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ABSTRACT 
An aerodynamic model in order to simulate and control the flapping-wing micro air 
vehicle based on the quasi-steady approach and blade element theory is 
developed to calculate the instantaneous aerodynamic forces and moments. The 
system dynamics of a 2-D flapping-wing MAV in hover mode are modeled. Control 
simulations are done for hover, take-off, forward flight and landing conditions. 
Linear Quadratic Regulator (LQR) and Coefficient Diagram Method (CDM) are 
used to stabilize the flapping-wing system. The effectiveness of the controllers 
are compared in the means of disturbance rejection, response speed, and 
controller response. By using the stroke plane angle and the flapping frequency 
as the control inputs, six state variables of the system are stabilized. Position 
commands are tracked with an integral tracker at low-speed flights. 
 
 

INTRODUCTION 

Since flying insects can hover and realize rapid maneuvers when necessary, imitating insect 
behaviors has become an exciting subject for engineers [Kurtulus, 2019]. Consequently, the 
number of studies on flapping wing Micro Air Vehicles (MAVs) has grown significantly in recent 
years [Ward et al., 2017].  

The aerodynamic characteristics of flying insects are different from the aircraft and helicopters 
flying at high Reynolds numbers [Kurtulus 2011a; Kurtulus 2011b; Kurtulus 2015]. Therefore, 
the wing morphology, wing kinematics, and unsteady aerodynamics of the flapping motion 
must be investigated to perform an insect-like flight [Akay et al., 2007; Kurtulus et al., 2004; 
Kurtulus et al., 2005; Kurtulus et al., 2006a; Kurtulus et al., 2006b; Kurtulus et al., 2006c; 
Kurtulus et al., 2008; Kurtulus, 2009; 2018; Bektas, 2020; Bektas et al., 2020]. A frequently 
preferred and straightforward method to calculate unsteady forces is the quasi-steady 
approach [Madangopal et al., 2006; Wissa et al., 2020]. Quasi-steady estimations include the 
instantaneous position and velocity of the wing while other time-dependent effects such as 
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wake-capture, wing-wing interactions, wing-body interactions are neglected [Wright and 
Cooper, 2015; Bhatia et al., 2012]. However, it is commonly used in flapping wing control 
applications due to its simplicity and low computational costs [Lee et al., 2015; Banazadeh and 
Taymourtash, 2016; Al-Mahasneh et al., 2017].  

The delayed stall and the Wagner effect are the two effects that suppress each other’s 
influence on lift production [Weis-Fogh, 1972]. [Han and Han, 2019] stated that the downwash 
created by a wing has an attenuating effect on the vortex created by the side wing, and this is 
a stabilizing effect when there is a lateral disturbance. Quasi-steady approximations cannot 
model these effects mentioned above. On the other hand, since they have opposite effects, 
even they are not included in the calculations, it is still convenient to use a quasi-steady 
aerodynamic model during dynamical stability and control analyses [Taha et al., 2012]. [Sane 
and Dickinson, 2002] revealed that despite the unsteady forces are ignored during quasi-
steady calculations, one can obtain close results to the experimental results via quasi-steady 
estimations.  

In the current study, an aerodynamic model based on quasi-steady estimations and blade 
element theory is developed to calculate the aerodynamic forces created during the flapping 
motion. The model is based on the studies of [Kim et al., 2015]. The model uses the translational 
forces, the rotational forces, and the added-mass effect to calculate the total forces. The effects 
of the wake-capture, wing-wing interactions, wing-body interactions, and the spanwise 
components of the flow are ignored. Wing's thickness is assumed to be infinitesimally small 
during calculations since the thickness of the insects' wings that are flying at low Reynolds 
numbers is very small [Kurtulus, 2016]. 

The open-loop dynamics of a flapping wing MAV are reported to be unstable [Taylor and 
Thomas, 2003; Sun and Xiong, 2005; Çalış et al., 2019]. There are various studies on 
stabilizing flapping-wing MAVs using different linear control methods. PID is a successful 
method in flapping-wing MAV control applications [Zhang et al., 2016]. [Nakatani et al., 2016] 
tested the PID and the PI controllers and proved the usability of these types of controllers in 
the existence of disturbance. [Hines et al., 2011] used PID controllers for attitude and altitude 
control. [Fei et al., 2019] used cascaded PD and PID controllers successfully in simulations 
and flight tests. Nonlinear control methods are also employed for controlling flapping-wing 
MAVs in various studies [Banazadeh and Taymourtash, 2016; Wissa et al., 2020; Hashemi et 
al., 2020].  

