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ABSTRACT 

Generation of accurate aerodynamic database models for the flight vehicles, which can be 
fulfilled by performing high fidelity CFD (Computational Fluid Dynamics) analyzes, is of 
importance to carry out realistic computer-based simulations before the flight tests. The 
number of CFD analyzes to be performed is usually limited due to high computational costs. 
This limitation often challenges the creation of proper aerodynamic database models and 
hence requires the use of efficient data sampling methods and machine learning algorithms. 
In this study, different sampling methods and machine learning algorithms are utilized and 
compared with each other in terms of nrmse (normalized root mean square error) metric. 
Results indicate that, adaptive sampling method, which decides the points at which CFD 
analyzes are performed, can reduce required number of analyzes up to 30% by achieving 
similar model accuracy compared to classical sampling methods. Apart from that, data 
modeling studies show that lower error metric values can be obtained with Gaussian process 
based algorithms compared to standard neural network algorithm. 
 

INTRODUCTION 

In this study, it is aimed to compare data sampling methods and machine learning algorithms 
for the generation of aerodynamic database models of conventional Tandem Control Missile 
(TCM). Representative figure of the TCM configuration is given below: 

 

 

Figure 1: TCM configuration 
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Aerodynamic database model of this flight vehicle (TCM configuration) in the scope of this 
work composes of 6 inputs (features) and 6 static aerodynamic coefficients (labels), as defined 
in Table 1. In this model, Mach number, angle of attack and side slip angle input features are 
used to specify flow properties. On the other hand, pitching, yawing and rolling panel deflection 
angle input features define the attitude of the blue colored (Figure 1) canard control surfaces. 
Moreover, labels correspond to force and moment coefficients with respect to body axes 
coordinate system and are used to calculate forces and moments in dimensional form on the 
flight vehicle at any flight condition defined with stated inputs (features). 

Table 1: Aerodynamic database parameters 

   

Definition Unit 
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a
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M : Mach Number - 

α : Angle of Attack ° 

β : Side Slip Angle ° 

δe : Pitching Panel Deflection Angle ° 

δr : Yawing Panel Deflection Angle ° 

δa : Rolling Panel Deflection Angle ° 

L
a
b

e
ls

 

CA : Axial Force Coefficient - 

CY : Yaw Force Coefficient - 

CN : Normal Force Coefficient - 

CLL : Rolling Moment Coefficient - 

CLN : Yawing Moment Coefficient - 

CM : Pitching Moment Coefficient - 

 

METHOD 

In this study, four different machine learning algorithms, which are GP (Gaussian Process), 
DNN (Deep Neural Network), DKL (Deep Kernel Learning) and DSPP (Deep Sigma Point 
Process) and three different sampling methods which are lhs (latin hypercube sampling), sobol 
and adoe (adaptive design of experiment) are employed in order to generate aerodynamic 
database model for the TCM configuration. Implementations have been achieved making use 
of “pytorch”, “gpytorch”, “ax-platform”, “botorch” and “openturns” open source python libraries. 
Details of the corresponding algorithms are explained in the following sections. 

 

Machine Learning Algorithms 

 
GP (Gaussian Process) 
Gaussian Process (GP) is a powerful machine learning method, which is well known for 
regression problems. This method’s prediction f(x) is not an exact value, but rather a probability 
distribution (f(x) ~ N(μ(x), σ²(x)) over all admissible functions that fit the data. GP is specified 
by a mean function m(x) which corresponds to mean value at any point of the input space and 
a covariance function K(x,x′) that sets the covariance between points. Working principle of GP 
is based on assuming a prior in terms of mean and kernel functions, calculating the posterior 
with training data by optimizing hyperparameters of kernel (covariance) function with a gradient 
or stochastic based optimizers and computing the predictive distribution on points of interest. 
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DNN (Deep Neural Network) 
Neural networks are computing systems, which are inspired by densely connected human 
brain cells (neurons). The structure, which is formed by computing neurons and connections 
between them (weights), is given in Figure 2. They are used for predicting output variable as 
a function of the inputs (independent variables). Neural networks learn things by processes 
called feed forward and backpropagation. They involve predicting outputs, comparing them 
with the true outputs, and using the difference between them to modify the weights of the 
connections between the neurons in the network. By increasing neuron numbers in hidden 
layers, models with high complexity can be generated. Therefore, they are very beneficial for 
learning from large datasets. 

