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ABSTRACT 
An air vehicle has highly nonlinear and complicated dynamics, which means that it is difficult 
to accurately model an air vehicle using linear equations. In order to design a controller for an 
air vehicle, the dynamic behavior of the aircraft must be well understood in varying flight 
conditions. Nevertheless, the dynamics are ordinarily obtained in a single flight condition, and 
controllers are often designed to respond to a specific flight condition. In order to represent the 
dynamics of air vehicle for the full flight envelope, Linear Parameter Varying (LPV) modeling 
approach is used. There are several methods for LPV modeling. The aim of this paper is to 
compare effectiveness of two methods in LPV modeling which are “Jacobian Linearization” 
and “Stitching Model” by comparing time responses with nonlinear model. The presented 
methods enable the simulation of the air vehicle as well as predicting its dynamic properties 
across the considered part of the flight envelope. Additionally, the comparison is expected to 
present advantages and disadvantages of the methods as well as presenting the results in the 
considered part of the flight envelope. 
 

INTRODUCTION 

In order to design a controller for an air vehicle, it is needed to represent the dynamics of air 
vehicle over full flight envelope. Nevertheless, the dynamics are ordinarily obtained in single 
flight condition, and controllers are often designed to respond to a specific flight condition. 
Then, controller parameters are scheduled in order to be applied for full flight envelope. 
Another way to be applied for full flight envelope is to obtain LPV models. A family of local 
linear time-invariant (LTI) models at different points and trim data, which covers a significant 
part of the flight envelope, is combined in order to obtain a LPV model. In other words, LPV 
modeling methods lean on the idea that a global model is comprised of infinite number of local 
linearized models. If local linearized models are interpolated within the flight envelope, these 
will result in a full flight envelope model. LPV models are a key step in applying LPV control 
synthesis which guarantee a level of stability and robustness for the closed loop [1]. LPV 
modelling is closely related to gain-scheduling control. LPV modelling is not frequently 
considered as an independent research topic and most of the available literature is only 
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concerned with LPV control for a given LPV model. There are several ways of LPV modeling 
such as Jacobian Linearization, State Transformation, Function Substitution and Model 
Stitching. 

This paper presents a comparison between two LPV modelling approaches for a fighter 
aircraft. Methods presented in the paper obtain quasi-LPV model. A quasi-LPV model (qLPV), 
which is a particular case of an LPV model that is characterized by having a subset of the 
scheduling parameters belong to state-space of the system. Creating a qLPV model involves 
two steps: firstly, local linear models are obtained; secondly, a set of interpolating functions 
are determined to combine these models into a global LPV model. One of the methods which 
will be presented in the paper is Jacobian Linearization. The Jacobian Linearization approach 
is the most widespread methodology to linearize nonlinear systems. It is also applicable to the 
widest class of nonlinear systems since it is valid for any nonlinear system that can be 
linearized at its equilibrium (trim) points. The main concept of this method is to use first order 
Taylor’s expansion of the nonlinear model with respect to a trim point [3]. Second of the 
methods which will be presented in the paper is Stitching Model which provides a continuous 
simulation that is grounded on several discrete linear models and trim data. The model stitching 
simulation architecture can be used on any physical model that can be accurately represented 
using state equations, where needed, flight test data can be acquired. Discrete linear models 
and trim data, which represent models, are tabulated and taken into account with nonlinear 
effects to produce a continuous simulation model.  

 

The contribution of this study will be to compare two methods in order to determine 
effectiveness of methods using the example of an existing fighter aircraft. Starting from trim 
analyses in which Newton Raphson approach [2] is used, the dynamics of the air vehicle 
covering a range of different flight conditions are identified by using both methods.  

  

Local LTI models and trim data are obtained in 12 different trim points with combination of two 
different altitude (10000 ft and 25000 ft) and 6 different speed settings (0.2 Mach to 0.6 Mach) 
from a nonlinear fighter aircraft simulation model [6]. A discussion of advantages and 
disadvantages of aforementioned LPV modeling methods will be presented. In order to 
compare the efficiency of these methods, open loop time responses of the LPV models for 
each LPV modeling methods are obtained and compared to the nonlinear aircraft responses 
using the off-nominal points that were not used to obtain the LPV model. 