[Deng et al. 2006, Bhatia et al. 2012, Biswal 2015, P.Hyun et al., 2021] used LQR to stabilize 
the dynamics of flapping wing MAVs. [Abbasi and Mahmood., 2019] successfully used LQR to 
stabilize the unstable dynamics of a nature-inspired flapping wing UAV. [Biswal et al., 2019] 
designed an LQR controller for stabilizing the rigid body dynamics of a flapping wing MAV. 
Then they proved the convenience of the controller by testing it with the model that includes 
all the rigid body dynamics, rigid wing dynamics, and wing kinematics.  [Zhang et al. 2016] 
used an LQR controller, a PID controller, and a nonlinear controller for wing trajectory tracking. 
Compared to the other control approaches, the LQR controller tracked the command with less 
input effort with less precision. 

The Coefficient Diagram Method (CDM) is an algebraic approach to the control theory in the 
middle of classical control and modern control [Manabe, 1998]. It is a linear control method in 
which the desired characteristic equation is obtained by solving simple algebraic equations 
[Kara, 2014]. It is used in various UAV applications [Hirokawa, 2004; Giernacki, 2017]. 
However, no flapping-wing study has been encountered with this method in the literature yet.   

In the current study, an LQR controller and a CDM-based controller are employed for 
stabilization, and integral trackers are utilized for position command tracking. The longitudinal 
dynamics of the flapping-wing MAV are trimmed at hovering flight. The wing kinematics are 
considered in the dynamic stability analysis by including the aerodynamic model in the linear 
time-invariant system by getting linearized around the trim condition. However, the rigid wing 
dynamics are not modeled separately and are assumed to be involved in the rigid body 
dynamics. [Lee et al., 2015] used the stroke plane angle and the flapping frequency to stabilize 
a flapping-wing MAV in hover. In the current study, the forward-backward motion of the 
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flapping-wing MAV is controlled by changing the stroke plane angle whereas, the upward-
downward movement is controlled by altering the flapping frequency. 

The hawkmoth Manduca sexta (MS) is being inspired for modeling the body dynamics and the 
flapping motion. A simplified hawkmoth wing model with a span of 52.25 mm from the literature 
is used [Usherwood and Ellington, 2002]. The morphological parameters of the body are 
obtained from [Kim et al., 2015].  

 

MODELING OF A FLAPPING-WING MAV 

Coordinate Definitions 

Four orthonormal and right-handed coordinate frames are defined to clarify the body dynamics 
and wing kinematics, as illustrated in Figure 1. The Global Frame (𝑋𝐺 , 𝑌𝐺 , 𝑍𝐺), is fixed to any 
point on Earth, the 𝑋𝐺-axis is pointing north, the 𝑍𝐺-axis is pointing to the center of the Earth, 

and the 𝑌𝐺-axis is perpendicular to the 𝑋𝐺 − 𝑍𝐺 frame satisfying the right-hand rule. The Body 
Fixed Coordinate Frame (𝑋𝐵, 𝑌𝐵, 𝑍𝐵), is fixed to the insect’s center of gravity. The 𝑋𝐵-axis is 

along the insect’s body and makes an angle of ϴ with the horizontal plane which is the body 
pitch angle. The 𝑍𝐵-axis is perpendicular to the 𝑋𝐵-axis, as shown in Figure 1a, and the 𝑌𝐵-

axis is perpendicular to the 𝑋𝐵 − 𝑍𝐵 plane, satisfying the right-hand rule. The Stroke Plane 
Frame (𝑋𝑠𝑝, 𝑌𝑠𝑝, 𝑍𝑠𝑝) is used for analyzing the flapping motion. The Wing Fixed Frame 

(𝑋𝑊, 𝑌𝑊, 𝑍𝑊) is fixed to the wing root, as shown in Figure 1c. The 𝑋𝑊-axis is throughout the 
chord, the 𝑍𝑊-axis is along the span and pointing the wingtip. The 𝑌𝑊-axis is perpendicular to 
the 𝑋𝑊-𝑍𝑊 plane. The stroke plane angle (β) is the angle between the 𝑋𝑠𝑝-axis and the 𝑋𝐺-axis 

initially when the insect’s body is aligned with the 𝑋𝐺-axis, as shown in Figure 1b. 

