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ABSTRACT 

 

A star tracker can provide attitude measurement once the detected stars are successfully 

identified and matched with the catalog information. To increase efficiency and reliability, a 

technique for identifying stars and estimating attitude in the general lost-in-space case while 

also tracking the stars in successive measurement frames is presented in this study. First, the 

Pyramid algorithm is used for star identification. QUEST algorithm is utilized to estimate 

attitude statically. To increase the accuracy of estimation and estimate the angular velocities 

in addition, Multiplicative Extended Kalman Filter (MEKF) is used. After achieving successive 

initial estimations, the identification is bypassed and only QUEST and MEKF are used to 

estimate the attitude, while the initially identified stars are tracked. Comparison between 

algorithms with and without MEKF is done, and robustness of the algorithms is tested. 

 
Keywords: Star sensor, Pyramid algorithm, Kosik algorithm, Attitude tracking, QUEST, 
Extended Kalman Filtering  

INTRODUCTION 

Star trackers are commonly used for spacecraft attitude determination for both Earth orbiting 
and interplanetary missions due to their high accuracy. A star sensor has two modes when 
solving the attitude using the detected stars: lost-in-space and tracking. In a lost-in-space 
scenario, no attitude information is available. Initially, the star tracker scans the whole field of 
view (FOV) to receive and map the stars and match them with the stars in the sensor's star 
catalog. Different algorithms can be used for the star identification process. In this paper, Kosik 
and Pyramid algorithms are presented and used as star identification algorithms. Pyramid 
algorithm [Mortari, Samaan, Bruccoleri, & Junkins, 2004], as a lost-in-space algorithm, uses 
angular distances between stars as a star identification feature and tries to match star patterns 
including four and more stars by starting from a triangular pattern. On the other hand, Kosik 
algorithm [Kosik, 1991] requires coarse attitude information of the spacecraft and uses angular 
separation and orientation differences of the star pairs as star identification requires patterns 
including two or more stars. 
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There are various other algorithms for star identification which are not used in this study but 
briefly discussed here. Liebe’s algorithm [Liebe, Christian, 1995] requires at least three stars 
and selects one star and takes two closest stars to the first selected star. Then uses angular 
separations between the first and second selected stars and the angle between them. Baldini’s 
algorithm [Baldini, Barni, Foggi, Bernelli & Mecocci, 1993] first identifies N number of brightest 
stars in the image and determines the angular separation of the five-star sequences. After that 
the algorithm makes a linear search through the cataloged stars, which fit in the acceptable 
range, by comparing the distances of each star to eliminate the stars having angular separation 
out of the tolerance of the observed angular separation. In the end it has reduced lists of 
possible matches for the stars and compares the combination of stars in these lists that could 
fit in the acceptable range for the identification., Padgett’s Grid Algorithm [Padgett, Delgado, 
1997] selects a star in the image and uses the location of the neighboring stars as points on a 
loose grid and this list goes on. According to the survey made by Spatling and Mortari [Spatling 
& Mortari, 2009] Pyramid algorithm requires less database search time and gives results with 
high validation compared to all these discussed algorithms. This is why Pyramid method is 
chosen to be the main Lost-In-Space algorithm in this paper. Kosik algorithm, on the other 
hand, gives robust results since it uses the coarse attitude knowledge to reduce the catalog 
search interval and is thought to be efficient where the tracking sequence is lost, but a coarse 
attitude information is available.  
 
The star identification process is a critical stage of measurement processing for star trackers 
because it is time-consuming, and the star catalog requires large memory. To improve the 
situation, a method is designed and presented here. After sufficient number of stars are 
matched, attitude and angular rate information become available by processing the 
measurement and reference data. Attitude determination in terms of the quaternion is done by 
the QUEST method first. Once we have QUEST attitude estimates, the angular rate can be 
estimated as well using quaternion derivatives. After that the star sensor switches to tracking 
mode in which the already identified stars are tracked by using available attitude rate 
information. A new direction vector for stars is projected to the next frame by using the 
estimated angular velocity. To ensure the accuracy of the tracking mode, the Multiplicative 
Extended Kalman Filter (MEKF) can be further added to the scheme. Different approaches are 
tested in terms of accuracy and robustness. 