METHOD 

1. Jacobian Linearization 

The most widely used technique for obtaining LPV models of nonlinear systems is the Jacobian 
linearization approach. It also applies to the broadest category of nonlinear systems, since it 
is true for any nonlinear system that can be linearized at its equilibrium points. It can be used 
to build an LPV system out of a family of plants that have been linearized with respect to a set 
of equilibrium points that represent the desired flight envelope. The model after that provides 
a low-order description of the nonlinear system dynamics around these equilibrium points. The 
basis of this method is to use a first order Taylor series expansion of the nonlinear model, 
equation (1), with respect to a trim point shown in equation (2). 

𝛿𝑓𝑖
= ∆𝑧𝑓 ∙ 𝛿𝑧 + ∆𝑤𝑓 ∙ 𝛿𝑤 + ∆𝑢𝑓 ∙ 𝛿𝑢

= ∆z𝑓(𝑧 − 𝑧𝑒𝑞) + ∆𝑤𝑓(𝑤 − 𝑤𝑒𝑞) + ∆𝑢𝑓(𝑢 − 𝑢𝑒𝑞) 

(1) 

𝛿𝑓1
= 𝑓1(𝑧1𝑤1𝑢) − 𝑓1(𝑧1𝑤1𝑢)|𝑒𝑞 (2) 

The term ∆𝑧𝑓 as shown above remarks derivative of function f with respect to z. If equations 
are formed in state-space form, shown in (3).   
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[
𝛿�̇�

𝛿�̇�

] = [
∆𝑧𝑓1 ∆𝑤𝑓1
∆𝑧𝑓2 ∆𝑤𝑓2

]
𝑒𝑞

[
𝛿𝑧

𝛿𝑤
] + [

∆𝑢𝑓1
∆𝑢𝑓2

]
𝑒𝑞

[𝛿𝑢] 
(3) 

It is easy to verify that the trim values, and all the elements in the state-space matrices depend 
on the scheduling variables and hence the model is quasi-LPV [3]. A more detailed theoretical 
derivation of a Jacobian model is given in [7].  

The approximated model could lead to divergent behavior, with respect to large nonlinear 
inputs because of being a first order approximation. The local model could be calculated by 
utilizing higher-order terms in the Taylor series, but these results are intractable, making them 
infeasible. 

2. Model Stitching 

The term model stitching refers to the technique of combining or “stitching” together a collection 
of linear state-space models for discrete flight conditions, with corresponding trim data, into 
one continuous, full-envelope flight dynamics simulation model [4]. In this method, lookup 
tables as a function of airspeed are established with using stability and control derivatives 
which are provided for each discrete linearized model. This method is also in the class of qLPV 
as well as Jacobian Linearization. The linear stability and control derivatives, as well as trim 
data, are scheduled in the resulting model, but equations of motion and gravitational force 
equations are implemented nonlinearly. In other words, this method provides us a linear flight 
simulation model with time-varying aerodynamics.  

As a starting point, model is stitched over the trim values. So, perturbation terms will be added 
to the state space representation in Equation (4).  

�̇⃗� = 𝐴�⃗� + 𝐵�⃗⃗� 

x0⃗⃗⃗⃗⃗̇ + Δ𝑥⃗⃗ ⃗⃗ ⃗̇ = 𝐴(𝑥0⃗⃗⃗⃗⃗ + Δ𝑥⃗⃗ ⃗⃗ ⃗) + 𝐵(𝑢0⃗⃗⃗⃗⃗ + Δ𝑢⃗⃗⃗⃗⃗⃗ ) (4) 

where 𝑥0⃗⃗⃗⃗⃗ and 𝑢0⃗⃗⃗⃗⃗ are the vectors of trim aircraft states and trim controls and Δ𝑥⃗⃗ ⃗⃗ ⃗ and Δ𝑢⃗⃗⃗⃗⃗⃗  represent 
the state perturbation vector and control perturbation vector, respectively. 