 

    
(a)                                       (b)                                           (c) 

Figure 1: Wing and body kinematic definitions and coordinate systems

 

Aerodynamic Model 

To manipulate and control their body, insects change the aerodynamic forces by altering their 
wing kinematics. Therefore, there is a need to investigate the aerodynamic forces created 
during the flapping motion to control a flapping wing MAV. In this study, a quasi-steady model 
with the blade element method is used to calculate the aerodynamic forces and moment 
created during the flight. The model is developed based on the model proposed by [Kim et al., 
2015]. The wing is separated into equal strips along the span, and instantaneous aerodynamic 
forces and moment are computed on each strip independently. Finally, the effects of the 
aerodynamic forces and moment acting on each strip to the wing root are calculated.  During 
the flapping motion, the instantaneous aerodynamic forces acting on a single strip when there 
is no skin friction are the sum of four forces: translational, rotational, forces due to the inertia 
of the added mass of the air and the wake-capture effect [Sane and Dickinson, 2002]. Since 
the wake-capture effect is highly unsteady, it is not possible to model it with a quasi-steady 
approach. Therefore, it is neglected, and the instantaneous forces and moment on a strip are 
calculated as in Equation 1. 

                                   𝐹𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 = 𝐹𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 + 𝐹𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 + 𝐹𝑎𝑑𝑑𝑒𝑑−𝑚𝑎𝑠𝑠                           (1) 
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The components of Equation 1 are calculated as the way proposed by [Kim et al., 2015]. The 
wing shape is introduced to the code simply by two functions shown in Equations 2-3, one 
representing the leading edge and the other representing the trailing edge, as shown in Figure 
2. 
 

𝑋𝑙𝑒𝑎𝑑𝑖𝑛𝑔 = −1.246 ∙ 109 ∙ 𝑧8 − 7.249 ∙ 107 ∙ 𝑧7 + 3.105 ∙ 107 ∙ 𝑧6 − 2.271 ∙ 106 ∙ 𝑧5 + 6.48 ∙ 104 ∙

                                        𝑧4 − 553.4 ∙ 𝑧3 − 7.91 ∙ 𝑧2 + 0.295 ∙ 𝑧 + 2.033 ∙ 10−5                                              (2) 
 

𝑋𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 =  5.783 ∙ 1010 ∙ 𝑧8 − 1.567 ∙ 1010 ∙ 𝑧7 + 1.698 ∙ 109 ∙ 𝑧6 − 9.458 ∙ 107 ∙ 𝑧5 + 2.895 ∙

                                  106 ∙ 𝑧4 − 4.857 ∙ 104 ∙ 𝑧3 + 440.7 ∙ 𝑧2 − 2.238 ∙ 𝑧 − 0.01382                               (3) 
 

 

 

Figure 2: Wing model with 30 equal strips 

 
As the number of strips increased, the mean value of aerodynamic forces during one wing-
beat converged to a final value. Consequently, dividing the wing into 700 pieces is found to be 
satisfactory. The wing used by [Kim et al., 2015] and the wing used in the current study, which 
is divided into 700 equal strips, are presented in Figure 3. 
 

 
                                               (a)                                                                (b) 

Figure 3: (a) Hawkmoth Manduca Sexta wing model with 5 strips [Kim et al., 2015] (b) Wing 
model used in the current study with 700 strips 

Calculations are done for each strip of the wing. Components of Equation 1 are obtained from 
[Kim et al., 2015] and shown in Equation 4.  
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𝐹𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠,𝑖 = [

𝐿𝑖

𝐷𝑖

𝑀𝑖

] = [

𝐿𝑇,𝑖

𝐷𝑇,𝑖

𝑀𝑇,𝑖

] + [

𝐿𝑅,𝑖

𝐷𝑅,𝑖

𝑀𝑅,𝑖

] + [

𝐿𝑎,𝑖

𝐷𝑎,𝑖

𝑀𝑎,𝑖

] =   

[
 
 
 
 𝐶𝐿,𝑖

𝜌

2
𝑉𝑖

2𝑐𝑖𝑑𝑟

𝐶𝐷,𝑖
𝜌

2
𝑉𝑖

2𝑐𝑖𝑑𝑟

𝐶𝑀,𝑖
𝜌

2
𝑉𝑖

2𝑐𝑖
2𝑑𝑟]