 

METHOD 

 

Figure 1 summarizes the investigated methods in this paper. The overall method is presented 
in five main sections:  

1. Star Identification Process with Kosik and Pyramid Algorithms 
2. QUEST 
3. Star Tracking 
4. Extended Kalman Filter 
5. The Proposed Method 

 
In Figure 1, Block 1 in both scenarios represent the star identification and tracking features. 
Block 2 is for the attitude estimation, such that the star tracker can autonomously provide the 
quaternion estimate. Scenarios 1 and 2 differs due to the used MEKF is scenario 2 for finer 
attitude and attitude rate estimation.   
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Figure 1: Flow Charts of the Proposed Method: Scenario 1 (Left) and Scenario 2 (Right) 

 

Star Identification Process 

 

Pyramid Algorithm 

The pyramid Algorithm [Mortari, Samaan, Bruccoleri, & Junkins, 2004] is based on forming a 
pyramid star pattern with four stars or a triangle pattern for the cases that star tracker captures 
only three stars. After it forms the pattern, it looks at the inter-star angles between the stars of 
the pattern. The algorithm first looks for a star triangle and after that, it tries to identify the stars 
forming that triangle by using the ‘k’ vector approach. If it cannot find a unique solution it tries 
a different triangle that can be formed from the stars in the FOV. If it finds a solution, it seeks 
a reference star to form a pyramid. Then, it finds the inter-star angles of the pyramid and tries 
to match these angles with the catalog using the same approach. If it finds a unique solution 
that is consistent with the previous triangle solution the algorithm completes its mission for that 
time step. The key for the Pyramid star identification method is the ‘k’ vector range searching 
technique which makes the code able to know where to search in the catalog, therefore 
decreasing the operation time and cost. 

Formation of the ‘k-vector’ is as follows: 

The interstar angles between the star pairs which can fit in the field of view are found and 
sorted. Let the sorted vector is described as 𝑠(𝑁) where 𝑁 is the number of elements and 𝐼 is 
the integer vector that stores the indices of unsorted star angle vector 𝑦 where 
 

𝑦(𝐼(𝑖)) = 𝑠(𝑖) 

𝑦𝑚𝑖𝑛 = min(𝑦(𝑖)) = 𝑠(1) 

𝑦𝑚𝑎𝑥 = max(𝑦(𝑁)) = 𝑠(𝑁) 

   (1) 

 
This approach is about constructing a line that is slightly steeper than the line that connects  
[1, 𝑦𝑚𝑖𝑛] and [𝑁, 𝑦𝑚𝑎𝑥] points. This new line connects [1, 𝑦𝑚𝑖𝑛 − 𝜉] and      [𝑁, 𝑦𝑚𝑎𝑥 + 𝜉] points 
where 

𝜉 = 𝜀 𝑚𝑎𝑥[|𝑦𝑚𝑖𝑛|, |𝑦𝑚𝑎𝑥|] 
 

   (2) 

Here 𝜀 which is machine epsilon can be taken as 2.22 10−16 for double precision algorithms. 
Thus, the equation of the new line can be formed as: 

𝑧(𝑥) = 𝑚𝑥 + 𝑞, 𝑤ℎ𝑒𝑟𝑒 𝑚 =
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 + 2𝜉

𝑁 − 1
 &  𝑞 =  𝑦𝑚𝑖𝑛 − 𝑚 − 𝜉 

   (3) 



 

AIAC-2021-053                             Açıkgöz,Oksal,Kaplan & Söken 

4 

Ankara International Aerospace Conference 
 

 
Then, the k vector which starts from 0 (𝑖𝑒. 𝑘(1) = 0) is constructed considering the following 
condition: 

𝑘(𝑖) = 𝑗 𝑖𝑓 𝑠(𝑗) ≤ 𝑧(𝑖) ≤ 𝑠(𝑗 + 1) 
 

     (4) 

Note that i varies from 1 to 𝑁 − 1. By looking at above relation it can be seen that the k vector 

gives the number of elements of ‘s’ vector below the 𝑖𝑡ℎ element of ‘z’ vector.  
 