 

Figure 2: Representative neural network structure 

 
DKL (Deep Kernel Learning) 
Deep kernel learning is a Gaussian process that incorporates neural networks to improve the 
performance of the model with feature extraction. In short, it is a serial combination of two 
learning systems. Specifically, it transforms the inputs of a spectral mixture base kernel with a 
deep architecture. Then the properties of these kernels are jointly learned through the marginal 
likelihood of a Gaussian process. 
 
DSPP (Deep Sigma Point Process) 
DGP (Deep Gaussian Process) is a natural generalization of GPs in which a sequence of GP 
layers form a hierarchical model, like deep neural networks with GP neurons, in which the 
outputs of one GP layer become the inputs of the subsequent layer, resulting in a flexible, 
compositional function prior. DSPP (Deep Sigma Point Process) is enhanced version of DGP, 
replacing the continuous mixture of Normal distributions of DGP with a finite one which is 
learned during the training process. Model structures are given in Figure 3. 
 

 

Figure 3: Model structures of DGP (Deep Gaussian Process) and DSPP (Deep Sigma Point 
Process) [Jankowiak, M., Pleiss, G., & Gardner, J. (2020)] 
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Sampling Algorithms 
 
In many engineering problems, the total number of function evaluations is drastically limited by 
computational budget; hence, it is of crucial interest to develop methods for efficiently selecting 
candidate designs for the experiment. This artificial input space filling process is named as 
DoE (Design of Experiments). There are two main strategies for sampling input space, 
classical and adaptive DoE. 
 
Classical DoE 
The classical DoE strategies determine all candidate design points without any result 
consideration and then compute all responses independently. This approach relies on the idea 
of filling input space homogeneously or with a prescribed sequence. In this study, lhs (latin 
hypercube sampling) and sobol which are the most commonly used sampling methods in the 
literature are considered. 
 
Adaptive DoE 
Adaptive approach enables adapting the experimental design based on the past observations. 
This approach builds the DoE sequentially, by choosing a new candidate point as a function 
of the previously determined points and their corresponding response values. In this study, 
NIPV (Negative Integrated Posterior Variance) acquisition function that decide a new design 
point which decreases global uncertainty at most is utilized to achieve adaptive 
experimentation. Formulation of this function is given below (BOTORCH: A Framework for 
Efficient Monte-Carlo Bayesian Optimization [Balandat, M., Karrer, B., & Jiang, R., J., Daulton, 
S., Letham, B., Wilson, A., G., Bakshy, E. (2020)]): 
 

 
 

Adaptive experimentation is implemented based on the flow chart in Figure 4 where it is seen 
then iterative design suggestion continues until both one design for each label is queried at 
one iteration and it is reached to one hundred iterations. 
 

 

Figure 4: Adaptive experimentation flow chart 

In above flow chart, candidate designs are analyzed using Missile DATCOM aerodynamic fast 
prediction tool instead of CFD tool, since it is computationally affordable and the purpose is to 
make a comparative study. 
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RESULTS 

Classical and adaptive experimentations have been carried out at three different Mach 
regimes, subsonic (0.1< Mach < 0.7), transonic (0.7< Mach < 1.3) and supersonic (1.3< Mach 
< 3.0). Results of the experiments have been presented as nrmse (normalized root mean 
square error) metric with respect to iteration number in Figure 5, 6 and 7.  

Iteration number at the x-axes of the plots can be considered as generated total number of 
design points. At each iteration, total of six design points, one for each label variable, are 
proposed sequentially by the NIPV acquisition function or sobol/lhs algoirthms and then these 
designs are analyzed to obtain corresponding label values. Hence, total of six hundred design 
points are proposed at the end of the one hundred iteration. 

The performance of sampling methods have been measured using nrmse metric (lower is 
better) of which formulation is given in Equation 1. Metric values have been calculated at each 
iteration by building/updating a proper GP model and then making predictions on a particular 
test data with this model. 