 
 
 
 

+

                                             [

𝐶𝑅,𝑖𝜌�̇�𝑖𝑉𝑖𝑐𝑖
2𝑑𝑟 ∙ 𝑐𝑜𝑠𝛼

𝐶𝑅,𝑖𝜌�̇�𝑖𝑉𝑖𝑐𝑖
2𝑑𝑟 ∙ 𝑠𝑖𝑛𝛼

𝐶𝑅,𝑖𝜌�̇�𝑖𝑉𝑖𝑐𝑖
2𝑑𝑟 ∙ 𝜀𝑖

] +

[
 
 
 
𝜋

4
𝜌𝑐𝑖

2(�̈�𝑅)𝑠𝑖𝑛𝛼𝑑𝑟 ∙ 𝑐𝑜𝑠𝛼
𝜋

4
𝜌𝑐𝑖

2(�̈�𝑅)𝑠𝑖𝑛𝛼𝑑𝑟 ∙ 𝑠𝑖𝑛𝛼
𝜋

4
𝜌𝑐𝑖

2(�̈�𝑅)𝑠𝑖𝑛𝛼𝑑𝑟 ∙ 𝜀𝑖 ]
 
 
 

                                      (4) 

 

where, 𝜌 is the air density and taken as 1.225 𝑘𝑔 𝑚3⁄ , 𝑉𝑖 is the inflow velocity,  𝑐𝑖 is the strip’s 

chord length, 𝑑𝑟 is the width of the strip, 𝜀𝑖, is the distance between the half chord line and the 
wing pitching axis 𝑍𝑤, and acts as a moment arm. 𝑅 is the distance of the strip from the wing 
root. The aerodynamic coefficients (𝐶𝐿,𝑖, 𝐶𝐷,𝑖, 𝐶𝑀,𝑖), are curve fitted from experimental results 

given by [Han et al., 2015] as functions of the effective angle of attack. The curve fitted 
equations are given in Equations 5-7.  𝐶𝑅,𝑖 is taken from [Kim et al., 2015] and shown in 

Equation 8. 

 

𝐶𝐿(𝛼𝑖) = 0.8456𝑠𝑖𝑛(0.02086𝛼𝑖 + 1.265) + 0.8452𝑠𝑖𝑛(0.04803𝛼𝑖 − 1.181) +

                                                           0.04764𝑠𝑖𝑛(0.1169𝛼𝑖 − 1.101)                                                      (5) 

 

𝐶𝐷(𝛼𝑖) = 2.941𝑠𝑖𝑛(0.01935𝛼𝑖 − 0.171) + 0.7002𝑠𝑖𝑛(0.06062𝛼𝑖 − 3.867) +

                                                           0.1118𝑠𝑖𝑛(0.1246𝛼𝑖 − 3.36)                                                                  (6) 

 

𝐶𝑀(𝛼𝑖) = 0.7671𝑠𝑖𝑛(0.02421𝛼𝑖 + 2.534) + 0.3185𝑠𝑖𝑛(0.0747𝛼𝑖 − 2.009) +

                            0.1051𝑠𝑖𝑛(0.1418𝛼𝑖 − 8.034) + 0.04902𝑠𝑖𝑛(0.2054𝛼𝑖 − 7.459)                             (7) 

 

                                                                    𝐶𝑅,𝑖 = 𝜋 (0.75 −
𝑥𝑖

𝑐𝑖
)                                                                           (8) 

where, 𝑥𝑖 is the distance between the leading edge of the strip and the wing pitching axis (𝑍w). 
𝑉𝑖 and 𝛼𝑖 calculations are shown by [Kim and Han, 2014]. 

The wing kinematics used for the dynamic stability analysis are similar to a real hawkmoth 
Manduca Sexta, taken from [Kim and Han, 2014], and represented in Figure 4. 
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                                      (a)                                                                                (b) 

Figure 4: (a) Angular positions of the wing for one flapping period (b) Angular velocities of the 
wing for one flapping period 

In Figure 4, α is the feathering angle and is equal to the angle of attack when there is no 
external incoming flow and the insect is hovering. ϕ is the stroke positional angle, and θ is the 
elevation angle. Note that the elevation angle (θ) is different from the body pitch angle (ϴ). 
Manduca sextas generally do not flap their wings with notable amplitudes around the elevation 
angle (θ) [Willmott and Ellington, 1997]. Therefore, in the current study, the elevation angle (θ) 
is set to zero as shown in Figure 4. 

