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ABSTRACT 

This study examines Inertial Navigation System (INS) and Global Navigation Satellite System 
(GNSS) integration with the help of error-state Kalman filter (KF) for guided munitions. Guided 
munitions are relatively cheap solutions for increasing the effect of the unguided bombs. They 
are created with the help of additional sensors to the bomb like INS and GNSS. INS and GNSS 
both have their advantages and disadvantages, and when these two sensors integrated, they 
can offer navigation results with increased accuracy. In this study, a simulation model for the 
guided munition is created first. Then INS/GNSS integration is achieved with the help of error-
state KF equations. Finally, the filtering algorithm is adapted against the spoofing errors in the 
GNSS.   
 

INTRODUCTION 

The purpose of this study is applying Inertial Navigation System (INS) and Global Navigation 
Satellite System (GNSS) integration for a guided munition with the help of error-state Kalman 
filter (KF) and making the KF adaptive for cases of GNSS spoofing. For a guided munition, it 
is important to have precise information about the position, velocity, and attitude. In that way, 
the guided munition can have lower miss distance value. INS is a sensor containing both 
accelerometers and gyroscopes. While accelerometers are measuring the specific forces, 
gyroscopes are measuring the rotational velocities along the body axes of a vehicle. GNSS is 
a satellite-based navigation system provides pseudo-range and pseudo-range rate 
measurements from different satellites. With at least 4 different satellites, a vehicle with a 
GNSS receiver can have its own position and velocity information. INS provides navigation 
results in a higher frequency and higher short-term accuracy. On the other hand, GNSS 
provides navigation results in lower frequency and higher long-term accuracy. INS/GNSS 
integration make use of advantages of both sensors and eliminates the disadvantages of the 
sensors. INS/GNSS integration can be achieved with loosely coupled, tightly coupled or ultra-
tightly coupled methods. These methods differ in measurement types for integration and the 
level of coupling in between the systems [Falco et al., 2017]. If pseudo range and pseudo 
range-rate measurements of the GNSS are converted into position and velocity measurements 
and integrated with INS position, and velocity measurements then it is called loosely coupled 
INS/GNSS integration. If pseudo range and pseudo range-rate measurements directly used in 
estimation with INS position and velocity measurements, then system is tightly coupled. Finally 
with ultra-tightly coupled method, estimated pseudo-range and pseudo range rate are fed back 
to the tracking loop of GNSS receiver [Noureldin et al., 2013].  

 
1MSc. Student in Aerospace Engineering Department, Email: eroglu.nur@metu.edu.tr 
2 Asst. Prof. in Aerospace Engineering Department, Email: esoken@metu.edu.tr  



 
AIAC-2021-1162                               Eroğlu, Söken 

2 

Ankara International Aerospace Conference 
 

Navigation solutions can be obtained by using different estimators such as particle filters and 
KF. Particle filters are advantageous in case of non-Gaussian noise distribution compared to 
KF which is compatible with Gaussian noise distribution case [Ko & Kim, 2012]. KF is a widely 
used estimator in INS/GNSS integration field. It is a two-step filter including both time update 
and measurement update. For the time update part, there needs to be a mathematical model 
of the vehicle. For the measurement update part, available measurements are fed into the 
filter. In KF, system and measurement noises are modelled as zero-mean known covariances 
[Li et al., 2010].  

Different types of KF can be used as an estimator according to the needs and capabilities of 
the system. Linear Kalman filter cannot be used in nonlinear systems since it is an optimal 
estimator for linear systems. Extended Kalman filter (EKF) can be used for nonlinear systems. 
It linearizes the state transition matrix and observation matrix [St-Pierre & Gingras, 2004]. 
When the nonlinearity of the system increases, EKF can diverge or estimate badly. In that 
case, unscented Kalman filter (UKF) can be used. UKF uses Gaussian distribution properties 
and with the help of sigma points it can estimate states from set of points chosen 
deterministically [Vitanov & Aouf, 2014].  

