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ABSTRACT

Considering the attitude (i.e., roll and pitch) estimation problem using an inertial measurement
unit (IMU) composed of accelerometer and gyroscope triads, this paper proposes a covariance-
scaling based robust Kalman filter (KF) algorithm. Attitude estimation problem can be solved
by KF based and complementary filtering (CF) based methodologies. Appropriate tuning of the
covariance matrices make KF based attitude filters efficient and optimal. Adaptive way for this
tuning procedure is given by the algorithm we propose, and it can accurately estimate the attitude
in two axes. The proposed methodology is split into two main methods, single-scale factor (SSF)
and multiple-scale factor (MSF) methods. They are tested and compared with other existing
filtering methodologies in the literature under different dynamical conditions and using real-world
experimental dataset in order to validate their effectiveness.

INTRODUCTION

Attitude estimation has been a significant problem for decades in various navigation and localiza-
tion applications [Kok, Hol and Schön, 2017]. The optimal algorithms for this problem have been
developed for last fifty years and divided into two common groups, Kalman filters (KFs) and com-
plimentary filters (CFs), respectively. The attitude is evaluated via combining the gyroscope and
the accelerometer readings in a complementary way in [Fourati, 2015; Wu, Zhou, Chen, Fourati and
Li, 2016; Madgwick, 2010; Mahony, Hamel and Pflimlin, 2008] whereas KF-based methods are used
for solving the attitude estimation problem via focusing on accurate compensation of the external
acceleration and appropriate representation of the noise covariances with different approaches such
as fuzzy, cascaded, adaptive, and even manual tuning methods [Choukroun, Bar-itzhack and Osh-
man, 2006; Javed, Tahir and Ali, 2020; Kang, Park, 2009; Li, Chang and Hu, 2015; Park, Park and
Park, 2017]. In this case, when the one looks into the recent works in the literature [Nazarahari,
Rouhani, 2021], KF-based methodologies proposed for attitude estimation problem aim to minimize
the negative effect of external acceleration and disturbances during the estimation process by cor-
rectly constructing the measurement noise covariance matrix since the accelerometer itself can be
used for roll and pitch angle estimation. Some of these different approaches were compared in our
previous work [Candan, Soken, 2020].
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Even though there are methods for compensating the external acceleration and disturbances, they
lack for constructing an accurate measurement noise covariance matrix during the estimation process
since these methods only include basic switching and tuning mechanisms [Chiella, Teixeira and
Pereira, 2019; Sabatini, 2006; Suh, 2010; Hyyti, Visala, 2015; Wu, 2020].

This paper proposes a robust-adaptive KF algorithm for estimating the two-axis attitude (i.e., roll
and pitch angles) using the measurements of an inertial measurement unit (IMU). The method
deals with the covariance uncertainty due to the external accelerations via adaptively scaling the
measurement noise covariance matrix. Two different approaches are proposed for scaling the matrix
based on the comparison of the theoretical and real innovation covariances in line with the methods
given by [Hajiyev, Soken, 2016; Soken, Hajiyev, 2013]. Both approaches are evaluated using the
dataset for a micro aerial vehicle (MAV) provided by [Majdik, Till and Scaramuzza, 2017] and the
results are compared with a bunch of benchmark algorithms.

THEORETICAL BACKGROUND

Attitude Representation

There are three common methods for representing the attitude of a system. These are Euler angles,
direction cosine matrix (DCM) and quaternions. In this work, DCM representation is preferred and
now let I and S represent the inertial and the sensor frame coordinates, respectively. I

SR is the
DCM of the sensor frame with respect to the inertial frame and to be denoted R for convenience.
Using the conventional Z-Y-X Euler angles, R can be constructed as following.

R =

cαcβ cαsβsγ − sαcγ cαsβ cγ + sαsγ
sαcβ sαsβsγ + cαcγ cαsβsγ − cαsγ
−sβ cβsγ cβcγ

 (1)

In this representation, α (yaw), β (pitch), and γ (roll) are the rotation angles about the Z, Y, and
X axes, respectively and c and s stand for cosine and sine trigonometric functions. It is clear that
the two-axis attitude estimation can be done using only the last row of matrix R including only the
pitch and roll angles, which are desired to be estimated. These angles can be evaluated from basic
trigonometric identities as,

γ = tan−1(
R32

R33
) (2)

β = tan−1(
−R31√
R2

32 +R2
33

) (3)

where Rij represents (i, j) entry of the matrix R. Therefore, this last row (Rl) can also be used as
the state vector for this work shown as following.

x = RT
l e (4)

and the vector e is defined as
[
0 0 1

]T
.