 

Aerodynamic Model Validation: 

The results obtained from the aerodynamic model are compared with the CFD results for a 
pure-plunge motion which has the kinematics represented in Figure 5. The validation case is 
obtained from [Bektas et al., 2019].  

 

 

(a)                                                                               (b) 

Figure 5: Validation Case (a) Angular positions of the wing for one period (b) Angular 
velocities of the wing for one flapping period 
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Keep in mind that since the validation case is a pure-plunge motion, the angle of attack is 
constant throughout the flapping motion and kept at 90° as shown in Figure 5. The elevation 
angle (θ) is 0°, and the stroke plane angle is 15°. 
 

 

                                          (a)                                                                              (b) 

Figure 6: Comparison of the Aerodynamic model results and the CFD results (a) vertical 
force coefficient (b) horizontal force coefficient 

The results obtained with the aerodynamic model have shown a good agreement with the CFD 
results during a flapping cycle. The most considerable disagreement between the results are 
received after the stroke reversals, at near 0.3T and 0.8T for both vertical and horizontal forces. 
The difference disappears as the wing's motion continues and arises back as the next stroke 
reversal approaches. This difference might be caused because the aerodynamic model based 
on the quasi-steady approach cannot consider the downwash, whereas the CFD method can. 
Downwash created due to the trace of vortices from the previous flapping cycle acts on the 
wing during the reverse stroke. Note that the model underestimates the forces at 0.3T while 
overestimating the forces at 0.8T, which yields the total error to vanish at the cycle-averaged 
evaluations.  

 

System Modeling 

The system is trimmed in hover using the Flat Earth, Body-Axes 6 degree of freedom equations 
taken from [Stevens et al., 2015] and 6 state equations are obtained as shown in Equation 9-
14. 

                                               𝑥1̇ = xḂ = ucosθ + wsinθ                                                             (9) 

                                                     𝑥 2̇ = �̇� = −𝑔𝑠𝑖𝑛𝜃 − 𝑞𝑤 +
𝐹𝑎𝑒𝑥

𝑚
                                                   (10) 

𝑥3̇ = xḂ = −usinθ + wcosθ                                                  (11) 

𝑥4̇ = �̇� = −𝑔𝑐𝑜𝑠𝜃 − 𝑞𝑢 +
𝐹𝑎𝑒𝑧

𝑚
                                              (12) 

𝑥5̇ = �̇� = 𝑞                                                                                   (13) 

𝑥6̇ = �̇� =
𝑀𝑌𝐵

𝐽𝑌
                                                                        (14) 

where, the state variables are 𝑥 =  [𝑥𝐵  𝑢  𝑧𝐵  𝑤  𝜃  𝑞]𝑇, and 
𝐹𝑎𝑒𝑥

𝑚
= �̂�𝑋𝐵,

𝐹𝑎𝑒𝑧

𝑚
= �̂�𝑍𝐵,

𝑀𝑌𝐵

𝐽𝑌
= �̂�𝑌𝐵. 

After the 6 state equations are obtained, the Jacobian Matrix method is used to get the system 
matrix A. The system matrix A with the stability derivative terms are presented in Equation 15.  
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𝐴 =

[
 
 
 
 
 
 
 
 

0 cos(𝜃)

0
∂�̂�𝑋𝐵

∂u
⁄

0 sin(𝜃)

0
∂�̂�𝑋𝐵

∂w
⁄

0 0
∂�̂�𝑋𝐵

∂θ
⁄ − 𝑔

∂�̂�𝑋𝐵
∂q

⁄

   0 −sin(𝜃)

   0 −
∂�̂�𝑍𝐵

∂u
⁄

   0 cos(𝜃)

   0 −
∂�̂�𝑍𝐵

∂w
⁄

0 0

−
∂�̂�𝑍𝐵

∂θ
⁄ − 𝑔 −

∂�̂�𝑍𝐵
∂q

⁄

0 0

0  
∂�̂�𝑌𝐵

∂u
⁄

0 0

0
∂�̂�𝑌𝐵

∂w
⁄

0 1
∂�̂�𝑌𝐵

∂θ
⁄  

∂�̂�𝑌𝐵
∂q

⁄
]
 
 
 
 
 
 
 
 

                       (15) 

 

Small perturbations are applied to the state variables, and the slopes of the changes of the 
cycle-averaged force and moment terms are regarded as the stability derivatives as proposed 
by [Lee et al., 2015]. The aerodynamic forces are calculated with the aerodynamic model 
based on the quasi-steady estimations as presented earlier, and the system matrix A is 
obtained as shown in Equation 16. 

