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ABSTRACT

Pressure oscillations inherently exist in rocket engines due to their high power density associated
with turbulent combustion. Coupling of the acoustic eigenmodes of the combustion chamber with
the unsteady heat release from combustion may lead to combustion instability which can impose
important stresses and vibration on the combustion chamber as well as the whole vehicle. In
this paper, an iterative methodology is utilized to predict the onset of combustion instabilities
in rocket engines. An experimental combustion chamber from literature is investigated, and the
computed results are compared with measure data. The results reveal that the iterative method
works reasonably as long as the inhomogeneity due to either boundary conditions or unsteady
heat sources is restricted to small values.

INTRODUCTION

Combustion instability can simply be defined as undesired rise of the combustion chamber pressure.
This pressure rise leads to important fluctuations in thrust generation as well as stresses and vibration
on the structure or even to the destruction of the engine [Searby, 1991; Candel, 2004]. A typical
pressure oscillation inside a combustion chamber is shown in Figure 1, as an example.

The pressure inside the combustion chamber is not constant during the operation of a rocket.
The pressure may oscillate due to many reasons, such as turbulence, fluctuations in atomization
process, even from the propellant supply lines. These oscillations seen due to the nature of rocket
engines are not called as combustion instability. However, if such perturbations start developing a
positive feedback between the chamber acoustic field and unsteady heat release, then the pressure
fluctuations may start rising in an uncontrolled manner, leading to unacceptable levels. Such coupling
of the unsteady heat release and increasing acoustic pressure fluctuations is called thermoacoustic
instability, commonly termed combustion instability in rocket and air-breathing engines. Therefore,
the prediction of combustion instability and its alleviation during the design of a rocket engine is
important.
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Figure 1: Pressure fluctuations in a LPRE [Schmitt, 2017]

Combustion instability prediction methods can be classified according to their level of accuracy.
In low order modelling approach, network models are used [Evesque, 2002], [Stow, 2009]. These
models treat the combustion chamber as one dimensional components with discontinuities to model
the flame, geometric changes, and so on. Large Eddy Simulation (LES) can be used to resolve not
only the combustion dynamics inside the chamber, but also the acoustic behaviour of the chamber.
However, this resolution comes with a high computational expense, and it cannot be affordable for
real rocket engines. In literature, with LES mostly laboratory scale combustion chamber stability
characteristics are investigated [Schmitt, 2017], [Urbano, 2016]. To decrease computational require-
ments, methods that depend on the linearized equations with finite volume/element discretization
or inhomogeneous wave equation are widely used [Culick , 2006], [Nicoud, 2007], [Pieringer, 2009],
provided that a model for the interaction of the unsteady heat release and pressure oscillations,
commonly called flame transfer function (FTF), is supplied. These methods are then well suited for
complex geometries compared to direct use of LES for each specific case. The FTF itself is obtained
through either experiments or LES. In any case investigation of combustion instability is a laborious
and difficult task.

In this study, the iterative methodology suggested by Culick [2006] is utilized for the prediction of
linear combustion instabilities. The method is based on determining the perturbed wavenumbers
and eigenmodes of the chamber, and thereby existence of any instability driving coupling between
the heat release and acoustics. The details of the iterative method are described in the next section.

PREDICTION OF COMBUSTION INSTABILITY

Wave Equation for a Combustion Chamber

The conservation equations for a two phase mixture in non-conservative form are given by equations
(1) - (3). In these equations, the density is defined as the sum of all the phases, i.e. ρ = ρl + ρg.

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = W (1)

ρ

[
∂u

∂t
+ u · ∇u

]
= −∇p+ F (2)

ρCv

[
∂T

∂t
+ u · ∇T + p∇ · u

]
= Q (3)

where, W , F , and Q represent the mass, momentum and energy source terms, respectively. A
detailed explanation of the conservation equations and source terms can be found in Culick [2006].
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The wave equation for a combustion chamber, which accounts for the terms related to combustion
processes such as evaporation, heat release and so on, can be derived following the same procedure
as that of the classical acoustics. The wave equation for a generic combustion chamber, after writing
any instantaneous variable Q as the summation of its time mean plus a fluctuating part about it,
i.e. Q = Q0 + Q′, is obtained first by taking the divergence of the momentum equation and time
derivative of the pressure equation (combination of the continuity and energy equation), and then
subtracting the resultant equations from each other. After some further manipulations, the wave
equation and the corresponding boundary condition are given by equation (4).