There are many studies about KF applications in aerospace field. Different types of KFs can 
be used for solving different kind of problems. In [Ohlmeyer, 2006], ultra-tightly coupled KF is 
used in the case of GNSS-jamming for a precision guided munition. In some KF applications, 
instead of using full states, error state equations are preferred by making use of small 
perturbation theory. Unlike full-state dynamics, error-state equations are linear and optimal KF 
could be achieved with this approach for an aircraft [Madyastha et al., 2011]. In [Li, 2010], 
adaptive extended KF is used for a land vehicle to estimate the measurement noise. According 
to the measurement noise, measurement matrix is manipulated. In this study, to obtain better 
navigation state estimates, error-state KF is applied for a guided munition. Since guided 
munition has short time of flight, estimation errors caused by linearization does not grow much. 
Error-state KF is preferred due to its lower computational-load compared to nonlinear KF 
algorithms. 

System or measurement model can include unknown statistics and adaptive Kalman filter 
(AKF) can be useful to make the filter tolerant against these unknown statistics. Multiple model 
adaptive estimation (MMAE), covariance matching and covariance scaling methods are some 
ways to make a KF adaptive. In MMAE there are group of KFs with different measurement and 
system noise matrix values [Mohamed & Schwarz, 1998]. All KFs run at the same time and 
according to the obtained estimations algorithm learns which filter has the correct system and 
measurement covariance matrix. In covariance matching technique AKF tries to keep same 
theoretical and actual values of residual or innovation [Maybeck & Siouris, 1982]. Covariance 
scaling method is based on multiplying the covariance matrices with single or multiple scale 
factors calculated with respect to time [Hajiyev & Söken, 2016]. In this study, covariance 
scaling for measurement covariance matrix is applied to identify the errors in GNSS 
measurements and make KF trust less to erroneous measurements. 

 

METHOD 

6-DOF Simulation Model  

For the guided munition, a 6 degree-of-freedom simulation model is created. In the model, 
aerodynamic forces and moments are obtained by considering the gravity, the geometry and 
rotation of the Earth. Accelerations and body angular rates can be obtained from the forces 
and moments acting on the body of the munition as follows: 

𝒂𝑖𝑏
𝑏 = 𝑭𝑏/𝑚 (1) 

�̇�𝑖𝑏
𝑏 = 𝑰𝑏−1

(𝑴𝑏 − 𝝎𝑖𝑏
𝑏  ×  𝑰𝑏𝝎𝑖𝑏

𝑏 ) (2) 

𝝎𝑖𝑏
𝑏 = ∫ �̇�𝑖𝑏

𝑏 (3) 
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𝑰𝑏 = [

𝐼𝑥 −𝐼𝑥𝑦 −𝐼𝑧𝑥
−𝐼𝑥𝑦 𝐼𝑦 −𝐼𝑦𝑧

−𝐼𝑧𝑥 −𝐼𝑦𝑧 𝐼𝑧

] (4) 

Where: 

𝒂𝑖𝑏
𝑏 : body accelerations vector resolved in body coordinate frame 

𝑭𝑏: aerodynamical forces vector acting on the body resolved in body coordinate frame 

𝑚: mass of the munition 

�̇�𝑖𝑏
𝑏 : time rate of change of body angular rates vector resolved in body coordinate frame 

𝑰𝑏: inertia matrix resolved in body coordinate frame 

𝑴𝑏: aerodynamical moments vector  acting on the body resolved in body coordinate system 

𝝎𝑖𝑏
𝑏 : body angular rates vector resolved in body coordinate frame 

 

Guidance 

Proportional navigation guidance law [Shneydor, 2011] is used for creating body acceleration 
commands.  

𝒂𝑐𝑜𝑚
𝑛 = 𝑁𝑃𝑁𝐺

𝒓𝑏𝑡
𝑛 × 𝒗𝑏𝑡

𝑛

𝒓𝑏𝑡
𝑛 . 𝒓𝑏𝑡

𝑛  × 𝒗𝑡𝑏
𝑛 (5) 

𝒂𝑐𝑜𝑚
𝑏 = 𝑪𝑛

𝑏𝒂𝑐𝑜𝑚
𝑛 − 𝒈𝑏 (6) 

Where: 

𝒂𝑐𝑜𝑚
𝑛 : acceleration command vector resolved in navigation coordinate frame 

𝑁𝑃𝑁𝐺: proportional navigation guidance constant (chosen as 3) 