 

                      A =

[
 
 
 
 
 
0 0.7683 0
0 −1.953 0
0 −0.6401 0

0.6401      0 0
0.7775    −5.9245 −0.0533
0.7683      0 0

0 −2.3930 0
0 0 0
0 65.6034 0

0.9613 −6.5739 −0.0621
0     0    1

−29.0895 0 1.4521
 
]
 
 
 
 
 

                       (16) 

 

The eigenvalues of the system are given in Equation 17. It is clear that the system is unstable 
because of the complex conjugate eigenvalue pair that has positive real parts.  

 

                          𝜆 = [0   0  − 5.6594   𝟑. 𝟎𝟔𝟏𝟓 ± 𝟓. 𝟎𝟓𝟏𝟑  − 0.0032]                       (17) 

 

CONTROLLER DESIGN 

To obtain the control matrix B, derivatives of the six state equations are obtained with respect 
to two control inputs which are the stroke plane angle (β) and the flapping frequency (f). The 
control matrix B and the control derivatives are presented in Equation 18. 

                                               𝐵 =

[
 
 
 
 
 
 
 
 

0
𝜕ẟ�̂�𝑋𝐵

𝜕ẟ𝛽
⁄

0
𝜕ẟ�̂�𝑋𝐵

𝜕ẟ𝑓
⁄

0
𝜕ẟ�̂�𝑍𝐵

𝜕ẟ𝛽
⁄      

0
𝜕ẟ�̂�𝑍𝐵

𝜕ẟ𝑓
⁄

0
𝜕ẟ�̂�𝑌𝐵

𝜕ẟ𝛽
⁄

0
𝜕ẟ�̂�𝑌𝐵

𝜕ẟ𝑓
⁄

]
 
 
 
 
 
 
 
 

                                          (18) 

To calculate the control derivatives, the slopes of the changes in cycle-averaged forces and 
moments are obtained by giving small perturbations to the control inputs. After the control 
derivatives are substituted, the control matrix B is obtained as shown in Equation 19. 

                                                     𝐵 =

[
 
 
 
 
 

0
−8.5368

    
0

0.2858
0

−4.9804
     

0
−0.7915

0
0

0
1.7947 ]

 
 
 
 
 

                                             (19) 

All the system states are assumed to be measured, and the output matrix C is accepted as an 
identity matrix. The feedforward matrix D is taken as 0. An inner loop controller gain and an 
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outer loop controller gain are calculated to stabilize the system and track the position 
commands at low speeds. The control architecture is shown in Figure 7. 
 

 
                                r : Reference Input                                  A: System Matrix 

                                e : Error Signal                                       B: Control Matrix 

                                u : Controller Input                                 C: Output Matrix 

                                x : System States                                     Kinner: Inner Controller Gain Matrix 

                                d : Disturbance Signal                             Ki: Integral Tracker Gain Matrix   

                                y : System Output 

Figure 7: Block diagram representation of the LTI System with inner loop and outer loop 
controllers 

 

The augmented matrices 𝐴𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 and 𝐵𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 are shown in Equations 20-21 

respectively and used during the gain calculation phases. 
 

                                                        𝐴𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = [
𝐴 [0]

−𝐶 [0]
]                                             (20) 

 

                                                            𝐵𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = [
𝐵
[0]]

                                                  (21) 

 
 
 
 
Controller Design with Linear Quadratic Regulator 
 
An LQR controller is used to stabilize the system and the optimal controller gain is obtained by 
minimizing the cost function given in Equation 22. 
 

                                                              𝐽 =  
1

2
∫ (𝑥𝐵

𝑇𝑄𝑥𝐵 + 𝑢𝑏
𝑇𝑅𝑢𝑏)𝑑𝑡

∞

0
                                                      (22) 

 
The weight matrices Q and R are chosen as shown in Equations 23–24, respectively. 
 

