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ABSTRACT 

In order to start to design a launch vehicle, mission requirements, such as the payload mass, 

required Δ𝑉 budget, target orbit, path constraints, acceleration thresholds, and dynamic pressure, 
must be known. However, in preliminary design phase, these requirements can be reduced to 
only two: the payload mass and the required ΔV. It is known that the design of a multi-stage 
launch vehicle can optimally be determined with these two parameters. Nevertheless, in most 
cases, current technological level, mission requirements or time constraints limit the design and 
the optimality deteriorate. In order to include such constraints, a sub-optimal staging tool is 
developed in this study. Having developed the tool, a commercial and active launch vehicle’s 
optimality is analyzed.  Comparing the staging tool output and the Vega launch vehicle, the tool 
resulted 14.3% greater performance. 
 

INTRODUCTION 

Design, manufacturing and trajectory optimization of a launch vehicle (LV) requires great effort in 
terms of both technology and economy due to complex nature of the LVs. Designs should be kept 
as simple as possible, however, it is not always viable to choose the simpler design due to 
technological constraints. For instance, multi-staging which uses the idea of disposal of 
unnecessary structural masses in order to accelerate the vehicle faster with the same amount of 
propellant, are generally employed for space launches, even though the simpler single-stage-to-
orbit (SSTO) configurations are being argued for decades and considered as feasible [Freeman, 
Talay, & Austin, 1996]. 

In order to manufacture a feasible, affordable and competitive LV, the design process is essential. 
Once a LV is not designed very well at the early phases of design, extensions on schedules of 
design and manufacturing processes are possible. Even if a LV with a poor design is 
manufactured somehow, much larger scaled troubles are likely to appear when the time comes 
to launch phase. It is probable to have failed launch attempts with such a design whether the 
trajectory is optimized at the state-of-the-art level. What’s worse, the whole space program may 
be canceled with fatalities like happened in the Brazilian case [Brazilian Rocket Explodes On Pad: 
Many Dead, 2003].  
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METHOD 

A single stage vehicle’s Δ𝑉 capacity can be determined easily from the famous equation of 
Konstantin Tsiolkowsky [Brown, 2002], i.e. ideal rocket equation, which is derived from Newton’s 
second law of motion. 

Δ𝑉 = 𝑉𝑒𝑥ℎ ln (
𝑚0

𝑚𝑓

) (1) 

 

In equation (1), 𝑚0 and 𝑚𝑓 are the initial and final masses (𝑘𝑔), respectively, while 𝑉𝑒𝑥ℎ stands 

for the nozzle exhaust velocity (𝑚/𝑠) of exhaust products with respect to (wrt) the vehicle. 𝑉𝑒𝑥ℎ 
can be determined by: 

𝑉𝑒𝑥ℎ = 𝐼𝑠𝑝𝑔0 (2) 

Where, 𝐼𝑠𝑝 is the specific impulse (𝑠) and 𝑔0 is the gravitational acceleration on earth which is 

equal to 9.80665 𝑚/𝑠2. It is possible to write 𝑚0 and 𝑚𝑓 in equation (1) as 

𝑚0 = 𝑚𝑠 + 𝑚𝑝 + 𝑚𝑝𝑙 (3) 

𝑚𝑓 = 𝑚𝑠 + 𝑚𝑝𝑙 (4) 

In equation (4), 𝑚𝑠, 𝑚𝑝 and 𝑚𝑝𝑙 are structural, propellant and payload masses (𝑘𝑔), respectively. 

Since dealing with dimensionless parameters instead of mass terms is advantageous in such 
problems, mass ratios are defined. The most convenient and useful ratios are the payload 
ratio,(𝜋∗) and the structural factor (𝜖).  

𝜋∗ =
𝑚𝑝𝑙

𝑚0

 (5) 

The first, payload ratio, which is an indicator of overall performance of LVs, shows the ratio of 
essential mass of the vehicle to overall mass. For low earth orbit (LEO) missions, this ratio is 
around 1% [Payload Fraction, 2021].  