Pyramid algorithm gets the array of interstar angles of a star pattern which can be triangle or 
pyramid. Then, it gets the range of the array which is [𝑦𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥] and the usage algorithm of 
k vector is as follows: 

[𝑦𝑎  , 𝑦𝑏] = [𝑦𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥] 
 

     (5) 

𝑗𝑏 = ⌊
𝑦𝑎 − 𝑞

𝑚
⌋  &  𝑗𝑡 = ⌈

𝑦𝑎 − 𝑞

𝑚
⌉ 

 

     (6) 

𝑘𝑠𝑡𝑎𝑟𝑡 = 𝑘(𝑗𝑏) + 1 & 𝑘𝑒𝑛𝑑 =  𝑘(𝑗𝑡)  
 

     (7) 

Here ⌊𝑥⌋ is the maximum integer number that is smaller than x and ⌈𝑥⌉ is the minimum integer 
number that is greater than x. Note that in order to simulate the method an array which stores 
the suitable star pairs for different angular distances is formed [Spatling & Mortari, 2009]. 
 
The pyramid algorithm can be summarized as in Algorithm 1. 
 

Algorithm 1: Pyramid Algorithm General Flow 

1 FOR # of Possible Triangles 

2 Get a triangle 

3 Identify 

4 If it cannot be identified Goto 2 

5 Save it as a reference triangle 

6 Get another star 

7 If it can be identified Update reference triangle as brightest 3 stars & Goto 6 

8 If 4 or more stars are identified Stop Identification 

9 END 
 
Note that this approach is successful when there is not any error in the body vector 
measurements coming from the image processing. Therefore, two algorithms are developed 
in order to help the identification algorithm to overcome the failure due to errors. They can be 
separated as triangle match (Algorithm 2) and pyramid match (Algorithm 3) algorithms which 
are explained below. 
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Algorithm 2: Triangle Match Algorithm 

1 FOR range of narrowed possible pairs for 1st Angle 

2 Look at the angle of the pair 

3 IF angle is in between ±0.45 deg range Hold it as a candidate 1st pair    

4 ELSE Goto 22 

5 END IF 

6 FOR range of narrowed possible pairs for 2nd Angle 

7 Look at the angle of the pair 

8 IF angle is in between ±0.45 deg range AND the first star of the pair is same with that of 1st pair    

9 Hold it as a candidate 2nd pair 

10 ELSE Goto 21 
11 END IF 
12 FOR range of narrowed possible pairs for 3rd Angle 

13 Look at the angle of the pair 
14 IF angle is in between ±0.45 deg range 
15    IF the 1st star of the pair is same with 2nd of the 1st pair AND the 2nd star of the pair is same with 2nd of 2nd pair 

16      Save it as the 3rd pair 
17       STOP matching   

18    END IF 
19 END IF 
20 END 
21 END 
22 END 

 
 

Algorithm 3: Pyramid Match Algorithm 

1 FOR 1 range of narrowed possible pairs for 1st Angle 

2 Look at the angle of the pair 

3 IF angle is in between ±0.6 deg range AND the pair includes the first star of the triangle 

4 Hold uncommon star as the candidate    

5 ELSE Goto 21 
6 END IF 

7 FOR 2 range of narrowed possible pairs for 2nd Angle 

8 Look at the angle of the pair 

9 IF angle is in between ±0.6 deg range 

10   IF the pair includes the second star of the ref triangle AND the pair includes the candidate 
11     FOR 3 range of narrowed possible pairs for 3rd Angle 

12     Look at the angle of the pair 
13      IF the pair includes the third star of the ref triangle AND the pair includes the candidate 
14      Save the candidate as the Match 
15       STOP matching   
16      END IF 
17      END 3 
18   END IF 
19 END IF 
20 END 2 
21 END 1 
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Kosik Algorithm  

 

Kosik Algorithm [Kosik, 1991] is a star identification algorithm that requires coarse attitude 
information about the spacecraft. The working principle of the Kosik Star Identification 
Algorithm is based on two different criteria which are angular separation and orientation 
differences of the stars. Two criteria depending on star body vectors are given with below 
relations. 