This section provides a walkthrough of the top-level model stitching simulation architecture. 
Figure 1 shows a top-level schematic of the model stitching architecture, illustrating all the key 
simulation elements. 
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Figure 1 Model stitching simulation architecture - top level schematic 

There are control derivatives and stability derivatives lookup tables in Figure 1. In order to 
derive them, small perturbation is applied to equations of motion resulting with Equation (5).  

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
�̃�𝑢 �̃�𝑣 �̃�𝑤 �̃�𝑝 �̃�𝑞 − 𝑤0 �̃�𝑟 + 𝑣0 0 −𝑔c(𝜃0)

�̃�𝑢 �̃�𝑣 �̃�𝑤 �̃�𝑝 + 𝑤0 �̃�𝑞 �̃�𝑟 − 𝑢0 𝑔c(𝜙0)c(𝜃0) −𝑔𝑠(𝜙0)𝑠(𝜃0)

�̃�𝑢 �̃�𝑣 �̃�𝑤 �̃�𝑝 − 𝑣0 �̃�𝑞 + 𝑢0 �̃�𝑟 −𝑔s(𝜙0)c(𝜃0) −𝑔𝑐(𝜙0)𝑠(𝜃0)

𝑙𝑢
′ 𝑙𝑣

′ 𝑙𝑤
′ 𝑙𝑝

′ 𝑙𝑝
′ 𝑙𝑝

′ 0 0

𝑚𝑢
′ 𝑚𝑣

′ 𝑚𝑤
′ 𝑚𝑝

′ 𝑚𝑞
′ 𝑚𝑟

′ 0 0

𝑛𝑢
′ 𝑛𝑣

′ 𝑛𝑤
′ 𝑛𝑝

′ 𝑛𝑞
′ 𝑛𝑟

′ 0 0

0 0 0 1 s(𝜙0)t(𝜃0) c(𝜙0)t(𝜃0) 0 0

0 0 0 0 c(𝜙0) −s(𝜙0) 0 0 ]
 
 
 
 
 
 
 
 
 

 

 

𝐵 =

[
 
 
 
 
 
 
 
 
 
�̃�𝛿𝑡

�̃�𝛿𝑒
�̃�𝛿𝑎

�̃�𝛿𝑟

�̃�𝛿𝑡
�̃�𝛿𝑒

�̃�𝛿𝑎
�̃�𝛿𝑟

�̃�𝛿𝑡
�̃�𝛿𝑒

�̃�𝛿𝑎
�̃�𝛿𝑟

𝑙𝛿𝑡

′ 𝑙𝛿𝑒

′ 𝑙𝛿𝑎

′ 𝑙𝛿𝑟

′

𝑚𝛿𝑡

′ 𝑚𝛿𝑒

′ 𝑚𝛿𝑎

′ 𝑚𝛿𝑟

′

𝑛𝛿𝑡

′ 𝑛𝛿𝑒

′ 𝑛𝛿𝑎

′ 𝑛𝛿𝑟

′

0 0 0 0
0 0 0 0 ]

 
 
 
 
 
 
 
 
 

 

(5) 

Note that the A matrix includes gravity terms (e.g., −𝑔c(𝜃0)), Coriolis terms (e.g., −𝑤0), and 

kinematic terms (e.g., s(𝜙0)t(𝜃0)). For use in the model stitching, we introduce variations of A 

and B matrices that contain only the aerodynamic/propulsive dimensional stability and control 
derivatives; they do not contain gravity, Coriolis, or kinematic terms, and neither Euler angle 
states (𝜙, 𝜃). Gravity is later incorporated using a nonlinear representation of the gravitational 
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forces and, Coriolis and kinematics are incorporated within the nonlinear equations of motion 
as seen in Figure 1. These aerodynamic/propulsive isolated matrices are denoted 𝐴𝑎/𝑝  and 

𝐵𝑎/𝑝 , and are given in equation (6). 