𝜖 =
𝑚𝑠

𝑚𝑠 + 𝑚𝑝

 (6) 

The second, structural factor, is the ratio of structural mass to overall mass excluding the payload 
mass. It is also a design criterion and an indicator of technological level. The final mass to overall 
mass can be rewritten as 

𝑚𝑓

𝑚0

=
𝑚𝑠 + 𝑚𝑝𝑙

𝑚𝑠 + 𝑚𝑝 + 𝑚𝑝𝑙

+
𝑚𝑝 − 𝑚𝑝

𝑚𝑠 + 𝑚𝑝 + 𝑚𝑝𝑙

= 1 −
𝑚𝑝

𝑚0

 (7) 

Multiplying the nominator and the denominator with (𝑚𝑠 + 𝑚𝑝), one can get 

𝑚𝑓

𝑚0

= 1 −
𝑚𝑠 + 𝑚𝑝

𝑚0

𝑚𝑝

𝑚𝑠 + 𝑚𝑝

  (8) 

Now it is easier to substitute the dimensionless parameters into equation (8): 

𝑚𝑓

𝑚0

= 1 − (1 − 𝜋∗)(1 − 𝜖) (9) 

𝑚𝑓

𝑚0

= 𝜖 + (1 − 𝜖)𝜋∗ (10) 
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Finally, substituting equation (10) into equation (1), noting that the term in equation (10) is 𝑚𝑓/𝑚𝑜 

while in equation (1) is 𝑚0/𝑚𝑓, the ideal rocket equation can finally be written with mass ratios 

instead of mass parameters. 

Δ𝑉 = −𝑉𝑒𝑥ℎ𝑙𝑛(𝜖 + (1 − 𝜖)𝜋∗) (11) 

Equation (11) shows that the Δ𝑉 of a rocket is strictly dependent to exhaust velocity, structural 
factor and payload ratio.  

Multiple Staging  

Staging uses the idea of the disposal of unnecessary mass during the ascent. Once the propellant 
of a stage is consumed, it separates and the next stage is ignited. Having ejected the structural 
mass of the previous stage, the vehicle accelerates much faster [Coşkun, 2013]. A serial stage 
configuration together with mass definitions are illustrated in Figure 2.1 :. Owing to staging 
phenomena which is suggested first by Tsiolkowsky [Wiesel, 1989], accelerating a vehicle to 
orbital velocities is much feasible than it would be for SSTO designs with current technology. 

 

 Serial staging mass definitions. 

In order to determine the total Δ𝑉 of multiple stage, first, the dimensionless parameters should be 
redefined in accordance with the stage numbers. Before starting the definitions, some 
perspectives should be highlighted. The payload of a stage is defined as the final mass of the 
rocket excluding the stage’s structural mass. Correspondingly, overall mass of (n+1)th stage 
completely is the payload of nth stage. The payload ratio of a stage for multistage vehicles can be 
calculated via: 

𝜋𝑖 =
𝑚𝑝𝑙,𝑖

𝑚0,𝑖

=
𝑚0,𝑖+1

𝑚0,𝑖

 (12) 

The subscript 𝑖 stands for the stage number where the preceding subscript of 0 means the gross 

or sub-gross mass. It is also helpful to define the overall payload ratio, 𝜋∗, which is the product of 
stage payload ratios. 

𝜋∗ =
𝑚𝑝𝑙

𝑚0,1

=
𝑚𝑝𝑙

𝑚0,𝑛

𝑚0,𝑛

𝑚0,𝑛−1

…
𝑚0,2

𝑚0,1

  (13) 

Since the structural factor excludes payload mass and deals only with the propellant and structural 
masses of the stage of interest, no big differences in the definition occur. 