𝒓𝑏𝑡
𝑛 : position vector from body to target resolved in navigation coordinate frame 

𝒗𝑏𝑡
𝑛 : velocity vector from body to target resolved in navigation coordinate frame 

𝒗𝑡𝑏
𝑛 : velocity vector from target to body resolved in navigation coordinate frame 

𝑪𝑛
𝑏 : transformation matrix from NED frame to body frame 

 

Autopilots 

Autopilots are designed for pitch, yaw and roll dynamics separately. Full state-feedback 
structure is used and to decrease the steady state error and an integration block is added to 
the system for pitch and yaw autopilots. For pitch and yaw dynamics, body acceleration is 
controlled. On the other hand, roll autopilot tries to make body roll angle zero. The state-
feedback autopilot structure with integration block  is given in Figure 1. 

 

 

Figure 1: The State Feedback Autopilot Structure  
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IMU and GNSS Modeling 

Body accelerations and angular velocities of the munition is obtained by using 6-DOF model. 
To model the IMU, bias and noise terms are added to the accelerations and angular velocities. 
A tactical grade IMU is chosen for this model. 

𝒂𝑖𝑏
𝑏,𝐼𝑀𝑈 = 𝒂𝑖𝑏

𝑏 + 𝒃𝑎𝑐𝑐 + 𝒏acc (7) 

𝝎𝑖𝑏
𝑏,𝐼𝑀𝑈 = 𝝎𝑖𝑏

𝑏 + 𝒃𝑔𝑦𝑟 + 𝒏𝑔𝑦𝑟 (8) 

Where: 

𝒂𝑖𝑏
𝑏,𝐼𝑀𝑈: body accelerations vector measured by IMU resolved in body coordinate frame 

𝝎𝑖𝑏
𝑏,𝐼𝑀𝑈: body angular rates vector measured by IMU resolved in body coordinate 

𝒃𝑎𝑐𝑐: accelerometer bias vector 

𝒃𝑔𝑦𝑟: gyroscope bias vector 

𝒏acc: accelerometer noise vector 

𝒏𝑔𝑦𝑟: gyroscope noise vector 

 

In this study, GNSS modeling is achieved by using real GNSS measurements from 4 GNSS 
satellites, 2 GLONASS satellites and 2 GALILEO satellites. To obtain GNSS position and 
velocitiy estimations weighted least squares algorithm is used. GNSS measurements include 
pseudo range and pseudo range-rate measurements. 

 

Equations for GNSS model is adapted from [Noureldin et al., 2013]. The difference between 
linearized pseudo-range measurements and estimated pseudo-range: 

 

𝝆𝐺𝑁𝑆𝑆 − 𝝆𝐺𝑁𝑆𝑆,𝑒𝑠𝑡 =
(𝑥𝑒𝑠𝑡 − 𝑥𝐺𝑁𝑆𝑆)(𝑥 − 𝑥𝑒𝑠𝑡) + (𝑦𝑒𝑠𝑡 − 𝑦𝐺𝑁𝑆𝑆)(𝑦 − 𝑦𝑒𝑠𝑡) + (𝑧𝑒𝑠𝑡 − 𝑧𝐺𝑁𝑆𝑆)(𝑧 − 𝑧𝑒𝑠𝑡)

√(𝑥𝑒𝑠𝑡 − 𝑥𝐺𝑁𝑆𝑆)
2 + (𝑦𝑒𝑠𝑡 − 𝑦𝐺𝑁𝑆𝑆)

2 + (𝑧𝑒𝑠𝑡 − 𝑧𝐺𝑁𝑆𝑆)
2

(9) 

+𝑏𝑟 − 𝑏𝑟 , 𝑒𝑠𝑡 + 𝜀�̃�  

𝛿𝝆𝐺𝑁𝑆𝑆 = 𝟏𝑒𝑠𝑡
𝑇 𝛿𝒙 + 𝛿𝑏𝑟 + 𝜀�̃� (10) 

Where: 

