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ABSTRACT

One of the main design variables in a conceptual design phase is the airfoil geometry. Its proper-
ties influence both aerodynamic and structural characteristics of the resultant air vehicle which
affect flight performance and safety. Classical methods use a database of airfoils and choose
the best performing airfoil according to design requirements by analyzing each airfoil’s aerody-
namic properties via numerical methods, such as (high-order) finite element methods (CFD),
or (low-order) vorticity stream function panel method. In this study, we propose to replace the
existing numerical method with a learned model, to improve the computation time. We intro-
duced a geometric parametrization method that is used to generate the input feature trajectory
to the support vector machine based regression model (SVR). Preliminary results showed that
sectional lift, drag, and pitching moment predictions by the model can be obtained faster than
20ms with an accuracy of over 0.98 compared to ground truth (Xfoil). Finally, the utility of the
airfoil selection method has been demonstrated for two different use cases, each converging less
than four seconds for any typical performance metric such as minimum drag, or maximum lift
to drag ratio. Related database and code can be reached from :

https://github.com/mrtbrnz/airfoil selector/

INTRODUCTION

The aerodynamic performance of a wing/airfoil is of great importance for air vehicle design. In
general, the selection of the proper airfoil that meets the design requirements is based on aerody-
namic performance indications evaluated by computational fluid dynamics (CFD) or wind tunnel
experiments. Although selecting the best performing airfoil using these methods leads to reliable
and accurate solutions, these methods are not always cost-effective and easy to implement. This
work aims to provide a practical and computationally cost-effective tool that could be used to select
an airfoil geometry that meets the design requirements. This proposed tool is believed to be useful
especially for those who are concerned about UAV design in terms of saving time. Several prediction
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models have been developed with the increased popularity of machine learning methods. Most of
the recent studies regarding the prediction of 2D airfoil design and/or aerodynamic performance, use
methods based on deep learning models. These studies differ from one another, depending on the
predicted data, the prediction model, and the types and number of input and output data they use.
Most of them target to predict the aerodynamic coefficients through airfoil data and flow conditions.
Some use the geometric airfoil data as an input [Jihong et al., 2010] whereas others use the airfoil
images as input data for the prediction models since it is more convenient for the model they use
[Chen et al., 2020; Sekar et al., 2019; Yilmaz and German, 2017; Zhang et al., 2018]. The former
method is known as the parametric method while the latter is referred to as the graphical method.
Both methods have pros and cons depending on the model.

[Chen et al., 2020] used a prediction model based on a convolutional neural network (CNN) to
predict the pitch-moment, drag, and lift coefficients by feeding the airfoil images directly into the
prediction model as input. [Yilmaz and German, 2017] developed an approach based on CNN to
predict the airfoil pressure coefficient, and the mapping between the input and output data set lead
to an accuracy of more than 80%. [Zhang et al., 2018] used CNN prediction model to predict the lift
coefficient through airfoil image and flow conditions used as input. [Zelong et al., 2018] also used
CNN to predict aerodynamic coefficients of the airfoils by using a signed distance function (SDF)
instead of the conventional Kriging surrogate model.

[Sekar et al., 2019] performed a deep CNN to predict the airfoil shape by using the pressure-
coefficient distribution as an input in the training phase. In the testing phase, they gave a new
pressure-coefficient distribution to the CNN model and generated an airfoil shape that was very
close to the related airfoil. However, they used only Cp distribution generated at a fixed angle of
attack and Reynolds number as an input.

Besides the aforementioned studies, some studies focus on generative models. [Wang et al., 2021]
used a Generative Adversarial Network (GAN) combined with Variational Autoencoder (VAE) and
trained their model with gradient-based technique. VAE trains the model to explicitly encode an
existing airfoil shape into a low dimensional feature domain while GAN leads to the generation of
high-quality new airfoils from random noise [Larsen et al., 2015].

[Karali et al., 2020] developed a deep learning-based surrogate model to predict non-linear aerody-
namic characteristics of UAVs. They trained their model using a data set composed of wing-tail geo-
metric parameters and performance coefficients which they previously generated with the non-linear
lifting line method. Their results indicate a successful prediction of the maximum lift coefficient,
stall angle of attack, total drag, and pitching moment coefficients.

In this paper, we propose an efficient 2D airfoil analysis method based on machine learning which
can predict the aerodynamic characteristics of a given airfoil geometry under 20ms with an accuracy
of over 0.98 compared to ground truth (Xfoil).