𝐴𝑎/𝑝 =

[
 
 
 
 
 
 
 
�̃�𝑢 �̃�𝑣 �̃�𝑤 �̃�𝑝 �̃�𝑞 �̃�𝑟

�̃�𝑢 �̃�𝑣 �̃�𝑤 �̃�𝑝 �̃�𝑞 �̃�𝑟

�̃�𝑢 �̃�𝑣 �̃�𝑤 �̃�𝑝 �̃�𝑞 �̃�𝑟

𝑙𝑢
′ 𝑙𝑣

′ 𝑙𝑤
′ 𝑙𝑝

′ 𝑙𝑝
′ 𝑙𝑟

′

𝑚𝑢
′ 𝑚𝑣

′ 𝑚𝑤
′ 𝑚𝑝

′ 𝑚𝑞
′ 𝑚𝑟

′

𝑛𝑢
′ 𝑛𝑣

′ 𝑛𝑤
′ 𝑛𝑝

′ 𝑛𝑞
′ 𝑛𝑟

′
]
 
 
 
 
 
 
 

 

𝐵𝑎/𝑝 =

[
 
 
 
 
 
 
 
�̃�𝛿𝑡

�̃�𝛿𝑒
�̃�𝛿𝑎

�̃�𝛿𝑟

�̃�𝛿𝑡
�̃�𝛿𝑒

�̃�𝛿𝑎
�̃�𝛿𝑟

�̃�𝛿𝑡
�̃�𝛿𝑒

�̃�𝛿𝑎
�̃�𝛿𝑟

𝑙𝛿𝑡

′ 𝑙𝛿𝑒

′ 𝑙𝛿𝑎

′ 𝑙𝛿𝑟

′

𝑚𝛿𝑡

′ 𝑚𝛿𝑒

′ 𝑚𝛿𝑎

′ 𝑚𝛿𝑟

′

𝑛𝛿𝑡

′ 𝑛𝛿𝑒

′ 𝑛𝛿𝑎

′ 𝑛𝛿𝑟

′
]
 
 
 
 
 
 
 

 

(6) 

Table look-ups are performed on the 𝐴𝑎/𝑝 and 𝐵𝑎/𝑝 matrices to find the dimensional stability 

and control derivatives at the current, x-body airspeed u. X-body airspeed u is used for look-
up of derivatives only and is implemented to ensure that the derivative values remain constant 
for short-term motion, thereby retaining accurate dynamic responses at the discrete trim points.  

Now we introduce a dimensional mass matrix ℳ comprised of the aircraft mass (m) and inertia 

tensor (𝐼𝐵
𝐵) as shown in equation (7). 

ℳ =

[
 
 
 
 
 
𝑚

𝑚
𝑚

𝐼𝑋𝑋 −𝐼𝑋𝑍

𝐼𝑌𝑌

−𝐼𝑋𝑍 𝐼𝑍𝑍 ]
 
 
 
 
 

 
(7) 

Multiplying the mass matrix ℳ into the matrix of aerodynamic/propulsive stability derivatives 

and the state perturbation vector 𝚫𝑥⃗⃗⃗⃗⃗⃗  yields a vector of aerodynamic dimensional perturbation 
forces and moments. Likewise, multiplying the mass matrix into the matrix of aerodynamic 

control derivatives and the control perturbation vector 𝚫𝑢⃗⃗⃗⃗⃗⃗  produces a vector of dimensional 
perturbation forces and moments. The sum of both vectors yields the complete aerodynamic 
dimensional perturbation forces and moments as shown in equation (8). 