 
 ‖�⃑� 𝑐

12‖ − ‖�⃑� 𝑚
12‖ ≤  𝜀  

 

            (8) 

 
 �⃑� 𝑐

12⦁�⃑� 𝑚
12

‖�⃑� 𝑚
12‖‖�⃑� 𝑐

12‖
≤ 1 − ∆ 

 

            (9) 

In above relations, subscript c stands for catalogue, subscript m stands for the measured 
vector. Also, superscript 1 and 2 are defined as numbers of star body vectors that are 
examined at a given moment where: 
 �⃑� 𝑐

12 = 𝑉𝑐
2⃑⃑ ⃑⃑  −  𝑉𝑐

1⃑⃑ ⃑⃑             (10) 

 
Actually, the first criteria given in (8) measures and checks angular separation values between 
stars in the field of view and stars in the catalogue. The second criteria given in (9) measures 
and checks orientation differences between the star pairs in the field of view and star pairs in 
the star catalogue. During this process, all-star pair combinations in the catalogue is evaluated 
by the algorithm. To have a better perception, orientation difference between star pairs in the 
field of view and star pairs in the catalogue is illustrated in below Figure (2).  
 

 
Figure 2: Orientation Criteria Demonstration of Star Pairs 

 
 

As can be understood from inequalities (8) and (9), if the corresponding values are less than 
or equal to certain thresholds 𝜀 and 1 − ∆, in other words, if both conditions are satisfied 
simultaneously, Kosik Algorithm matches the stars in the field of view with the stars in the 
catalogue. Finally, once the stars in the field of view are matched, the matched stars can be 
used to determine attitude of the spacecraft. 
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Please note that if a pair satisfies both conditions (8) and (9), still there are two options while 
making star matching. This problem can be handled with the following statement. When the 
first measured star corresponds to the first star in the qualified pair from the catalogue, and the 
second measured star corresponds to the second star in the qualified pair, their orientation 

difference is near 0 degree. So, matching can be done directly as 𝑉𝑚
1 = 𝑉𝑐

1 and 𝑉𝑚
2 = 𝑉𝑐

2 . On 

the other hand, if their orientation difference is near 180-degree, matching can be done as 

𝑉𝑚
1 = 𝑉𝑐

2  and 𝑉𝑚
2 = 𝑉𝑐

1. 

 
Coarse attitude information can be used in Kosik Algorithm in different ways. In this study, the 
narrowed star catalogue is generated in a way that it includes all the stars that that are making 
an angle of 35-degree or less with the -z axis of the spacecraft’s body frame, which is actually 
the boresight axis of the star tracker. During this process, quaternion values estimated by the 
QUEST or the MEKF in the previous recursive step is used. Thus, the coarse attitude is used 
to map all the catalog stars to the body frame and these mapped star vectors are used in the 

identification (e.g.  𝑉𝑐1⃑⃑ ⃑⃑   , 𝑉𝑐
2⃑⃑ ⃑⃑  ) in Eq.10. 

 
In order to improve the accuracy of Kosik Algorithm, following method is applied. Since the 
algorithm runs by considering stars in the FOV by pairs, first, it tries to match a selected pair 
with a pair in the catalogue according to (8) and (9). If no match is achieved, it constructs 
another star pair which consists of another star in the field of view. This generally corresponds 
to the brightest star in the field of view, and the star coming from the unmatched pair in the first 
try. Then, the algorithm tries to match this newly created pair. After matching this newly created 
star pair, the algorithm again constructs a new pair which includes other stars coming from the 
unmatched pair in the first try. Then, it tries to match this newly created star pair. In brief, both 
two stars in the first unmatched star pair could be matched by constructing two additional pairs 
having another star in the field of view. Below, in Algorithm 4, the general star identification 
process of Kosik Algorithm used in this study is given. 
 