The main contributions of the present work can be summarized as follows:

• Processed airfoil database is shared publicly (open-source)

• Selection of 2D airfoil is automated with a simple computer program

• An SVR based surrogate model is presented with a small number of airfoils

• The core model has been trained on a database of pre-calculated airfoils and achieves an
accuracy of over 98% on predicting the aerodynamic coefficients Cl, Cd, and Cm of a 2D
airfoil.
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PROPOSED METHOD

Airfoil selection is an intermediate step during the conceptual design of air vehicles. Classical
methods end up with a specific set of design requirements where a database of existing airfoils has
to be searched and analyzed to find the best performing geometry that satisfies the requirements
and minimize the cost function. This procedure is briefly shown in Figure 1. Here, one can calculate
the aerodynamic coefficients of existing airfoils at a given Reynolds number and angle of attack
using a software such as XFOIL and choose the best performing airfoil based on these computations.
This process is computationally expensive and makes it less favorable during the conceptual design
phase. Our goal is to improve this bottleneck with a faster data-driven prediction method that uses
a pre-calculated airfoil performance database at different Reynolds numbers and angles of attack.

Therefore, we developed an SVR-based prediction method that would substitute for XFOIL in Fig-
ure 1.

Airfoil 
Database

XFOIL
Airfoil 1 : CL  CD  CM  CP ...
Airfoil 2 : CL  CD  CM  CP ...
Airfoil 3 : CL  CD  CM  CP ...
Airfoil 4 : CL  CD  CM  CP ...

....
｝

Select the Best 
Performing

Airfoil

Flow Conditions
Design 

Requirements
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C_L
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Figure 1: Simplified framework of the airfoil selection during a traditional conceptual design phase.

The proposed method is based on surrogate modeling which is a special case of supervised machine
learning. Surrogate modeling builds up a statistical model by assembling the design parameters
namely the inputs and their corresponding outputs into a training data set.

Surrogate modeling can substitute for CFD simulations in determining/predicting aerodynamic co-
efficients of an airfoil which would otherwise be computationally expensive and in carrying out
optimizations, uncertainty quantification and/or sensitivity analysis.

Mostly used surrogate modeling approaches are polynomial response surfaces; kriging; gradient-
enhanced kriging (GEK); radial basis function; support vector machines; space mapping, artificial
neural networks, and Bayesian networks. In this study, we used the SVR model for surrogate
modeling.

Database Generation

We used XFOIL to create the aforementioned pre-calculated database for the aerodynamic coeffi-
cients of airfoils at Reynolds number ranging from 105 to 6x105 and at the angle of attack values
ranging from 0 to 12 degrees. The airfoil coordinates are obtained from UIUC Airfoil database [Selig,
M., 1996]. Figure 2 shows arbitrarily selected airfoil geometries taken from the airfoil database that
are used in this work. The main difficulties during this tedious work of database generation were
mainly coming from geometric problems and sparsity of the coordinates that define the airfoil cur-
vature. Each airfoil is checked for file format issues, and also for the existence of repeated internal
point coordinates. Then, the sparse representation is corrected using XFOIL’s CADD function and
geometry is paneled with a higher number of points, i.e 160 points in our case. Later we used a
parallel batch run to analyze the aerodynamic performance of each airfoil at the defined envelope
of Reynolds numbers and angle of attack values. Finally, all calculated values are stored in separate
directories to be later used on the training of the regression model.
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Figure 2: A random sample of airfoil geometries taken from the used airfoil-database [Selig, M.,
1996].

Input Trajectory Generation

An alternative way of representing the airfoil geometry and input variables (i.e Reynolds number
(Re), and angle of attack (α)) for our regression model is to use direct coordinate trajectory. Each
airfoil geometry is considered as a combination of upper and lower curves. These curves are re-
sampled with a cosine distribution and then concatenated as depicted in Figure 3. This method has
the advantage of representing the airfoil by using only the y-coordinates as every x-coordinate in
the database will be identical after the manipulation. In order to add the required input variables,
the concatenated geometry vector is extended by adding Reynolds number and angle of attack to
the end. The generated feature trajectory is then scaled as the Reynolds number and the geometry
coordinates have a big variation. StandartScaler method is used from the Scikitlearn library The
input feature trajectory generation details of the proposed learning method are illustrated in Figure 3.

SVR 
Model

Cl
Cd
CmStandart

ScalerGenerated Feature Trajectory

Sampled with 
cosine distribution

Re
⍺

Transformed to equally 
distributed in X

Figure 3: Input feature trajectory generation details of the proposed learning method.

Once, we had all the input data including airfoil geometry and flow conditions, we started training
the SVR model for each variable.

Support Vector Machine Regression SVR

SVR is a part of Support Vector Machine (SVM) which is a machine learning tool for classification
and regression. SVM is used as a binary classification, whereas SVR is used to predict a value of a
continuous variable [Vapnik, V.N., 2019].