𝝆𝐺𝑁𝑆𝑆: measured pseudo-range between the satellite and the receiver 

𝝆𝐺𝑁𝑆𝑆,𝑒𝑠𝑡 : estimated pseudo-range between the satellite and the receiver 

[𝑥 𝑦 𝑧]: receiver position vector resolved in ECEF 

[𝑥𝑒𝑠𝑡 𝑦𝑒𝑠𝑡 𝑧𝑒𝑠𝑡]: estimated receiver position vector resolved in ECEF 

[𝑥𝐺𝑁𝑆𝑆 𝑦𝐺𝑁𝑆𝑆 𝑧𝐺𝑁𝑆𝑆]: satellite position vector resolved in ECEF 

𝑏𝑟: errror in range due to clock bias 

𝑏𝑟,𝑒𝑠𝑡: estimated error in range due to clock bias 

𝜀�̃�: error in the range due to various sources 

𝟏𝑒𝑠𝑡: estimated line-of-sight unit vector 

 

The difference between linearized pseudo-range-rate measurements and estimated pseudo-
range-rate: 

�̇�𝐺𝑁𝑆𝑆 − �̇�𝐺𝑁𝑆𝑆,𝑒𝑠𝑡 =
(𝑥𝑒𝑠𝑡 − 𝑥𝐺𝑁𝑆𝑆)(𝑣𝑥 − 𝑣𝑥𝑒𝑠𝑡) + (𝑦

𝑒𝑠𝑡
− 𝑦

𝐺𝑁𝑆𝑆
) (𝑣𝑦 − 𝑣𝑦𝑒𝑠𝑡

) + (𝑧𝑒𝑠𝑡 − 𝑧𝐺𝑁𝑆𝑆)(𝑣𝑧 − 𝑣𝑧𝑒𝑠𝑡)

√(𝑥𝑒𝑠𝑡 − 𝑥𝐺𝑁𝑆𝑆)
2 + (𝑦

𝑒𝑠𝑡
− 𝑦

𝐺𝑁𝑆𝑆
)
2
+ (𝑧𝑒𝑠𝑡 − 𝑧𝐺𝑁𝑆𝑆)

2

(11) 

+𝑑𝑟 − 𝑑𝑟 , 𝑒𝑠𝑡 + �̃��̇� 

𝛿�̇�𝐺𝑁𝑆𝑆 = 𝟏𝑒𝑠𝑡
𝑇 𝛿𝒙 + 𝛿𝑑𝑟 + 𝜀�̇̃� (12) 

 



 
AIAC-2021-1162                               Eroğlu, Söken 

5 

Ankara International Aerospace Conference 
 

Where: 

𝝆𝐺𝑁𝑆𝑆: measured pseudo-range-rate between the satellite and the receiver 

𝝆𝐺𝑁𝑆𝑆,𝑒𝑠𝑡 : estimated pseudo-range-rate between the satellite and the receiver 

[𝑣𝑥 𝑣𝑦 𝑣𝑧]: receiver velocity vector resolved in ECEF 

[𝑣𝑥𝑒𝑠𝑡
𝑣𝑦𝑒𝑠𝑡

𝑣𝑧𝑒𝑠𝑡]: estimated receiver velocity vector resolved in ECEF 

𝑑𝑟: errror in range-rate due to clock drift 

𝑑𝑟,𝑒𝑠𝑡: estimated error in range-rate due to clock drift 

𝜀�̇̃�: error in the range-rate due to various sources 

 

To solve for position and velocity estimations simultaneously, pseudo range and range-rate 
difference equations can be written in matrix form: 

[
 
 
 
 
 
𝛿𝝆1

⋮
𝛿𝝆8

𝛿�̇�1

⋮
𝛿�̇�8]

 
 
 
 
 

=

[
 
 
 
 
 
(𝟏𝑒𝑠𝑡

1 )𝑇 1 0 0
⋮ ⋮ ⋮ ⋮

(𝟏𝑒𝑠𝑡
8 )𝑇 1 0 0

0 0 (𝟏𝑒𝑠𝑡
1 )𝑇 1

⋮ ⋮ ⋮ ⋮
0 0 (𝟏𝑒𝑠𝑡

8 )𝑇 1]
 
 
 
 
 

[

𝛿𝒙
𝛿𝑏𝑟

𝛿𝒗
𝛿𝑑𝑟

] +

[
 
 
 