Sensor Models

Measurement signals from the gyroscope (yG), and the accelerometer (yA) are modelled respectively
as following.

yG = Sω + nG (5)

yA = Sa + Sg + nA (6)

Note that, a and ω are the ideal external acceleration and angular rates sensed by the accelerometer
and the gyroscope, respectively. g is the gravity vector, nA and nG are the sensor noises assumed to
be uncorrelated, zero-mean white Gaussian noise. It is important to emphasize that in practice each
sensor exhibits not only constant bias offset, but also varying bias errors, which are not accounted

2
Ankara International Aerospace Conference



AIAC-2021-056 Candan, Soken

in the given models. Moreover, in [Lee, Park and Robinovitch, 2012], external acceleration (Sa) was
modeled as a first-order low-pass filtered white noise process as following,

Sat = ca
Sat−1 + εt (7)

where ca is a dimensionless, determinator constant specified for the cutoff frequency and the value
of this constant is varying between 0 and 1. Time-varying error during the acceleration process is
represented by εt.

Filter Process Model (Prediction)

In the proposed method, the process model is governed by following equation as,

x−
t = Φt−1xt−1 + wt−1 (8)

where Φ is the state transition matrix that propagates the system states from previous time and w is
the noise vector for the process model, assumed to be zero mean white Gaussian. In order to derive
expressions for the state transition matrix and the process noise covariance matrix, time propagation
of the rotation matrix, R, is to be investigated. First order approximation for this propagation with
gyro measurements can be given as,

Rt = Rt−1 (I3 + ∆tω̃t−1) (9)

where ∆t is the sampling time and ω̃t−1, a skew-symmetric matrix, includes ideal gyro rates of the
body at time t− 1. The symbol “~” represents the cross-product operator which is transforming a
vector to a matrix form. From (9), the propagation of the state vector can be given as following

x−
t = (I3 + ∆tω̃t−1)

T xt−1 (10)

Therefore, the state transition matrix, process noise and the process noise covariance matrix can be
defined from (10) as,

Φt−1 = I3 −∆tỹG,t−1 (11)

wt−1 = ∆t(−x̃t−1)nG (12)

Qt−1 = E[wt−1w
T
t−1] = −∆t2x̃t−1ΣGx̃t−1 (13)

where ΣG is the noise covariance matrix of the gyroscope which is given as σ2GI3 assuming that the
variance of gyro noise, σ2G, is distributed equal to all axes for the same gyro.

Filter Measurement Model (Correction)

In the proposed method, the measurement model is governed by following equation as,

zt = Hxt + vt (14)

In order to derive terms for the measurement model components,(6) can be divided into two equations
given below as,

a−
t = caa

+
t−1 (15)

εt = at − a−
t (16)

where a−
t is the predicted (a priori) acceleration at time t, and a+

t−1 is the estimated (a posteriori)
external acceleration at time t − 1. Now, it is possible to use (6) via inserting (15) and (16) into
the equation and extract the measurement model expressions.

zt = yAt − caa+
t−1 (17)

H = gI3 (18)

vt = εt + nA (19)

where εt cannot be related to nA, resulting the appearance of following measurement noise covari-
ance matrix as following.

Mt = E[vtv
T
t ] = Σacc + ΣA (20)

It is crucial to focus that when ΣA is set as σ2AI3, assuming that the variance of accelerometer noise,
σ2A, is distributed equal to all axes for the same accelerometer.
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However, time varying component of (20), Σacc, cannot be analytically obtained since the external
acceleration during the measurements is unknown. Following chapter is to introduce the proposed
method in order to overcome from this problem.

METHOD

Adaptive measurement noise covariance scaling methodology is basically to change KF gain via
tuning the measurement noise covariance matrix autonomously. Therefore, the filter can adapt
itself to this new environment via comparing theoretical and real values of the innovation covariance
[Soken, Hajiyev, 2013; Hajiyev, Soken, 2020] when there exist external acceleration/disturbances on
the measurement system so that these effects can be compensated. Definiton of innovation in KF
structure is,

et = zt −Hx−
t (21)

where x−
t is the predicted state vector and et is the innovation sequence. Kalman filter gain changes

with varying innovation covariance if there exist mismatches between the process and measurement
models, therefore the innovation covariance after filter adaptation can be defined as,

Ĉet = HP−
t HT + StMt (22)

and KF gain becomes,

Kt = P−
t HT (HP−

t HT + StMt)
−1

(23)

where P−
t is the predicted covariance matrix during the KF process and St is the measurement noise

covariance matrix scaling factor (SF). It is the fact that if the real value of KF error exceeds the
theoretical error, which can be shown as,

tr(ete
T
t ) ≥ tr(HP−

t HT + Mt) (24)

filtering process must be done adaptively. In (24), tr(.) denotes that the trace of the related matrix.
There are two possible options for scaling the measurement noise covariance matrix, single-scale
factor (SSF) option and multiple-scale factor (MSF) option, respectively.

Single-Scale Factor (SSF) Method

In the first approach, in the SSF is introduced directly to modify the Mt matrix as in (23). In order
to obtain the SSF, first, let us insert St into the inequality in (24) and take the condition where two
innovations are equal as the basis as,

tr(ete
T
t ) = tr(HP−

t HT ) + Sttr(Mt) (25)

therefore, St can be expressed as,

St =
eTt et − tr

{
HtP

−
t HT

t

}
tr {Mt}

(26)

If there is no external acceleration or disturbance detected i.e. condition given in (24) is not met,
St simply becomes St = 1.