SVR performs a linear regression in higher dimensional space. It is a very useful and flexible tool.
Also, it is superior to simple linear regression since it can capture non-linearity. In simple regression,
the goal is to minimize the error between the data and prediction. However, in SVR, the aim is to
keep the error within a certain threshold. Further detailed information regarding SVR algorithm can
be found in [Vapnik, V.N., 2019; Awad and Khanna, 2015].
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PRELIMINARY RESULTS AND DISCUSSION

Preliminary results clearly show the feasibility of the proposed method. The trained SVR algorithm
can predict both sectional lift Cl, drag Cd, and moment Cm coefficients within acceptable error
bounds.

SVR Model Training

The model is trained over a small set of 33 airfoils for various Reynolds numbers (100k - 600k),
and angle of attack values (0-12 deg). Radial basis function kernel is used in the algorithm with a
gamma coefficient of 0.1. Regularization parameter C is selected to be 1. Epsilon parameter which
specifies the epsilon-tube within which no penalty is associated with the points is selected as 0.001.

Aerodynamic Coefficient Prediction Capability

Sectional Lift Coefficient Cl: The trained model predicts the sectional lift coefficient values with
a very little discrepancy with respect to XFOIL calculations in the linear regime. The obtained
accuracy for lift coefficient prediction over validation set is 0.98. The fitting capacity for a randomly
chosen airfoil from the database can be seen in Figure 4.
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Figure 4: Prediction performance of the learned model on lift coefficient for varying Reynolds
number.

In some cases, i.e. for different airfoils, the model can neither capture the stall behavior correctly
nor the correct angle of attack where the maximum lift coefficient Clmax is obtained, however, the
value of Clmax is obtained correctly, which is an important issue for design considerations. Those
behavior are shown in Figure 5 at different Reynolds numbers.
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Figure 5: Prediction performance of the learned model on lift coefficient for varying Reynolds
number.

Sectional Drag Coefficient Cd: The obtained root mean squared error for drag coefficient prediction
accuracy over validation set is 0.98. The representation quality of the model on predicting drag
coefficient is visible in Figure 6. It is important to mention that to clearly show only the drag
coefficient prediction in the figure, the corresponding lift coefficients are taken from label data.

Sectional Moment Coefficient Cm: Finally, for the sectional moment coefficient prediction, the ac-
curacy obtained over the validation set resulted in 0.99, as it can be seen in Figure 7.

5
Ankara International Aerospace Conference



AIAC-2021-103 Durmaz, Erzincanli & Bronz

0.02 0.04
Drag Coefficient Cd [-]

0.6

0.8

1.0

1.2

1.4
L

if
t

C
o
effi

ci
en

t
C
l

[-
]

Re = 200k

XFOIL

Predicted

0.01 0.02 0.03 0.04 0.05
Drag Coefficient Cd [-]

0.6

0.8

1.0

1.2

1.4

L
if

t
C

o
effi

ci
en

t
C
l

[-
]

Re = 300k

XFOIL

Predicted

0.01 0.02 0.03 0.04
Drag Coefficient Cd [-]

0.6

0.8

1.0

1.2

1.4

L
if

t
C

o
effi

ci
en

t
C
l

[-
]

Re = 400k

XFOIL

Predicted

0.01 0.02 0.03 0.04
Drag Coefficient Cd [-]

0.6

0.8

1.0

1.2

1.4

L
if

t
C

o
effi

ci
en

t
C
l

[-
]

Re = 500k

XFOIL

Predicted

Figure 6: Prediction performance of the learned model on drag coefficient for varying Reynolds
number.
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Figure 7: Prediction performance of the learned model on moment coefficient for varying Reynolds
number.

DESIGN CASE STUDY

In order to demonstrate the utility of the proposed airfoil selection method, two design cases are
selected in this section. The examples are taken from a previous study [Bronz, M. , 2012] where
two different aircraft configurations, with identical wing span and weight, were evaluated for their
performance on the same mission profile. It is important to note that the selected mission profile
does not have any strong relation with the existing projects. In these case studies, we will assume
that the main design parameters of the vehicles, such as wing span, surface area, total weight have
already been selected and fixed. The concentration will only be on the selection of the wing airfoil
geometry for the given mission profile.

Conventional Configuration
Wingspan m 1.0
Surface Area m2 0.156
Weight kg 0.6

Flying-Wing Configuration
Wingspan m 1.0
Surface Area m2 0.176
Weight kg 0.6

Figure 8: Two example cases that are taken from existing Wind tunnel models of the Conven-
tional and Flying-Wing aircraft configurations Bronz, M. [2012].
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Airfoil for a Conventional Aircraft Configuration

Conventional aircraft configuration usually takes advantage of its horizontal tail in order to use more
efficient cambered airfoils, and any restriction on the moment coefficient of the selected airfoil can
be relaxed. Using the conventional aircraft design specification shown in Figure 8, the required lift
coefficient and Reynolds number are calculated to be Cl = 0.427 and Re = 124k, respectively. It
is assumed that the aircraft will be designed for long range mission, therefore increasing the lift to
drag ratio (Cl/Cd) is the main selection criteria during the airfoil selection.