 
 
 
𝜀̃1𝜌

⋮
𝜀̃8𝜌

𝜀̃1�̇�

⋮
𝜀̃8�̇�]

 
 
 
 
 
 

(13) 

𝛿𝒛 = 𝑮𝛿𝑺 + 𝜺 (14) 

Where: 

𝑮: geometry matrix 

 

The weighted least squares algorithm is as follows: 

𝛿�̂� = (𝑮𝑇𝑹−1𝑮)𝑮𝑹−1𝛿𝒛 (15) 

𝑹 = 𝑑𝑖𝑎𝑔(𝜎1
2 ⋯ 𝜎𝑛

2) (16) 

Where: 

𝑹: diagonal matrice consistig standard deviations of GNSS’s 

 

Estimated states: 

𝒙 = 𝒙𝑒𝑠𝑡 + 𝛿𝒙 (17) 

�̂� = 𝑏𝑒𝑠𝑡 + 𝛿�̂� (18) 

�̂� = 𝒗𝑒𝑠𝑡 + 𝛿�̂� (19) 

�̂� = 𝑑𝑒𝑠𝑡 + 𝛿�̂� (20) 

 

Error-State Kalman Filter 

The error-state equations are given for an INS/GNSS data fusion. Before KF equations, INS 
mechanization equations are given in [Noureldin et al., 2013; Zhang et al., 2019]. Note that 
some assumptions are made here for the values too small, like values including the square of 
the Earth’s radii. 

INS Position Mechanization: 

𝛿�̇�𝑛 = 𝑭𝑟𝛿𝒗𝑛 (21) 

𝑭𝑟 =

[
 
 
 
 0

1

𝑅𝑀 + ℎ
0

1

(𝑅𝑁 + ℎ) cos𝜑
0 0

0 0 1]
 
 
 
 

(22) 

𝛿�̇�𝑛 = [𝛿�̇� 𝛿�̇� 𝛿ℎ̇]𝑇 (23) 

𝛿𝒗𝑛 = [𝛿𝑣𝐸 𝛿𝑣𝑁 𝛿𝑣𝑈]𝑇 (24) 
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Where: 

𝛿�̇�𝑛: time rate of change of position error vector resolved in navigation coordinate frame 

𝛿𝒗𝑛: velocity error vector resolved in navigation coordinate frame 

𝑅𝑁: normal radius of curvature of Earth 

𝑅𝑀: meridian radius of curvature of Earth 

INS Velocity Mechanization: 

𝛿�̇�𝑛 = 𝑠𝑘𝑒𝑤(𝒇𝑖𝑏
𝑛 )𝛿𝜶𝑛 + 𝑪𝑏

𝑛𝛿𝒇𝑖𝑏
𝑏 (25) 

𝑠𝑘𝑒𝑤(𝒇𝑖𝑏
𝑛 ) = [

0 𝑓𝑈 −𝑓𝑁
−𝑓𝑈 0 𝑓𝐸
𝑓𝑁 −𝑓𝐸 0

] (26) 

𝛿𝒇𝑖𝑏
𝑏 = [𝑏𝑎𝑐𝑐 𝑏𝑎𝑐𝑐 𝑏𝑎𝑐𝑐]

𝑇 (27) 

Where: 

𝛿�̇�𝑛: time rate of change of velocity error vector resolved in navigation coordinate frame 

𝛿𝜶𝑛: attitude vector resolved in navigation coordinate frame 

𝒇𝑖𝑏
𝑛 : specific force of the body resolved in navigation coordinate frame 

𝒃𝑎𝑐𝑐: accelerometer bias 

INS Attitude Mechanization: 

𝛿�̇�𝑛 = 𝑭𝑣𝛿𝒗𝑛 + 𝑪𝑏
𝑛𝛿𝝎𝑖𝑏

𝑏 (28) 

𝑭𝛼 =

[
 
 
 
 
 
 0

−1

𝑅𝑁 + ℎ
0

1

𝑅𝑀 + ℎ
0 0

−
tan𝜑

𝑅𝑁 + ℎ
0 0

]
 
 
 
 
 
 