𝜖𝑖 =
𝑚𝑠,𝑖

𝑚𝑠,𝑖 + 𝑚𝑝,𝑖

 (14) 
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Having redefined the dimensionless parameters, now it is possible to proceed the calculation of 
the total Δ𝑉 (Δ𝑉∗) of the rocket. It can simply be calculated summing Δ𝑉 of each stage 
successively. 

Δ𝑉∗ = ∑ −𝑉𝑒𝑥ℎ,𝑖𝑙𝑛(𝜖𝑖 + (1 − 𝜖𝑖)𝜋𝑖)

𝑛

𝑖=1

 (15) 

Using the same exhaust velocities and structural ratios, as 0.1, change of Δ𝑉∗ with payload ratio 
and number of stages is shown in Figure 2.2 :. It is apparent that the number of stages improve 
the Δ𝑉∗, however, advantage of increasing the number of stages dwindle rapidly as there exist a 
limiting value for Δ𝑉∗. Also, costs and reliability worsen with increasing number of stages, hence, 

having the least number of stages that provide the required Δ𝑉∗ comes out to be the best 
configuration. 

 

 𝛥𝑉∗ versus payload ratio by number of stages. 

Optimal Staging 

Multistage rockets have certain advantages over single stage rockets as explained in the previous 
sections. On the other hand, staging brings the optimality problem together with it, since it is 
possible to accelerate a payload to target velocity with various designs. Remembering the Δ𝑉∗ 

equation, equation (15), 𝑉𝑒𝑥ℎ, 𝜖 and 𝜋 can have various values that satisfy the required Δ𝑉∗. 
Freezing 𝑉𝑒𝑥ℎ and 𝜖 values to available technological limits, only parameter left to be determined 
is the 𝜋 for each stage. Optimization problem here can be treated as maximizing the overall 

payload ratio satisfying the required Δ𝑉∗. 

𝜋∗ = ∏ 𝜋𝑖

𝑛

𝑖=1

 (16) 

Taking natural logarithm of both sides in equation (16) equation (17) can be obtained. 

ln 𝜋∗ = ∑ ln 𝜋𝑖

𝑛

𝑖=1

 (17) 

Now the optimization problem can be written in more convenient way 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ln 𝜋∗ = ∑ ln 𝜋𝑖

𝑛

𝑖=1

 (18) 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 Δ𝑉∗ = ∑ −𝑉𝑒𝑥ℎ,𝑖𝑙𝑛(𝜖𝑖 + (1 − 𝜖𝑖)𝜋𝑖)

𝑛

𝑖=1

 (19) 

The maximum can simply be determined by calculating n partial derivatives of equation (18) and 
setting them to zero if there was no constraint. Having the constraint equation (19), one of the 𝜋𝑖 
is dependent to 𝑉𝑒𝑥ℎ,𝑖, 𝜖𝑖 and 𝑉∗. Solving the equation (19) for dependent 𝜋𝑖, substituting it into 

equation (18) and calculating 𝑛 − 1 partial derivatives for independent 𝜋𝑖 would give the result. 
However, since this type of problems can also be solved using Lagrange multiplier method, no 
complex mathematical procedure is required. The method suggests to multiply the constraint 
equation with an arbitrary number, called Lagrange multiplier, and to add the multiplication to 
objective function.  

ln 𝜋∗ = ∑ [ln 𝜋𝑖 + 𝜆 (
Δ𝑉∗

𝑛
+ 𝑉𝑒𝑥ℎ,𝑖𝑙𝑛(𝜖𝑖 + (1 − 𝜖𝑖)𝜋𝑖))]

𝑛

𝑖=1

 (20) 

Applying the method, the expression in equation (20) is obtained. In equation (20), 𝜆 is the 
Lagrangian multiplier. The multiplied term in parenthesis is in fact a complex form of zero. Taking 
partial derivative of equation (20) as if each of the 𝜋𝑖 is independent, the expression given in 
equation (21) is evaluated. 