[
 
 
 
 
 
Δ𝑋
Δ𝑌
Δ𝑍
Δ𝑙
Δ𝑚
Δ𝑛 ]

 
 
 
 
 

= ℳ𝐴𝑎/𝑝

[
 
 
 
 
 
Δ𝑢
Δ𝑣
Δ𝑤
Δ𝑝
Δ𝑞
Δ𝑟 ]

 
 
 
 
 

+ ℳ𝐵𝑎/𝑝 [

Δ𝛿𝑡

Δ𝛿𝑒

Δ𝛿𝑎

Δ𝛿𝑟

] 
(8) 

where  
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ℳ𝐴𝑎/𝑝 =

[
 
 
 
 
 
 
𝑋𝑢 𝑋𝑣 𝑋𝑤 𝑋𝑝 𝑋𝑞 𝑋𝑟

𝑌𝑢 𝑌𝑣 𝑌𝑤 𝑌𝑝 𝑌𝑞 𝑌𝑟

𝑍𝑢 𝑍𝑣 𝑍𝑤 𝑍𝑝 𝑍𝑞 𝑍𝑟

𝑙𝑢 𝑙𝑣 𝑙𝑤 𝑙𝑝 𝑙𝑞 𝑙𝑟
𝑚𝑢 𝑚𝑣 𝑚𝑤 𝑚𝑝 𝑚𝑞 𝑚𝑟

𝑛𝑢 𝑛𝑣 𝑛𝑤 𝑛𝑝 𝑛𝑞 𝑛𝑟 ]
 
 
 
 
 
 

 

ℳ𝐵𝑎/𝑝 =

[
 
 
 
 
 
 
𝑋𝛿𝑡

𝑋𝛿𝑒
𝑋𝛿𝑎

𝑋𝛿𝑟

𝑌𝛿𝑡
𝑌𝛿𝑒

𝑌𝛿𝑎
𝑌𝛿𝑟

𝑍𝛿𝑡
𝑍𝛿𝑒

𝑍𝛿𝑎
𝑍𝛿𝑟

𝑙𝛿𝑡
𝑙𝛿𝑒

𝑙𝛿𝑎
𝑙𝛿𝑟

𝑚𝛿𝑡
𝑚𝛿𝑒

𝑚𝛿𝑎
𝑚𝛿𝑟

𝑛𝛿𝑡
𝑛𝛿𝑒

𝑛𝛿𝑎
𝑛𝛿𝑟 ]

 
 
 
 
 
 

 

(9) 

In equation (8), in the complete aerodynamic/propulsion dimensional perturbation forces and 
moments, indices of row 1-3 is attributed to perturbation force vector, and indices of 4-6 is 
attributed to perturbation moment vector as shown in equation (10). This expression is shown 
in Figure 2. 

Δ𝑓⃗⃗ ⃗⃗
�⃗�,𝑝 = [

Δ𝑋
Δ𝑌
Δ𝑍

] , Δ𝑚⃗⃗⃗⃗⃗⃗⃗
𝐵𝑎,𝑝

= [
Δ𝑙
Δ𝑚
Δ𝑛

],  (10) 

 

 
Figure 2 Model stitching simulation architecture - aero perturbation forces and moments 

The specific aerodynamic/propulsion trim forces are calculated using the force balance in trim 
condition. Euler angles are tabulated with respect to discrete trim values. By using them, 
balancing trim gravitational forces could be found. Then, they are multiplied by the aircraft 
mass to obtain the dimensional aerodynamic/propulsion trim forces as shown in equation (11). 

[

𝑋0

𝑌0

𝑍0

] = 𝑚 [

�̃�0

�̃�0

�̃�0

] 
(11) 

This process of obtaining the dimensional aerodynamic trim forces is shown in Figure 3. 
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Figure 3 Model stitching simulation architecture – aerodynamic/propulsion trim forces 

Calculation of the total dimensional aerodynamic/propulsive forces and moments combines 
the components covered thus far. The aerodynamic dimensional perturbation forces and 
moments [Equation (10)] are summed with the dimensional aerodynamic trim forces [Equation 
(11)] to yield the total aerodynamic/propulsive forces and moments. This summation is 
expressed in equation (12). 