 Algorithm 4: Kosik Algorithm General Flow 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 

Generate narrowed catalogue 

Construct a pair in the FOV 

Try to identify the pair 

If it can be identified 
    Pass to next pair in the FOV (Goto 2) 

Else 
    Construct two additional pairs 

    Try to identify these both pairs 

    Pass to next pair in the FOV (Goto 2) 

END 

 

Quest 

 

QUEST method [J., Damaren, & Forbes, 2013] is a very frequently used attitude determination 
algorithm that takes measurements in the body frame as input and gives estimated quaternion 
information of the spacecraft as output. It is based on Wahba’s Cost Function J given in 
equation (12), which is needed to be minimized. 

𝐽 =  ∑ 𝑤𝑘(1 − 𝑆𝑏,𝑘
𝑇 𝐴𝑆𝑖,𝑘)

𝑁

𝑘=1

 

 

     
            (12) 

Here 𝑤𝑘 is the weight of the sensors, 𝑆𝑖,𝑘 is star vector in Earth Centered Inertial (ECI) frame, 

𝑆𝑏,𝑘 is the measured star vector in spacecraft’s body frame and 𝐴is the direction cosine matrix 

from ECI frame to the spacecraft’s body frame. 
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Minimizing J, equals to maximizing g function defined as, 

𝑔(�̅�) = �̅�𝑇𝐾 �̅�             (13) 

Where, 

[K] = [
𝜎 𝑍𝑇

𝑍 𝑆 − 𝜎𝐼3𝑥3
],     𝜎 = 𝑡𝑟([𝐵]) 

 

[𝐵] =  ∑ 𝑤𝑘
𝑁
𝑘=1 𝑆𝑏,𝑘𝑆𝑖,𝑘

𝑇 ,   [𝑆] = 𝐵 + 𝐵𝑇,   [Z] = [𝐵23 − 𝐵32 𝐵31 − 𝐵13 𝐵12 − 𝐵21]
𝑇 

 
After some mathematical manipulations, it is seen that desired quaternion set corresponds to 
the largest eigenvector of matrix K. 
In QUEST algorithm, largest eigenvalue of K matrix, firstly, assumed as sum of individual 
sensor weights, 

𝜆0 = ∑ 𝑤𝑘

𝑁

𝑘=1

 

 

  
            (14) 

Then by using Newton-Raphson Iteration Method 𝜆𝑚𝑎𝑥 can be found as follows, 

𝜆𝑚𝑎𝑥 = 𝜆𝑖 = 𝜆𝑖−1 −
𝑓(𝜆𝑖−1)

𝑓′(𝜆𝑖−1)
 

  
            (15) 
 

Where,  
𝑓(𝑠) = det (𝐾 − 𝑠[𝐼4𝑥4]) 

 

            (16) 
 

Therefore, estimated Rodrigues parameter vector R can be found as, 

�̅� = ((𝜆𝑜𝑝𝑡 + 𝜎)𝐼3𝑥3 − [𝑆])−1[𝑍]             (17) 
 

At the end, quaternion vector estimated by QUEST method can be defined as, 

�̅� =  
1

√1 + �̅�𝑇�̅�
[
1
�̅�
] 

 

            (18) 
 

Knowing that 𝐴 is the direction cosine matrix, error of QUEST can be determined as 
 

𝜈𝑒𝑟𝑟 = 2𝑠𝑖𝑛−1 (
‖𝐴 − 𝐴𝑡𝑟𝑢𝑒‖𝐹

√8
)  𝑤ℎ𝑒𝑟𝑒 ‖𝐶‖𝐹

2 = 𝑡𝑟𝑎𝑐𝑒(𝐶𝐶𝑇) 

 

      (19) 

In calculation of three axis error, firstly quaternions of the QUEST is converted into Euler angles 
via following relations [D. Baldini,1985]: 
 