𝜕 ln 𝜋𝑖

𝜕𝜋𝑖

=
1

𝜋𝑖

+
𝜆𝑉𝑒𝑥ℎ(1 − 𝜖𝑖)

𝜖𝑖 + (1 − 𝜖𝑖)𝜋𝑖

 (21) 

In order to solve equation (21), 𝜆 is chosen so that the equation is zero for dependent 𝜋𝑖. Having 

the rest of the 𝜋𝑖 independent, 𝑛 − 1 equations can now be set to zero. 

𝜋𝑖 = −
𝜖𝑖

(1 − 𝜖𝑖)(1 + 𝜆𝑉𝑒𝑥ℎ,𝑖  )
 (22) 

The specific 𝜆 value setting equation (21) zero for dependent 𝜆 can be determined by substituting 
equation (22) into constraint equation (19). 

Δ𝑉∗ = − ∑ 𝑉𝑒𝑥ℎ,𝑖

𝑛

𝑖=1

ln (𝜖𝑘 −
𝜖𝑘

1 + 𝜆𝑉𝑒𝑥ℎ,𝑖

) (23) 

Equation (23) is quite challenging to solve for 𝜆 analytically but can easily be solved numerically. 

Once determined, it is substituted into equation (22) to obtain each 𝜋𝑖 for optimal mass 
distribution. In some special cases in which all 𝑉𝑒𝑥ℎ,𝑖 and 𝜖𝑖 are equal, each 𝜋𝑖 becomes equal to 

each other for an optimal design, however, that is not the case for most of the designs.  

Even though an optimal design is chosen for a LV initially, its optimality deteriorate as the design 
and production processes advance. In most cases, initial design parameters cannot be achieved 
and the gross mass of the vehicle increases [Brown, 2002]. Still, it provides an elegant starting 
point. Even if the exact optimality cannot be achieved, it assists the design to be close to optimal 
which lighten the gross mass for any specified payload mass. Beyond that, with better 
assumptions for 𝜖 and 𝑉𝑒𝑥ℎ, the optimality can be conserved almost completely even at the final 
phases of design. 

Design of a Launch Vehicle 

At this point, with given 𝜖 and 𝑉𝑒𝑥ℎ for each stage, an optimal staging can be determined for any 
Δ𝑉∗ < ~6𝑉𝑒𝑥ℎ and 𝑚𝑝𝑙. As described in the previous section, an optimal staging tool (OST) can be 

used to design any vehicle of interest following the procedure. In order to have a reasonable 
comparison, a LV with similar performance parameters to a commercial and active LV, the Vega 
LV, will be designed.  

It is designer’s choice to pick any mission type of the Vega LV to start design since a vehicle 
designed for one of the missions, will be capable of achieving any mission of the Vega. Among 
the missions, 750 km Sun synchronous orbit (SSO) mission of which the payload capacity is 1300 
kg, is chosen in this study [Ariane Space, 2014]. Referencing the data for mass and performance 
parameters for Vega, i.e. 𝜖 and 𝐼𝑠𝑝 values, an optimal design is obtained from OST for a 𝑚𝑝𝑙 of 
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1352 𝑘𝑔 and a Δ𝑉∗ of 9282.7 𝑚/𝑠 which is the Δ𝑉 performance of the Vega LV without fairing 
ejection. 

Table 2.1 : shows a comparison on designs for the Vega and the OST. 𝜖 for the 4th stage is 
marginally high, though, it is not rare for upper stages to have a bad 𝜖 due to sensitivity 
requirements and relatively low amount of propellant capacity. As a result, the OST gave trivial 
results such as 𝜋 > 1 for the 4th stage. To have non-trivial designs with the OST in such cases, 
there are some tricks to deceive the OST. In the first, some of necessary mass of avionics, 
actuators, payload adaptor etc., all included here as structural mass, can be considered as 
payload mass. In this manner, the OST will perceive the upper stage with a higher performance, 
and distribute the rolls of each stage in a way obeying the design constraints. Another method to 
deceive the OST is taking all upper stage and 𝑚𝑝𝑙 as payload. Subtracting the upper stage Δ𝑉 

capacity, the design can be made for 3 stage rocket. However, this method can be applied only 
if the upper stage design is an advanced level considering its mass and Δ𝑉 capability is required. 