 

{𝑓𝑎⃗⃗⃗⃗ }
(𝐵)

+ {𝑓𝑝⃗⃗⃗⃗ }
(𝐵)

= [
𝑋
𝑌
𝑍
] = [

𝑋0

𝑌0

𝑍0

] + [
Δ𝑋
Δ𝑌
Δ𝑍

] 

{�⃗⃗⃗�𝐵}(𝐵) = [
𝑙
𝑚
𝑛

] = [
Δ𝑙
Δ𝑚
Δ𝑛

] 
(12) 

and is shown graphically in Figure 4. 

 
Figure 4 Model stitching simulation architecture - total aero forces and moments 

The aerodynamic/propulsive forces and moments [Equation (12)]  are summed with the gravity 
forces to yield the total external, dimensional forces and moments acting at the CM. This 
summation is expressed in equation (13). 
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{𝑓}
(𝐵)

= ({𝑓𝑎⃗⃗⃗⃗ }
(𝐵)

+ {𝑓𝑝⃗⃗⃗⃗ }
(𝐵)

) + {𝑓𝑔⃗⃗⃗⃗ }
(𝐵)

= [
𝑋
𝑌
𝑍
] + [

𝑋𝑔

𝑌𝑔
𝑍𝑔

] = [

𝑋0

𝑌0

𝑍0

] + [
Δ𝑋
Δ𝑌
Δ𝑍

] + [

𝑋𝑔

𝑌𝑔
𝑍𝑔

] 

{�⃗⃗⃗�𝐵}(𝐵) = [
𝑙
𝑚
𝑛

] = [
Δ𝑙
Δ𝑚
Δ𝑛

] 

(13) 

and is shown graphically in Figure 5. 

Note that gravity force produces no external moment about the CM, so the total external 
moment is due to the total aerodynamic and propulsive moment alone. 

 
Figure 5 Model stitching simulation architecture - total forces and moments 

Given total forces and moments about the aircraft CM, along with the current aircraft state and 
simulation values of mass and inertia, the 6-DOF body-axes nonlinear equation of motion is 
implemented to obtain the fuselage accelerations and Euler-angle rates. The equations of 
motion contain the nonlinear Euler equations, which include the cross-coupling inertial and 
Coriolis terms in full nonlinear form. The nonlinear equations of motion block is shown in Figure 
6. 

The force, moment and kinematic equations are combined together in equations (14).  

�̇� = 𝑋 𝑚⁄ − 𝑞𝑤 + 𝑟𝑣 − 𝑔 sin𝜃 
�̇� = 𝑌 𝑚⁄ − 𝑟𝑢 + 𝑝𝑤 + 𝑔 cos 𝜃 sin𝜙 
�̇� = 𝑍 𝑚⁄ − 𝑝𝑣 + 𝑞𝑢 + 𝑔 cos 𝜃 cos𝜙 

�̇� =
𝐼𝑋𝑍(𝐼𝑋𝑋 − 𝐼𝑌𝑌 + 𝐼𝑍𝑍)𝑝𝑞 − (𝐼𝑍𝑍

2 − 𝐼𝑌𝑌𝐼𝑍𝑍 + 𝐼𝑋𝑍
2 )𝑞𝑟 + 𝐼𝑍𝑍𝑙 + 𝐼𝑋𝑍𝑛

𝐼𝑋𝑋𝐼𝑍𝑍 − 𝐼𝑋𝑍
2  

�̇� =
(𝐼𝑍𝑍 − 𝐼𝑋𝑋)𝑝𝑟 − 𝐼𝑋𝑍(𝑝

2 − 𝑟2) + 𝑚

𝐼𝑌𝑌
 

�̇� =
(𝐼𝑋𝑋

2 − 𝐼𝑋𝑋𝐼𝑌𝑌 + 𝐼𝑋𝑍
2 )𝑝𝑞 − 𝐼𝑋𝑍(𝐼𝑋𝑋 − 𝐼𝑌𝑌 + 𝐼𝑍𝑍)𝑞𝑟 + 𝐼𝑋𝑍𝑙 + 𝐼𝑋𝑋𝑛

𝐼𝑋𝑋𝐼𝑍𝑍 − 𝐼𝑋𝑍
2  

�̇� = 𝑝 + s𝜙t𝜃𝑞 + c𝜙t𝜃𝑟 

�̇� = c𝜙𝑞 − s𝜙𝑟 

�̇� = s𝜙/c𝜃𝑞 − c𝜙/c𝜃𝑟 

(14) 



 
AIAC-2021-112                            

9 

Ankara International Aerospace Conference 
 

Total body-axes accelerations, body-axes angular rates and Euler-angle rates are collected to 
form the 6-DOF total state vector in equation (15). 