                                                             𝑄 =

[
 
 
 
 
 
10 0 0
0 1 0
0 0 100

  
0  0  0
0  0  0
0  0  0

0 0   0
0 0   0
0 0   0

  1 0 0
  0 10 0
  0 0 1]

 
 
 
 
 

                                                           (23) 

 

                                                                       𝑅 = [
0.001 0

0 0.001
]                                                                       (24) 
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The gain matrix is obtained as shown in Equation 25. 
 

𝐾 = [
−19569.2 −611.3 29060.8    740. 3  2733.7     437.3   −20936.05       5671.26  

239555.4 −8061.8 441170.4 13797.9 33081.1    7992.4 −159794.74 167381.75
] (25) 

 

The values of the first six columns are used as the gain for the inner feedback loop controller, 
which is employed to stabilize the system. Meanwhile, the 7th and 8th column values are used 
as the tracker gain, which is used to track the command inputs. 

The Feedback Gain (𝐾𝑖𝑛𝑛𝑒𝑟) and the Integral Tracker Gain (𝐾𝑖) are calculated as presented in 
Equations 26-27. 

                  𝐾𝑖𝑛𝑛𝑒𝑟 = [
−19569.2    −611.3    29060.8    740. 3 2733.7   437.3 
239555.4 −8061.8 441170.4 13797.9 33081.1 7992.4

]      (26) 

 

                                                          𝐾𝑖 = [
−20936.05 5671.26
−159794.74 167381.75

]                                             (27) 

 
Vertical take-off, hover and forward flight reference inputs are given to the system model that 
is linearized around the hovering condition.  
 
The behavior of the designed system is tested against the disturbances. The disturbances that 
are assumed to act to flapping-wing MAV are applied to the system response, as shown in 
Figure 7. These signals are considered as the influence of the perturbative forces and 
moments acting on the system instead of the sensory noise. The frequencies of the 
disturbance signals are within the bandwidth of the system. The disturbance signals applied to 
the system are shown in Figure 8, and the response of the system to the reference inputs in 
the existence of disturbances is shown in Figure 9. 
 

 
(a)                                                 (b)                                                   (c) 

Figure 8: Disturbance Signals (a) applied to the linear velocity state 𝑥𝑏 (b) applied to the 

linear velocity state 𝑧𝑏 (c) applied to the pitching rate state 𝑞 
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(a)                                                                       (b) 

Figure 9: The behavior of the system when the gain is calculated with the LQR technique (a) 
behavior on the horizontal plane (b) behavior on the vertical plane 

 

 

 
(a)                                                                    (b) 

Figure 10: System's other states' responses when the gain is calculated with the LQR 
technique (a) linear velocity (u) on the 𝑋𝐺-axis, and linear velocity (w) on the 𝑍𝐺-axis (b) body 

pitch angle (𝜃), and body pitch rate (q) 

 

The LQR controller maintained the stability of the flapping-wing MAV model. The system could 
still track the reference inputs when the disturbances are added to the linear and angular 
velocity responses.  
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(a)                                                                        (b)                                                                                    

Figure 11: Response of the LQR Controller (a) Changes in the stroke plane angle (β) (b) 
Changes in the flapping frequency (f)  

 
 
 
 
Controller Design with the Coefficient Diagram Method 
 
The same control configuration presented in Figure 7 is used but with a different tuning method 
called the Coefficient Diagram Method (CMD). The target characteristic equation is obtained 
by solving Equation 28. 
 

                               𝑃𝑚(𝑠) = ∏ 𝛾𝑛−𝑗
𝑗𝑛−1

𝑗=1 𝜏𝑛⁄ [{∑ (∏
1

𝛾
𝑖−𝑗
𝑗

𝑖−1
𝑗=1 )𝑛

𝑖=2 (𝜏𝑠)𝑖} + 𝜏𝑠 + 1]                     (28) 

 

The stability index is chosen as proposed by [Kara, 2004], as shown in Equation 29. 
Calculations are done for the time constant 𝜏 = 1.6. 
                                             

𝛾2 = 𝛾3 = 𝛾4 = 𝛾5 = 𝛾7 = 𝛾7 = 2 
                                                                                                                                             (29) 

𝛾1 = 2.5   
 
When the stability index given in Equation 29 are used to solve Equation 28, the desired 
characteristic equation is obtained as shown in Equation 30.   
                                                                                                                                              
                                              
𝑃𝑚(𝑠) = 0.0000001𝑠8 + 0.00001𝑠7 + 0.0005𝑠6 + 0.0125𝑠5 + 0.15625𝑠4 + 0.97654𝑠3 +
                                                       3.05168𝑠2 + 4.76826𝑠 + 2.98016                                             (30) 

 
 
Gain calculations are done by placing the eigenvalues of the augmented A and B matrices to 
the roots of the characteristic equation given in Equation 30. 
 