         [
𝜙
𝜃
𝜓
] = [

𝑎𝑡𝑎𝑛2(2(𝑞0𝑞1 + 𝑞2𝑞3), 1 − 2(𝑞1
2 + 𝑞2

2))
asin (2(𝑞0𝑞2 − 𝑞3𝑞1))

𝑎𝑡𝑎𝑛2(2(𝑞0𝑞3 + 𝑞1𝑞2), 1 − 2(𝑞2
2 + 𝑞3

2))

] 

  
          (20) 

 

Taking the differences between the actual and simulated Euler angles gives the three-axis 
angle errors. 
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Tracking 

 

The tracking mode of the star sensors becomes enabled after a certain period of a lost-in-
space star identification algorithm operation. Once the system gets stable quaternion 
information provided by the star identification algorithms and the QUEST, it switches to 
tracking mode in order to reduce the computational load. With the knowledge of previous 
quaternion information, the angular rate of the spacecraft is estimated by using kinematic 
equations. Then, the body vectors of the stars in the previous time step which are matched 
with the catalog already, are projected into the next time step. The angular separation between 
these projected vectors and the current measured body vectors are compared with each other 
and they are stored if angular separation values are small enough. Thus, stars become 
matched without the need for a star identification algorithm which results in a significant 
reduction in computational load. For the cases of high angular rates, high measurement errors 
which cause the projection process to be flawed, the star identification algorithms are needed 
to operate again until reaching stable quaternion information. 

The vector projection algorithm is as follows [Markley & Crassidis, 2014]: 

First the angular velocity of the previous time step is calculated based on quaternion 
differentiation 

 ωk−1 = 2ΞT(qk−1)q̇k−1   (21) 

where 

 

                     Ξ(q) = [

   
q(4) −q(3)    q(2)
q(3)    q(4) −q(1)

−q(2)    q(1)    q(4)
−q(1) −q(2) −q(3)

]  & q̇k−1 =
qk−1−qk−2

Δt
 

 

(22) 

 

Here Δ𝑡 is timestep and subscript k describes the discrete time.  

Angular separation between the body frames of the spacecraft in the current time and previous 
time is found by Euler integration. 

 

[

ϕk,k−1

θk,k−1

ψk,k−1

] = [

ωk−1 (1)
ωk−1 (2)
ωk−1 (3)

]Δt  

 

        (23) 

After that the previous body vectors of the stars can be projected by following multiplication 

 

 bk = Ck,k−1(ψk,k−1, θk,k−1, ϕk,k−1)bk−1  

 

(24) 

Note that 𝐶𝑘,𝑘−1(𝜓𝑘,𝑘−1, 𝜃𝑘,𝑘−1, 𝜙𝑘,𝑘−1) is the direction cosine matrix that projects the previous 

body frame to the current time by using the previous angular rate in Z-Y-X sequence. 

 

Multiplicative Extended Kalman Filter 

 

The MEKF is a very compelling attitude filtering algorithm due to its flexibility and computational 
efficiency. After the star identification is completed and an initial attitude and angular velocity 
are established, the star tracker enters tracking mode. In the tracking mode, as discussed in 
previous section the algorithm can use the QUEST estimated quaternions and calculated 
angular rates (recall scenario 1 in Fig.1). Nonetheless, to provide finer attitude and attitude 
rates for the tracker the MEKF block can be added into the algorithm (Scenario 2 in Fig.1). 
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As a result, recursively QUEST and MEKF algorithms perform attitude calculation. Kalman 
filter integrates mathematical model of the spacecraft and measurements coming from the 
QUEST to estimate the attitude and attitude rate. MEKF is used when nonlinearity is present. 
In our problem, the system model is nonlinear. There are two steps for filtering [Spratling & 
Mortari,2009]: 

 

1. Prediction: Mathematical model is used to propagate states to the time of 
measurements   

2. Update: Predicted states are updated by using the measurements  
 

State is chosen as: 

𝑥 = [𝛿𝑎�̂�  𝛿𝛽�̂�] 
 

The following scheme summarizes the whole process. 