(29) 

𝛿𝝎𝑖𝑏
𝑏 = [𝑑𝑔𝑦𝑟 𝑑𝑔𝑦𝑟 𝑑𝑔𝑦𝑟]𝑇 (30) 

Where: 

𝛿�̇�𝑛: time rate of change of attitude vector resolved in navigation coordinate frame 

𝑑𝑔𝑦𝑟: drift of gyroscope  

 

KF Time-Update: 

𝛿�̂�− = (𝑰 + 𝑭𝑘Δ𝑡)𝛿�̂�𝑘−1 (31) 

𝑷𝑘+1
− = (𝑰 + 𝑭𝑘Δ𝑡)𝑷𝑘(𝑰 + 𝑭𝑘Δ𝑡)𝑇 + 𝑸𝑘 (32) 

Where: 

𝛿�̂�−: predicted error-state vector 

𝑭𝑘: dynamic coefficient matrix 

𝑷𝑘+1
−1 : predicted covariance matrix 

𝑸𝑘: process noise covariance matrix 

 

KF Measurement Update: 

𝑲𝑘 = 𝑷𝑘
−𝑯𝑘

𝑇(𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇 + 𝑹𝑘)
−1

(33) 

𝛿�̂�𝑘 = 𝛿�̂�𝑘
− + 𝑲𝑘(𝛿𝒛𝑘 − 𝑯𝑘𝛿�̂�𝑘

−) (34) 

𝛿𝒛𝑘 = [
𝒓𝐼𝑁𝑆 − 𝒓𝐺𝑃𝑆

𝒗𝐼𝑁𝑆 − 𝒗𝐺𝑃𝑆
] (35) 

𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘
− (36) 
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Where: 

𝑲𝑘: Kalman gain 

𝛿�̂�𝑘: corrected error-state estimate vector 

𝑷𝑘: corrected covariance matrix 

𝑹𝑘: measurement noise covariance matrix 
𝑯𝑘: measurement matrix 
 

Adaptive Error-State Kalman Filter 

GNSS measurmements can provide position and velocity estimations in an accurate way. 
However GNSS receivers can be exposed to spoofing. Spoofing is transmitting false signals 
so that the platform which has GNSS receiver uses as true measurements [Psiaki & 
Humphreys, 2016]. There are many ways to deal with these corruptions. One way is making 
Kalman filter adaptive. Filter can undertstand that GNSS measurements are corrupted and 
measurements should not be used. Since GNSS corruptions are related with measurement 
update part of the filter, measurement noise covariance matrix (𝑹𝒌) can be adapted. Filter can 
understand the corrupted measurement by using a statistical function 𝜷𝒌 [Hajiyev & Söken, 
2017]. Without the corrupted measurement the statistical function has to obey the square of 
normal distribution and stay below a certain threshold.In case of a faulty measurment 𝜷𝒌 value 
increases drastically. If this value is higher than a spesific value found from chi-square table 
then the measurement noise covariance matrix can be adapted by using single scale factor 
(SSF) and multiple scale-factor (MSF) approaches [Hajiyev & Söken, 2016]. 

𝛽𝑘 = �̃�𝑘
𝑇(𝑯𝑘𝑷𝑘|𝑘−1𝑯𝑘

𝑇 + 𝑹𝑘)
−1

�̃�𝑘 (37)  

�̃�𝑘 = 𝒚𝑘 − 𝑯𝑘�̂�𝑘|𝑘−1 (38) 
Where: 
𝛽𝑘: failure detection statistical function 
�̃�𝑘: innovation 
SSF case: 

𝑆𝑘 =
�̃�𝑘

𝑇�̃�𝑘 − 𝑡𝑟{𝑯𝑘𝑷𝑘|𝑘−1𝑯𝑘
𝑇} 

𝑡𝑟{𝑹𝑘}
(39) 

𝑹𝑘 = 𝑆𝑘𝑹𝑘 (40) 
Where: 
𝑆𝑘: scale factor value 
MSF case: 

𝑺𝑘 = (�̃�𝑘�̃�𝑘
𝑇 − 𝑯𝑘𝑷𝑘|𝑘−1𝑯𝑘

𝑇)𝑹𝑘
−1 (41) 