           𝐾 = [
233.70    5.5   −536     −17.4 −63    −12    312.5   −655.6

−1275.8 −22.5 2545.8     56.8     314.3   62.7 −1667      3027 
]      (31) 

 

The values of the first six columns are used as the gain for the inner feedback loop controller, 
and the 7th and the 8th column values are used as the tracker gain. The Feedback Gain (𝐾𝑖𝑛𝑛𝑒𝑟) 

and the Integral Tracker Gain (𝐾𝑖) are presented in Equations 32-33 respectively. 
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                              𝐾𝑖𝑛𝑛𝑒𝑟 = [
233.70 5.5 −536 −17.4 −63 −12

−1275.8 −22.5 2545.8 56.8 314.3 62.7
]                       (32) 

 

                                                          𝐾𝑖 = [
312.5 −655.6
−1667 3027

]                                                      (33) 

 
Figure 12 shows the response of the system to the reference inputs in the existence of 
disturbances. The disturbance signals that are presented in Figure 8 are applied to the system. 
The controller system was able to track the position commands.  
 

 
(a)                                                                        (a) 

Figure 12: The behavior of the system when the gain is calculated with the CDM (a) behavior 
on the horizontal plane (b) behavior on the vertical plane 

 
 

 
(a)                                                                      (a) 

Figure 13: System's other states' responses when the gain is calculated with the CDM (a) 
linear velocity (u) on the 𝑋𝐺-axis, and linear velocity (w) on the 𝑍𝐺-axis  (b) body pitch angle 

(θ), and body pitch rate (q) 
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(a)                                                                       (a) 

Figure 14: Response of the controller when the gains are calculated with the CDM (a) 
changes in the stroke plane angle (β) (b) changes in the flapping frequency (f) 

 

 

 

 

 

DISCUSSIONS 
In this section, performances of the two control methods are compared in the means of system 
responses and controller input responses. 
 

 
(a)                                                                       (b) 

Figure 15: System responses with LQR and CMD methods (a) system response in the 
horizontal plane (b) system response in the vertical plane 

 
 

Figure 15 shows the system's responses when the controller gains are calculated with the LQR 
method and the CDM. Steady-state errors arise at the LQR controller response between 0-10, 
20-40, and 50-60 seconds. These are the instants when there is a reference input change. 
However, no significant steady-state error is observed with the CDM controller. The controller 
with the CDM has a faster response to the input changes. On the other hand, the effects of the 
disturbances on the system are observed more clearly with the CDM. As shown in Figure 15b, 
the amplitudes of the impacts of the disturbances are higher with CDM than with LQR. 
 
 
 



 

AIAC-2021-110                                                    Calis, Arikan & Kurtulus 

 

15 

Ankara International Aerospace Conference 
 

 
(a)                                                                         (b) 

Figure 16: Response of the controllers to maintain the stability of the system and to track the 
reference inputs (a) Changes in the stroke plane angle (β) (b) Changes in the flapping 

frequency (f) 

 

Figure 16 shows the controller responses of the two methods. With the CDM, slightly more 
aggressive responses are observed compared to the LQR controller.  
 
 
 

CONCLUSION 
The LQR controller and a controller with CDM are utilized to stabilize a flapping-wing MAV 
system. The employability of this type of controllers is proven for hovering and low speed flights 
in the existence of perturbative inputs. The controller with CDM tracked the position commands 
with better precision than the LQR controller but with a slightly more aggressive input effort. 
By adding integral trackers to the system, the system can track position commands in low-
speed flights. The nonlinear wing model is included in the system, and this way, designing 
controllers and realizing simulations for different cases and objectives are possible. Since a 
flapping-wing MAV system's longitudinal and lateral dynamics are decoupled, by applying a 
similar control strategy also to the lateral dynamics, controlling a flapping-wing MAV in 3-D 
flight is possible. 
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