 

 

 

 

 
 
 
 
 

 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Multiplicative Extended Kalman Filter General Structure 
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Data Acquisition 𝑧𝑘 

Determination of ℎ𝑘 
q from 

QUEST 

Sensitivity Matrix  

𝐻𝑘 = [𝐼3 03] 
𝑅𝑘 = 0.1𝐼3 

Gain 

𝐾𝑘 = �̂�𝑘
−𝐻𝑘

𝑇(𝐻𝑘�̂�𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)
−1

 

Residual  

𝜖𝑘 = (�̃� − ℎ(�̂�𝑘
−)) 

Error State Update 

[
𝛿𝑎𝑘

+̂

𝛿𝛽𝑘
+̂
] = [

𝛿𝑎𝑘
−̂

𝛿𝛽𝑘
−̂
] + 𝐾𝑘(𝜖𝑘 − 𝐻𝑘 [

𝛿𝑎𝑘
−̂

𝛿𝛽𝑘
−̂
]) 

Covariance Update 

𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘

− 

 

  

Global State Update 

 

𝑞𝑘
+̂ =

𝑞𝑘
−̂ + 𝛯[𝑞𝑘

−̂]𝛿𝑎𝑘
+

‖𝑞𝑘
− + 𝛯[𝑞𝑘

−̂]𝛿𝑎𝑘
+‖

 

 

𝛽𝑘
+̂ = 𝛽𝑘

−̂ + 𝛿𝛽𝑘
+̂ 

 

�̂�𝑘
+ = �̃� + 𝛽𝑘

+̂ 

 

 

 

 

Reset  

𝛿𝛽𝑘
− = 0̂  

𝛿𝑎𝑘
−̂ = 0 
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Proposed Method 

 
In this study, two different approaches for the integration of the introduced methods are 
compared and discussed. As it is shown in Fig. 1the main difference between these two 
approaches is as follows: 
 

• In the first approach, in absence of MEKF, tracking and Kosik blocks are feedbacked 
with the quaternion output of the QUEST block and the calculated angular velocity  

• In the second approach, those blocks are feedbacked with the angular velocity and 
quaternion information coming from the MEKF block, 

 
In order to reduce the computational load, it is best to reduce the operation time of star ID 
algorithms by operating in tracking mode as much as possible. But tracking can be lost in time. 
Therefore, previously explained methods are combined. Note that, when they are called, 
Pyramid method runs for 10 seconds, Kosik algorithm runs for 3 seconds and the tracking 
function runs until the tracking is lost. 
 
The more detailed explanation of the main algorithm is explained in the following flow chart. 
 

 
 

Figure 4: General Flow of Star Identification and Tracking Process 
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It should be noticed that the Pyramid algorithm may not match triangles correctly and, when 
there are 3 stars in the view the success rate just crashes to the zero. Also, in some rare cases 
where there are 4 stars in the FOV it may continue matching based on a wrong triangle. Thus, 
in these cases, the attitude error rapidly increases. As it can be seen from the Figure 4 the first 
two conditional operators are placed in the algorithm in order to prevent the failure. 
 
Control and Error Check blocks shown in Fig.4 are explained below in detail (Algorithm 5 and 
Algorithm 6). 
 

Algorithm 5: Control Blocks Pseudo Code 

 
Pyramid Control Block 
If run_time==10 sec 

    switch to tracking 

end 

 
Tracking Control Block 
If less than 60% match or # of matches==2 

    switch to kosik 

end 

 
Kosik Control Block 
If less than 70% match 

    switch to pyramid 

elseif run_time==3 sec 

    switch to tracking 

end 
 

 
 

Algorithm 6: Error Check Block Pseudo Code 

 
calculate angular error between t and t-1 

If error > 4 deg 

    switch to MEKF (dynamic model) 

else  

    continue to MEKF (with quest results) 

end 

 
 
Note that, error check is done under the assumption of that the motion of the spacecraft is slow 
so that the attitude does not change significantly. Also, it should be stated that the angular 
error is calculated in terms of Frobenius Norm as it is shown in Equation (19). 
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Results and Discussions 
 