𝑹𝑘 = 𝑺𝑘𝑹𝑘 (42) 
Where: 
𝑺𝑘: scale factor matrix 

 

RESULTS 

The simulation model is created, and with the help of equations of motions and the navigation 
results are obtained. Navigation errors will make the munition arrive at a different point then 
the target position. To solve this problem, INS and GNSS fusion is implemented with the help 
of error-state KF. The error-state KF equations will help to improve the position and velocity 
estimates. Note that as an example scenario the target is placed at 𝒙𝑡

𝑛 = [10000 500 0] m, 

and the munition is released from 𝒙𝑏
𝑛 = [0 0 6000] m. 
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Figure 2: Guided Munition Trajectories 

Figure 2 shows a no-error modelled case and guided munition can arrive at the target 
position succesfully. Navigation errors are calculated by finding the difference between 
the no-error case and KF or AKF outputs. 
 
In this study, two different cases are examined. In the first case, INS and GNSS 
integration for the munition is achieved with error-state Kalman filter. In the second 
case, for some part of the flight the munition is exposed to GNSS spoofing and GNSS 
provides erroneous solution. In this situation error-state Kalman filter is modified and 
adapted against the spoofing errors.  

 

Figure 3: Position Errors for KF and GNSS 
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Figure 4: Velocity Errors for KF and GNSS 

Figure 3 and Figure 4 illustrate the position and velocity errors obtained with KF and 
GNSS only. As can be observed from the Figure 3 and Figure 4, unlike INS only case; 
position and velocity errors are bounded. The reason of this improvement is that GNSS 
provides navigation solutions with more accuracy. KF make use of this accurate GNSS 
navigation solutions and by integrating with the INS navigation solutions more 
accurate, bounded and continious position and velocity solution can be obtained. 
 

 

Figure 5: Position Errors In Case of GNSS Spoofing 
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Figure 6: Velocity Errors In Case of GNSS Spoofing 

Adaptive Kalman filter is applied to examine a case where GNSS results are not 
reliable. Figure 5 and Figure 6 demonstrate position and velocity errors in case of 
GNSS spoofing. During flight 10 s of GNSS spoofing is modelled. The position and 
velocity values obtained cannot be used, since the error between real value and 
estimated value is quite high. AKF implementation helps with decreasing the position 
and velocity errors. 
 

 

Figure 7: Position Errors Comparison 
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Figure 8: Position Errors Comparison 

In Figure 7, KF position errors without GNSS spoofing and AKF with SSF with GNSS 
spoofing are given. Even though there is an increase in position errors, compared to 
the Figure 5, position errors decreased a lot. When the AKF is not used, maximum 
latitude error is 15°, maximum longitude error is 20° and maximum altitude error is 
4000 m. However with SSF-AKF all position errors are very close to those for no-GNSS 
spoofing case. Figure 8 shows additionally AKF with MSF. Position errors with MSF-
AKF are less than no adaptive case however more than those for the SSF-AKF.  
 
 
 

 

Figure 9: Velocity Errors Comparison 

Figure 9 interprets the velocity errors with no-GNSS spoofing case and SSF-KF and 
MSF-KF with GNSS spoofing case. Compared to the Figure 6, which velocity errors 
reaches 200 m/s with the adaptation of KF velocity errors decrease to 4 m/s. Velocity 
errors of MSF-AKF is slightly less than SSF-AKF. 
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CONCLUSION 

This study aims to represent an application of KF for a guided munition to have 
improved navigation solutions. KF application is achieved for INS/GNSS integration 
and AKF application succeeded to have better navigation solution in case of GNSS 
spoofing. For AKF, two different methods are investigated which are SSF-AKF and 
MSF-AKF. Both of these methods work for decreasing the errors in navigation 
solutions. SSF-AKF has much lower position errors compared to MSF-AKF. On the 
other hand, MSF-AKF has slightly lower velocity errors compared to SSF-AKF. 
According to the need of the air vehicle applied one of the AKF methods can be 
chosen. In this scenario of the guided munition SSF-KF seems to be more 
advantageous. However, to choose the appropriate method for guided munition more 
analysis should be done. 
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