (e,w,n,s) indicate the
cardinal points of a cell on a 2D plane.

Gradient Difference Loss, Lgdl is proposed by [Mathieu et al., 2015], penalizes the gradient differences
and provides a smoother image in the predictions is defined by

Lgdl(Y, Ŷ ) =
∑
i,j

||Yi,j − Yi−1,j | − |Ŷi,j − Ŷi−1,j ||α + ||Yi,j−1 − Yi,j | − |Ŷi,j−1 − Ŷi,j ||α (4)

where Y = {ρ, u, v} and Ŷ = {ρ̂, û, v̂} are the ground truth and prediction of flow variables,
respectively. Parameter α is chosen to be 1 in all experiments.

In our experiments, the loss function is defined as the weighted combination of loss functions men-
tioned before. The obtained loss function is given as

Loss(Y, Ŷ ) = λ2L2 + λcLc + λgdlLgdl (5)

The experimental matrix is listed in Table 1. In order to adapt the order of magnitudes of the
loss functions, λc is chosen 100 in corresponding experiments. All three flow field channels are
normalized before passing through the neural network. However, de-normalization is applied before
the loss function calculation step to prevent incorrect back propagation due to the multiplication of
different channels in the loss function (e.g., ρeue).
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Table 1: Experiments
Experiment λ2 λc λgdl

L2 1 0 0
L2 + Lc 1 100 0
L2 + Lgdl 1 0 1

L2 + Lc + Lgdl 1 100 1

Figure 1: Convergence history of L2 error function

RESULTS AND DISCUSSION

Training history of each case in Table 1 with respect to each error function given in Eq. 1, Eq. 2
and Eq. 4 are depicted in Fig. 1, Fig. 2 and Fig. 3, respectively. Each model is represented with a
different color in the figures, as shown at the right top corner. Different shapes are embedded into
the lines of each model to prevent confusion where the lines overlap.

Error functions inspection for each experiment is vital because error functions show the behavior of
the model under the applied loss functions. For example, all models should exhibit convergence in
L2 error since it is the base loss function in all experiments. Moreover, we expect to see relatively
good convergence in Lc error in all models whether or not the model has Lc loss function since
it indicates the physical conservation law of mass. In fact, we see this in Fig. 2 where Lc error
decreases regardless of the existence of Lc loss function.

Fig. 1 shows that combining L2 loss function with Lc or Lgdl loss functions does not provide a
strong contribution to minimizing the L2 error function. However, implementing Lc or Lgdl loss
functions into L2 loss function have significant effect on the convergence of mass conservation as
can be seen in Fig. 2. Even, just adding the Lgdl loss function may help to satisfy mass conservation
than L2 loss function by itself. Fig. 3 shows the convergence history of Lgdl during the training of
each case in Table 1. Fig. 3 demonstrates better convergence history of Lgdl for the cases in which
the Lgdl loss function appeared. However, adding Lc loss function has an adverse effect on the Lgdl
errors by resulting in much more Lgdl error than L2 loss function by itself.

Furthermore, density, u and v velocity fields of an airfoil from the test set are compared for each
case in Table 1 in Fig. 4, 5 and 6, respectively. The ground truth, the prediction and the absolute
error between the ground truth and the prediction for the density, u and v velocity fields are plotted
in Fig. 4, 5 and 6. Even though combining Lc and/or Lgdl loss functions with L2 loss function
improves Lc and Lgdl errors as shown in Fig. 2 and 3, the loss combination cases do not improve
predictions significantly compared to the case in which only L2 loss function is included. This may
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Figure 2: Convergence history of Lc error function

Figure 3: Convergence history of Lgdl error function
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(a)

(b)

(c)

(d)

Ground Truth Predictions Error

Figure 4: Density fields of LS 417 airfoil from the test set. Left column: ground truth extracted
from CFD simulations, Middle column: the model output, Right Column: the absolute difference of
density fields between the model output and the ground truth for (a) L2, (b) L2 +Lc, (c) L2 +Lgdl, (d)
L2 + Lc + Lgdl.

also demonstrate that L2 error function is enough to meet the convergence criteria for the training
of a deep learning model. However, we can observe smooth contour lines in the cases in which
Lgdl loss function appeared and the adverse effect of Lc loss function on the Lgdl errors mentioned
before. Apart from the loss function comparison, the model performs reasonably well in the flow
field prediction for three flow variables except for the shock waves, as can be seen in the absolute
errors in Fig. 4, 5 and 6.

(a)

(b)

(c)

(d)

Ground Truth Predictions Error

Figure 5: x-component velocity fields of LS 417 airfoil from the test set. Left column: ground truth ex-
tracted from CFD simulations, Middle column: the model output, Right Column: the absolute difference
of density fields between the model output and the ground truth for (a) L2, (b) L2 + Lc, (c) L2 + Lgdl,
(d) L2 + Lc + Lgdl.
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(a)

(b)

(c)

(d)

Ground Truth Predictions Error

Figure 6: y-component velocity fields of LS 417 airfoil from the test set. Left column: ground truth ex-
tracted from CFD simulations, Middle column: the model output, Right Column: the absolute difference
of density fields between the model output and the ground truth for (a) L2, (b) L2 + Lc, (c) L2 + Lgdl,
(d) L2 + Lc + Lgdl.
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CONCLUSIONS

In this study, we investigated the role of loss functions utilized in deep neural network models for
fluid flow studies. The experiments with different loss functions are conducted by implementing
them on the previously proposed CNNFOIL model for estimating flow fields around airfoils. For the
first question we had asked at the beginning, initial findings show that combining physics-informed
loss function based on the conservation of mass and gradient difference loss with an L2 based loss
function did not improve the flow field predictions significantly in terms of L2 error. However, the
loss combinations helped to satisfy the conservation of mass and edge smoothing in the flow fields.
This improvement shows that physic-informed loss functions do provide additional information along
with L2-based loss function, which answers our second question. For the last question, we see that
GDL provides other benefits than edge smoothing to the model. We see that it helps to the mass
of conservation almost as much as Lc loss does. A comprehensive investigation will be carried out
by also examining the conservation of momentum and energy. This could help physical loss function
to provide more information to the model and may lead to better results. Furthermore, conducting
experiments on other neural network models to compare the loss functions can help to see more
specific results and generalize the study better.
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