Multiple-Scale Factor (MSF) Method

In the second approach, the MSF methodology is introduced. Rather than to adaptively tune the
Kalman gain via scalar factor, it becomes appropriate to use a matrix structure with multiple factors
since SSF approach rejects the measurements from all channels, even if the external acceleration is
sensed in one direction. Therefore, using the same method for derivation of the SSF, but instead
estimating a matrix composed of multiple factors St can be written as,

St = (ete
T
t −HP−

t HT )M−1
t (27)
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Same as mentioned, if there is no external acceleration or disturbance detected i.e. condition given
in (24) is not met again, now, St simply becomes as following.

St = diag(s1, s2, s3), (28)

si = max {1,Sii} , i = 1, 2, 3. (29)

RESULTS AND DISCUSSION

Benchmark Methods

As mentioned earlier, there are two common strategies in filtering methods for attitude estimation
problems, Kalman filtering and complementary filtering, respectively. In order to compare the pro-
posed method with the literature of CFs and KFs in the sense of performance, different methods
are selected. Following, the reader can find brief explanations about each method chosen for the
performance comparison task.

Accelerometer-Only Attitude Estimation: The attitude estimation problem is tried to be solved
using only the accelerometer measurements without compensating the external acceleration.

Gyroscope-Only Attitude Estimation: In this method, the attitude estimation problem is to be solved
only relying to the gyroscope measurements (by propagating the initially obtained attitude angles
without any update).

Madgwick’s Filter [Madgwick, 2010]: Madgwick treats the attitude estimation as minimization
problem and proposes a CF method, which is basically depending on the gradient decent strat-
egy that uses the steepest decent algorithm to solve the problem recursively.

Lee’s Filter [Lee, Park and Robinovitch, 2012]: Lee proposed a KF structure, which is able to adapt
itself by automatically tuning the unknown component of the measurement noise covariance matrix.
This method assumes that the external acceleration is distributed same along all axes.

Results

The performance of the proposed method is verified via using The EuRoC Micro Aerial Vehicle
(MAV) Dataset, which is including time-synchronized images, IMU and ground truth data collected
on-board MAV, provided by [Majdik, Till and Scaramuzza, 2017]. If it is desired to obtain more
details, the readers can refer to this work. Table 1 presents the attitude estimation results of the
benchmark methods and the proposed method with its two approaches, SSF and MSF methods, in
terms of root mean square error (RMSE).

Table 1: Attitude Estimation Results in terms of RMSE (◦)
Methods Roll Pitch

Gyroscope-Only 136.9165 35.4860

Accelerometer-Only 13.3190 4.3743

Madgwick’s Filter 7.1589 2.4608

Lee’s Filter 1.6999 1.3085

SSF Method 1.2915 1.1948

MSF Method 1.1217 1.1819

It is clear that the SSF method improves the estimation quality of KF-based Lee’s filter and CF-based
Madgwick’s filter. On the other hand, it is observed that the performance of the proposed method
with its second approach is superior against all of the comparison methods even Lee’s filter which is
one of the widely accepted and reliable KF-based solution method for attitude estimation problem.
The reason behind this improved performance in the terms of the attitude estimation quality is
basically the robust-adaptive covariance-scaling strategy implemented into the KF structure.
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This provides better measurement covariance matrix construction and hence, attitude estimation
performance during the filtering process which Lee’s filter cannot provide. Moreover, Fig. 1. demon-
strates that the proposed algorithm with its second approach, MSF method, compared with Lee’s
filter, achieves better accuracy in terms of attitude (i.e., roll and pitch) estimation error during
the flight course of MAV. Especially, after a short warm-up period approximately until 40th second
when highly disturbed/accelerated motion begins, the proposed method is able to compensate the
deteriorative effects of disturbances mainly caused by external accelerations along the flight course.

Figure 1: Attitude Estimation Errors of MSF Method for the EuRoC MAV (MH-01) Dataset

CONCLUSIONS

In this paper, a novel covariance-scaling robust Kalman filter with two different methods is proposed
for the attitude estimation problem. The performance of the proposed method in terms of the
estimation quality is evaluated using a real-world dataset and compared with the methods selected
from the current literature. Main contribution of the proposed method is to introduce two robust-
adaptive approaches for scaling the measurement noise covariance matrix in Kalman filter (KF)
structure. The performance of these approaches is evaluated using a real-world dataset and it
is observed the first approach slightly improves the estimation quality of previous KF-based and
complementary filter (CF) based filters while the second approach shows superior performance against
the selected literature including both KF and complementary filters. Furthermore, future studies to
investigate rather than tuning the measurement covariance matrix via scaling, the use of estimation
for obtaining the specific component of measurement noise covariance that cannot be obtained
analytically as mentioned previously.
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