 

𝒓𝒎𝒔𝒆 = 𝒓𝒐𝒐𝒕 𝒎𝒆𝒂𝒏 𝒔𝒒𝒖𝒂𝒓𝒆 𝒆𝒓𝒓𝒐𝒓 

𝒏𝒓𝒎𝒔𝒆 = 𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝒓𝒐𝒐𝒕 𝒎𝒆𝒂𝒏 𝒔𝒒𝒖𝒂𝒓𝒆 𝒆𝒓𝒓𝒐𝒓 

 

𝒏𝒓𝒎𝒔𝒆 =
𝒓𝒎𝒔𝒆

𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒐𝒇 𝒂𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝒗𝒂𝒍𝒖𝒆𝒔 𝒐𝒇 𝒍𝒂𝒃𝒆𝒍 𝒕𝒆𝒔𝒕 𝒅𝒂𝒕𝒂
× 𝟏𝟎𝟎   (𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟏) 

 

   

   

Figure 5: nrmse (normalized root mean square error) history for each coefficient at subsonic   
(0.1 < Mach < 0.7) speed regime 
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Figure 6: nrmse (normalized root mean square error) history for each coefficient at transonic   
(0.7 < Mach < 1.3) speed regime 

 

 

   

   

Figure 7: nrmse (normalized root mean square error) history for each coefficient at 
supersonic (1.3 < Mach < 3.0) speed regime 

In above figures, results of the experiments regarding nrmse metric values of sampling 
methods (lhs, sobol and adoe) for each label variable (CA, CN, CY, CLL, CM, CLN) are 
presented. Since the feature space is quite large and experimentations have been performed 
only one time, nrmse metric shows wiggly behavior.  From the results, it is seen that adoe 
sampling method generally have lower nrmse metric value compared to lhs and sobol sampling 
methods at each Mach regime. 
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Figure 8: nrmse (normalized root mean square error) history for each coefficient at transonic 
(0.7 < Mach < 1.3) speed regime with 10 times repeated 

In addition, experimentation at transonic mach regime is repeated ten times for each sampling 
method to obtain better interpretable results than it is shown in Figure 6, 7 and 8. The results 
of repeated experimentation are presented as mean and confidence bound (2 sigma standard 
deviation) of nrmse metric with respect to iteration number in Figure 8. From figure, it is seen 
that adoe sampling method has lower nrmse metric values compared to lhs and sobol. 
 
After successful completion of adoe experimentation for all Mach regimes, nearly 1800 data 
points have been collected and these are used as training data for machine learning algorithms 
which are driven to obtain optimum aerodynamic database models. Below table indicates 
performance values of driven algorithms in terms of nrmse metric: 
 

Table 2: Comparison of machine learning algorithms in terms of nrmse metric for each label 
(values in the cell correspond to nrmse metric values and lower is better) 

Labels
Method DNN GP DKL DSPP 

CA 5.10 3.10 3.72 3.37 

CY 3.91 3.71 9.58 3.83 

CN 2.73 1.99 2.92 1.71 

CLL 20.73 22.07 20.90 20.30 

CLN 12.60 11.27 14.48 11.70 

CM 13.71 11.56 14.85 10.36 
 

 
From above table, it is seen that DSPP and GP algorithms generally reach lower nrmse metric 
values for interested label variables compared to DNN and DKL methods. 
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Figure 9: Mach sweep comparisons of model predictions for CA and CM labels with test data 

(α = 10°, β = 0°, δe = 10°, δr = 0°, δa = 0°) 

In addition to the tabulated nrmse metric values, mach sweep plots of the stated algorithms for 
two selected labels, CA and CM, are presented in Figure 9. From figure, it is seen that machine 
learning algorithms are capable of capturing nonlinear behaviors which is generally seen 
around the transonic speed regimes. 
 

CONCLUSION 

In this paper, a comprehensive study regarding data sampling methods and data driven 
machine learning algorithms has been achieved to generate more accurate aerodynamic 
database models for flight vehicles. According to sampling results, it is seen that adaptive 
sampling algorithm (adaptive design of experiment) can generally outperform classical 
sampling methods in terms of nrmse (normalized root mean square error) metric at all 
interested Mach regimes. This high performance can also be interpreted as similar model 
accuracies with adaptive samplings can be obtained with less number of analyzes than with 
classical methods and this is crucial when computational budget is limited. In addition, results 
of data modelling studies with machine learning algorithms indicate that Gaussian based 
algorithms are generally more successful than standard neural network based algorithm in 
terms of nrmse metric. 
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