Airfoil Name Cl Cd Cm Cl/Cd

AG27 0.427 0.0104 -0.073 41.22
AG12 0.427 0.0111 -0.046 38.45
AG16 0.427 0.0112 -0.054 38.10
AG36 0.427 0.0119 -0.054 35.73
RG14 0.427 0.0121 -0.050 35.27

Table 1: The output of the airfoil selection program for the conventional aircraft configuration.

Table 1 shows the resultant best five airfoils selected by the presented method among the predefined
airfoil database of 33 airfoils. As it has been mentioned in the previous sections, instead of analysing
the airfoils by a numerical method such as Xfoil, the method used the trained surrogate model in
order to evaluate the performance of each airfoil for the given design conditions (Re, Cl) in less
than 4s on a personal laptop computer. For demonstration purpose, the selection criteria has been
defined simply to be max Cl/Cd. A more complex selection criteria could have been defined which
includes maximum thickness of the airfoil, or relations to other aerodynamic coefficients e.g. Cm if
it is necessary.

Airfoil for a Flying-Wing (Tail-less) Aircraft Configuration

Selection criteria for the airfoils on Flying-Wing configuration is modified to include the importance of
moment coefficient Cm by simply multiplying the maximum lift to drag ratio with moment coefficient
(CmCl/Cd). Using the conventional aircraft design specification shown in Figure 8, the required lift
coefficient and Reynolds number are calculated to be Cl = 0.27 and Re = 145k, respectively.

Airfoil Name Cl Cd Cm Cl/Cd

S8025 0.270 0.0109 -0.005 24.73
E472 0.273 0.0135 -0.018 20.18
S8036 0.273 0.0192 -0.035 14.17
MH45 0.270 0.0118 -0.023 22.85
MH60 0.270 0.0126 -0.027 21.41

Table 2: The output of the airfoil selection program for the flying-wing aircraft configuration.

Table 2 shows the selected best five airfoils by the method from the same airfoil database as the
conventional aircraft configuration example described above. It can be seen that naively defined
selection criteria resulted the airfoil S8036 to out-perform airfoils MH45 and MH60 although they
have higher Cl/Cd values.This known behavior shows the importance of selection criteria definition,
and can be easily corrected for example by modifying the selection criteria as filtering out any airfoil
with Cm < 0.04 while maximizing the Cl/Cd.

Take-Away

As it can be seen from the results shown in Table 3 that the definition of the selection criteria and
Cm filtering have a big effect on the final airfoil list, therefore it has to be done more intelligently
than what has been demonstrated here. However, it is important to note that the main objective of
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Airfoil Name Cl Cd Cm Cl/Cd

J5012 0.619 0.0142 -0.035 43.68
AG45ct02r 0.270 0.0098 -0.037 27.53

S8025 0.270 0.0109 -0.005 24.73
MH45 0.270 0.0118 -0.023 22.85
MH60 0.270 0.0126 -0.027 21.41
E472 0.273 0.0135 -0.018 20.18
S8036 0.273 0.0192 -0.035 14.17

Table 3: Another output of airfoil selection program for flying-wing aircraft configuration for
different selection criteria.

this study is not to discuss the difficulties of selection criteria definition, which is very well known,
but to present the use of a faster surrogate based method which reduces the burden of aerodynamic
analysis that has to be done at the background of each design problem.

CONCLUSIONS

This study presents an automated airfoil selection method that uses an SVR-based surrogate model
of the aerodynamic coefficients that are required during the performance evaluation. The core model
has been trained on a database of pre-calculated airfoils and achieves an accuracy of over 98 percent
on predicting aerodynamic coefficients Cl, Cd, and Cm of a 2D airfoil. The utility of the proposed
method is demonstrated in two example design cases, with the discussion of the importance of
selection criteria definition.

With the future goal of a fully automated airfoil generation and selection code, input features are
formed as a trajectory of flow conditions and y coordinate points of the airfoils for predefined x
coordinates (in cosine distribution). The main objective was to obtain a high generalization of any
given airfoil geometry so that unseen, e.g. generated, geometries can also receive reasonably correct
aerodynamic coefficient predictions from the model. Although we have achieved high generalization
for unseen flow conditions, i.e. angle of attack α and Reynolds numbers, within the database
envelope, the model fails to predict satisfactory results for any new unseen airfoil geometry. This
issue is going to be addressed in the continuation of this work in a future publication. Both the
database and the code has been released as open-source and can be accessed from:

https://github.com/mrtbrnz/airfoil selector/
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