 Vega vs OST design comparison. 

 Stages 1 2 3 4 

Common 
𝜖 0.0887 0.0945 0.1190 0.5440 

𝑉𝑒𝑥ℎ 2745.9 2819.4 2901.8 3085.2 

Vega 𝜋 0.3011 0.3656 0.2083 0.5993* 

OST 𝜋 0.2076 0.2054 0.2446 1.8346* 

* including fairing 

The 1st method is followed in this study since the upper stage also is in design process and less 
information required for the upper stage. It is possible to find a “sub-optimal” design via this 
method with an iterative process. Remembering the OST results payload ratios and the final 
payload mass, general mass distribution of the vehicle including each stage’s propellant and 
structural masses can be obtained.  

As before, the method suggests manipulating the payload and the structural masses. Starting 
from the real payload mass, the manipulated payload mass (𝑚𝑝𝑙,𝑚) is increased until the sum of 

this manipulated payload mass and manipulated OST output of 4th stage structural mass (𝑚𝑠,4𝑚) 

is equal to sum of 𝑚𝑝𝑙 and real (estimated) 𝑚𝑠,4. 

𝑚𝑝𝑙,𝑚 = 𝑚𝑝𝑙 + 𝑚𝑚 (24) 

Accordingly, 𝑚𝑠4,𝑚 should be defined as 

𝑚𝑠4,𝑚 = 𝑚𝑠4 − 𝑚𝑚 (25) 

Where, 𝑚𝑚 is the manipulated mass and will be increased until the equation (26) is satisfied: 

𝑚𝑝𝑙 + 𝑚𝑠4 = 𝑚𝑝𝑙,𝑚 + 𝑚𝑠4,𝑚  (26) 

It is designer’s task to estimate the 𝑚𝑠,4 with the available technology.  

Starting a new design, it is necessary to make another assumption on the fairing since it is ejected 
at some point during the powered flight. In this case, such an assumption is not required as the 
Vega LV is imitated. However, it is sure better to show the calculations as a guide. Continuing 
with the Vega LV, it is reasonable to assume the fairing as the 3rd stage structural mass 
considering it is ejected during the 3rd stage flight [Ariane Space, 2014], yet, this would deteriorate 

the 𝜖3 and the OST will decrease the roll, therefore the mass, of the 3rd stage. Instead, it is more 
appropriate to take the fairing as payload with a coefficient smaller than 1. At the initial phases of 

the ascent, the vehicle is much less sensitive to mass variations. For 1 𝑚/𝑠 velocity change of 
Vega requires a final mass variation of roughly 19 kg, 6.5 kg, 1.7 kg and 0.7 kg for 1st, 2nd, 3rd and 
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upper stages, respectively. Using a course weighting, noting the fairing ejection is held in the 
middle of 3rd stage boost:  

(𝑚𝑓𝑎𝑖𝑟 − 𝑚𝑓𝑎𝑖𝑟,𝑚) ∗ (
1

19
+

1

6.5
+

0.5

1.7
) = 𝑚𝑓𝑎𝑖𝑟,𝑚 (

1

0.7
+

0.5

1.7
) (27) 

(𝑚𝑓𝑎𝑖𝑟 − 𝑚𝑓𝑎𝑖𝑟,𝑚) ∗ 0.5006 = 𝑚𝑓𝑎𝑖𝑟,𝑚 ∗ 1.7227 (28) 

Where 𝑚𝑓𝑎𝑖𝑟 and 𝑚𝑓𝑎𝑖𝑟,𝑚 are the real and the manipulated fairing masses. Gathering all 

manipulated fairing mass terms to left hand side: 

𝑚𝑓𝑎𝑖𝑟

𝑚𝑓𝑎𝑖𝑟,𝑚

− 1 = 3.4413 (29) 