�̇⃗� = [�̇� �̇� �̇� �̇� �̇� �̇� �̇� �̇� �̇�]𝑇  (15) 

 

 
Figure 6 Model stitching simulation architecture - nonlinear equations of motion 

The 6-DOF state-dot vector �̇⃗�, is comprised of the total body-axes accelerations, body-axes 
angular accelerations, and Euler-angle rates, is integrated forward in time to obtain the current 
6-DOF aircraft state vector �⃗�, given in equation (16). 

�⃗� = [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 𝜙 𝜃 𝜓]𝑇 
(16) 

The integration routine in this study is Runge-Kutta 4 scheme and depicted in Figure 7 . 

 
Figure 7 Model stitching simulation architecture - time integration 
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3. Model Evaluation Criteria 

Analyses were performed for three model which are nonlinear model (shown as measured), 
stitching model and Jacobian Linearization model. Longitudinal and lateral motion will be 
presented separately. Elevator was used as an input in longitudinal motion whereas rudder 
and aileron were used as inputs in lateral motion. In longitudinal motion, phugoid and short 
period maneuvers were used to compare methods in order to show effectiveness in both fast 
and slow dynamics. In lateral motion, bank-to-bank and dutch roll maneuvers were used to 
compare methods for the same reason as in longitudinal motion. In order to compare the 
performance of the methods mentioned above, root of mean sum-of-squared errors is used 
and given in the equation (17). 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛𝑑𝑎𝑡𝑎

  ∑ ( 𝑧𝑗 − 𝑦𝑗)
2

𝑛𝑑𝑎𝑡𝑎 

𝑗=1

 

 

(17) 

 

𝑗  - the discrete data index 

𝑛𝑦  - the number of neurons in the output layer. 

𝑛𝑑𝑎𝑡𝑎 - the number of data 

𝑧𝑗
𝑖  - measured (actual) data in 𝑗th discrete data index 

𝑦𝑗
𝑖 - predicted data in 𝑗th discrete data index 
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RESULTS 

 

1. Longitudinal Motion 

1.1. Phugoid Mode 

To show the effectiveness of methods, several analyses were performed with increasing input 
amplitude.  

 

Figure 8 Phugoid simulation results with input amplitude 

is equal to 1 

 

Figure 9 Phugoid simulation results with input amplitude 

is equal to 3 

Simulation results are shown in Figure 8 and Figure 9 with different input amplitudes. Even 
though local models are obtained in the same trim points, results show that responses are 
different. It could be shown that, if number of local models are increased the response will be 
better. But this will result in longer computation time.  

Results are compared with RMSE of each flight variable. With the increasing input amplitude, 
results get worse for both models. Even though, the model of “Model Stitching” results better 
in velocity than the model of “Jacobian Linearization”, the model of “Jacobian Linearization” 
results better in pitch angle.  

 

Table 1 RMSE Evaluation of the phugiod maneuver result with different input amplitudes. 

Models 
∆𝛿𝑒 = 1° ∆𝛿𝑒 = 𝟑° 

𝑉𝑇𝐴𝑆 𝜃 𝑉𝑇𝐴𝑆 𝜃 

Model Stitching 1.2486 0.5027 7.0185 4.1908 

Jacobian Linearization 1.7129 0.4613 10.3222 1.1184 
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1.2. Short Period Mode 

 

Figure 10 Short period simulation results with input 

amplitude is equal to 1 

 

Figure 11 Short period simulation results with input 

amplitude is equal to 3 

Simulation results are shown in Figure 10 and Figure 11 with input amplitudes of one and three, 
respectively. Even though it is shown clearly that the model of “Model Stitching” results more 
coherent than the model of “Jacobian Linearization”, root mean squared errors of both are 
calculated as follows.  