As can be seen from Figure 5, adding MEKF block to the scheme decreases the attitude 
estimation error significantly. From scenario 1 to scenario 2, the maximum error angle dropped 
from 4 degrees to 2 degrees. It is necessary to notice that there is a distinct spike at nearly 
3200th second of both graphs. This situation is examined, and it is concluded that a new 
relatively bright star entering into the FOV of the spacecraft causes tracking mode to reduce 
its success rate by shifting star order which is sent to QUEST. In this period, the algorithm runs 
in tracking mode without calling any of the star identification algorithms. Therefore, error in the 
outputs of the attitude estimations is getting larger since the matched star orders are faulty in 
the tracking mode. At a certain time, tracking mode requirements are not satisfied and Pyramid 
Algorithm is called. After calling star identification algorithm, the error can be again reduced as 
shown in Figure 5. 

 
 

 
Figure 5: Angle Errors Comparison  

 
Figure 6 shows that with the MEKF scenario, in every axis, the attitude estimation error is 
smaller. Also, the process is noisier in scenario 1. There are some gaps in the left figure. It 
means that no successful star matching is done, so there is no attitude information available. 
In the right figure, there is no gaps since, in no matching case, the mathematical model is used 
to estimate the attitude in the MEKF. Therefore, there is always attitude information available 
in scenario 2. 
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Figure 6: Angle Errors Comparison in Three-Axis 

 
 
Next we check the number of referrals to each algorithm in the proposed schemes. In Figure 
7, operation type 0 corresponds to time steps when there is no star identification, operation 
type 1 corresponds to the calls for Pyramid Algorithm, operation type 2 corresponds to the calls 
for tracking and operation type 3 corresponds to the calls for Kosik Algorithm. In both cases 
the majority of the time the tracking algorithm is running and this is a desired situation for 
reducing the load.  

 

 
 

Figure 7: Operation Type Comparison 
 

Table 1 further investigates the computational times. It can be seen that MEKF has increased 
the performance in such a way that the Pyramid operation time is decreased and tracking is 
increased. Also it is seen that Kosik has taken place more in MEKF case. These results are 
expected since the MEKF is reducing the error in attitude and angular velocity estimates which 
are necessary information for the Kosik and Tracking blocks. Accurate measurements led the 
Kosik and Tracking Blocks operate in success therefore their operation time is increasing when 
the MEKF is included in the block. 
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Table 1. Performance Comparison  

Performance of The Methods 
  with MEKF without MEKF 

Pyramid Operation Time 1150s/15000s 1770s/15000s 
Kosik Operation Time 141s/15000s 123s/15000s 
Tracking Operation Time 11252s/15000s 10665s/15000s 
No Identification 2442s/15000s 2442s/15000s 
 

 
Figure 8 shows the Runtime comparison of the proposed method with the pyramid method in 
this simulation. It can be clearly observed that the runtime for the proposed method is almost 
10% of the pyramid runtime thanks to the tracking block.  
 

 
 

Figure 8: Runtime Comparison 
 

CONCLUSIONS 
 
In this study, a combined method is proposed for star identification and spacecraft attitude 
determination. The results are presented and discussed. It can be observed that the purpose 
of reduced usage of star identification algorithms by replacing them with tracking is achieved. 
Thus, computational load is reduced compared to computational effort consumed by Pyramid 
Method only. As it is proposed, there are two scenarios for comparison, which are with MEKF 
and without MEKF scenarios. Without MEKF, Kosik and Tracking blocks are sent information 
from QUEST while this information is provided by MEKF in the other scenario. It is observed 
that MEKF increased the accuracy of the attitude estimation, therefore, increased the tracking 
performance. It should be noted that, throughout the operation, error in attitude estimation does 

not exceed 0.5 degrees (2𝑛𝑑  Scenario) except two limited periods of time. The reason of these 
exceptions is understood that there are multiple mismatches done by tracking in those periods, 
causing attitude estimation not to be proper. Overall, proposed method is investigated and 
compared with the approaches in the literature and shown to be successful in terms of both 
accuracy and computational effort. 
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