𝑚𝑓𝑎𝑖𝑟,𝑚 =
𝑚𝑓𝑎𝑖𝑟

4.4413
 (30) 

Remembering the fairing mass is 540 𝑘𝑔 

𝑚𝑓𝑎𝑖𝑟,𝑚 = 121.59 𝑘𝑔 (31) 

Manipulating the fairing mass as 121.59 𝑘𝑔, Δ𝑉 gained with the decrement of 418.41 𝑘𝑔 in the first 
2.5 stage will be compensated by 121.59 kg extra mass in the upper 1.5 stage. This assumption 
sure has deficiencies, though, it is sufficient at initial phases of design. 

Returning to manipulated payload mass, with 𝑚𝑓𝑎𝑖𝑟,𝑚 = 𝑚𝑓𝑎𝑖𝑟, it can be redefined as 

𝑚𝑝𝑙,𝑚 = 𝑚𝑝𝑙 + 𝑚𝑚 + 𝑚𝑝𝑙𝑎 + 𝑚𝑓𝑎𝑖𝑟,𝑚 (32) 

Where 𝑚𝑝𝑙𝑎 is the payload adapter mass. The only unknown parameter in equation (32) is 𝑚𝑚. 

Starting from 0, value of the 𝑚𝑚 will be increased until equation (25) is satisfied together with the 
OST output 𝑚𝑝4 is equal to AVUM propellant mass. The parameter 𝜖4 automatically gets its 

manipulated form 𝜖4,𝑚, in order to manage the mass distribution of the stages and upper stage 

propellant and structural masses.  

𝜖4,𝑚 =
𝑚4𝜖4 − 𝑚𝑚

𝑚4 − 𝑚𝑚

 (33) 

It is an easy task to determine the value of the 𝑚𝑚 manually considering high sensitivity is not a 
concern at this point. After couple of trials, an 𝑚𝑚 of 470 𝑘𝑔 and an 𝜖4,𝑚 of 0.2744 are found to 

satisfy the conditions.  

RESULTS and CONCLUSION 

Table 2.2 : shows the Vega and the SOST  mass distributions in detail. With the same upper 
stage performance and payload mass, the SOST designed a 12.5% lighter LV which makes the 

SOST design 14.3% greater performanced vehicle in terms of payload ratios. The Vega’s 
performance still should be considered as good compared to the SOST since along the design 
and production processes, unexpected problems probably appear and the optimality deteriorate. 
Comparing the stage masses, the most optimality-spoiling stage is the 3rd one as seen from Table 
2.2 :. Though the actual reason is not known, reasons why the 3rd stage designed much heavier 

than it optimally should be are possibly technological inability to keep same 𝜖 for a lighter stage, 
shortening the design process benefiting from a more ready-to-launch stage, and production 
constraints. 
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 Vega vs SOST design parameters. 

 Stages 1 2 3 4 

Common 𝑉𝑒𝑥ℎ 2745.9 2819.4 2901.8 3085.2 

      

Vega 

𝜖 0.0887 0.0945 0.1190 0.5440 

𝑚 (kg) 96243 26300 12000 1265 

𝑚𝑝 87710 23814 10567 577 

𝑚𝑠 8533 2486 1433 688 

𝜋 0.3011 0.3656 0.2083 0.5993* 

𝑚𝑝𝑙 & 𝜋∗ 1352 & 0.0098 

   

SOST 

𝜖 0.0887 0.0945 0.1190 0.2744# 

𝑚 (kg) 86674 24548 6253 772# 

𝑚𝑝 78986 22228 5509 560 

𝑚𝑠 7688 2320 744 682** 

𝜋 0.2801 0.2721 0.3186 0.7358# 

𝑚𝑝𝑙 & 𝜋∗ 1352 & 0.0112 

* including fairing 
# manipulated parameters 

** 𝑚𝑠4 = 𝑚𝑠4,𝑚 + 𝑚𝑚 
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