RMSE is calculated for both angle of attack and pitch rate. Results are shown in Table 2. As it 
can be seen, the model of “Model Stitching” results better than the model of “Jacobian 
Linearization” in both flight variables. With the increasing input amplitude, errors in results 
increase. And also, the gap between error of two models get bigger with increasing input 
amplitude.   

Table 2 RMSE Evaluation of the short period maneuver result with different input amplitudes. 

Models 
∆𝛿𝑒 = 1° ∆𝛿𝑒 = 𝟑° 

𝛼 𝑞 𝛼 𝑞 

Model Stitching 0.1245 0.1601 0.4313 1.0116 

Jacobian Linearization 0.3361 0.2876 1.0069 1.1435 
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2. Lateral Motion 

2.1. Bank-to-Bank Maneuver 

 

Figure 12 Bank-to-Bank simulation results with input 

amplitude is equal to 1 

 

Figure 13 Bank-to-Bank simulation results with input 

amplitude is equal to 3 

 

Simulation results are shown in Figure 12 and Figure 13 with input amplitudes of one and three, 
respectively.  

Results are compared with RMSE of each flight variable in Table 3. With the increasing input 
amplitude, results get worse for both model. The model of “Model Stitching” results better than 
the model of “Jacobian Linearization” for both of the flight variables. As expected, gap between 
errors of two models get bigger with increasing input amplitude.   

Table 3 RMSE Evaluation of the bank-to-bank maneuver result with different input amplitudes. 

Models 
∆𝛿𝑎 = 1° ∆𝛿𝑎 = 𝟑° 

𝑝 𝜙 𝑝 𝜙 

Model Stitching 0.5407 0.4644 1.5777 1.3845 

Jacobian Linearization 1.0531 1.3431 3.3102 4.3387 
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2.2. Dutch Roll Maneuver 

 

Figure 14 Dutch roll simulation results with input 

amplitude is equal to 1 

 

Figure 15 Dutch roll simulation results with input 

amplitude is equal to 3 

 

Simulation results are shown in Figure 14 and Figure 15 with input amplitudes of one and three, 
respectively.  

Results are compared with RMSE of each flight variable in Table 4. With the increasing input 
amplitude, results get worse for both model. When small input is applied on the systems, the 
model of “Jacobian Linearization” results better for yaw rate. But it is not valid when large input 
is applied on the system.   

Table 4 RMSE Evaluation of the dutch-roll maneuver result with different input amplitudes. 

Models 
∆𝛿𝑟 = 1° ∆𝛿𝑟 = 𝟑° 

𝑟 𝛽 𝑟 𝛽 

Model Stitching 0.1016 0.0367 0.2145 0.079 

Jacobian Linearization 0.0738 0.0705 0.2723 0.2404 

 

CONCLUSION 

Model was analyzed with phugoid, short period, bank-to-bank and Dutch roll maneuvers 
separately. It is shown that, even though models’ responses are closely matched by using 
small inputs, Jacobian Linearization model respond divergently by large inputs as expected, 
except for phugoid maneuver. It is evaluated that the exception comes from slow dynamics. 
Slow dynamic allows Jacobian Linearization to be more coherent with nonlinear model than 
Model Stitching.  

Results are compared with calculated RMSE of results. It is shown that with increasing input 
amplitude, errors increase for both LPV models. It would be overcome by increasing number 
of local models. But this will result in more computational times.  
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Results show that Model Stitching outperforms Jacobian Linearization if number of local 
models are the same. Even though Jacobian Linearization is easier to model, it cannot get 
better results especially in large inputs. Jacobian Linearization would be used with increasing 
number of local models in order to get better results.  
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