∇2p′ − 1

c2
∂2p′

∂t2
= h, in V

n̂ · ∇p′ = −f, on S
(4)

where, p′ is the pressure perturbation, c represents the chamber averaged speed of sound, h signifies
the volume (V) source terms that arise from the coupling between acoustics and combustion, and f
includes the effects of the chamber boundary (S) conditions, n̂ is the boundary unit normal vector.
The interaction between acoustics and combustion is shown schematically in Figure 2.

Flow Combustion
p′

q′p′

Acoustic Interactions

Figure 2: The interaction between acoustics and combustion

The boundary conditions represented by the source term f account for acoustic losses due to
impedance of the chamber walls and nozzle, as well as interactions with the injector. The source
term h, which behaves as a gain mechanism for the instability, includes linear and non-linear gas
dynamic effects, the entropy fluctuation effects and terms related to the combustion process such as
evaporation, heat release and so on. The most important contribution from these terms comes from
the combustion process for the liquid propellant rocket engines. The other terms can be neglected
[Culick , 2006] since the mean flow inside the chamber is small compared to speed of sound and the
chamber geometries are generally short.

Solution of the Wave Equation

Assuming the time dependency of any fluctuating quantity Q′(x, t) in the form
∑

ω Q̂(x, ω)eiωt,
where ω is the angular frequency of oscillation, we can write the inhomogeneous wave equation,
equation (4), (for brevity frequency dependence of p is not shown explicitly)

∇2p̂(x) + k2p̂(x) = ĥ(x), in V
n̂(x) · ∇p̂(x) = −f̂(x), on S

(5)

where k = ω/c̄ is the wave number. The normal acoustic modes p̂N of a combustion chamber can
be obtained by solving the homogeneous wave equation given by

∇2ψ̂N (x) + k2N ψ̂N (x) = 0, in V
n̂(x) · ∇ψ̂N (x) = 0, on S

(6)

where ψ̂N ≡ p̂N and kN represent the normal mode shapes and wave numbers, respectively. Note
that the normal mode angular frequencies ωN are written in terms of the wave number and mean
speed of sound as ωN = ckN .
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Multiplying equation (5) by ψ̂N and equation (6) by p̂, then subtracting from each other and then
integrating the resulting equation over the chamber volume V bounded by surface S, one can obtain

k2 − k2N =
1∫

V
ψ̂N (x)p̂(x) dV

{∫
V

ψ̂N (x)ĥ(x) dV +

∫
S

ψ̂N (x)f̂(x) dS
}
. (7)

Using the Green’s function and its properties, the perturbed mode functions, p̂, can be defined as a
series expansion of the normal mode shapes ψ̂N . Recognizing that the normal modes are the solution
of the homogeneous problem and are therefore orthogonal, the Green function can be written as
follows:

Ĝ(x|y) =

∞∑
`=0

ψ̂N,`(x)ψ̂N,`(y)

E2
` (k2 − k2N,`)

with E2
`δ`m =

∫
V

ψ̂N,`(x)ψ̂N,m(x) dV (8)

where the subscript N to ψ̂ and k indicates the associated quantity is that of the natural mode,
and the bold subscript ` or m indicates the array of the mode indices in the directions of the
dimensionality of the problem, such as the first longitudinal, second transverse mode, and so on.
Taking convolution of the inhomogeneous wave equation, equation (5), with Green function (8), one
can find:

p̂(x) =

∞∑
`=0

ψ̂N,`(x)

E2
` (k2 − k2N,`)

{∫
V(y)

ψ̂N,`(y)ĥ(y) dV(y) +

∫
S(y)

ψ̂N,`(y)f̂(y) dS(y)

}
. (9)

Since the solutions of the perturbed modes should approach to the normal mode solutions as the
source terms, ĥ and f̂ , go to zero, one can write the following relations:

k2` = k2N,` +
1

E2
`

{∫
V(y)

ψ̂N,`(y)ĥ(y) dV(y) +

∫
S(y)

ψ̂N,`(y)f̂(y) dS(y)

}
(10)

p̂`(x) = ψN,`(x)+

∞∑
m=0

ψ̂N,m(x)(1− δ`m)

E2
m(k2` − k2N,m)

{∫
V(y)

ψ̂N,m(y)ĥ(y) dV(y)+

∫
S(y)

ψ̂N,m(y)f̂(y) dS(y)

}
(11)

where

E2
m =

∫
V
ψ̂2
N,m dV. (12)

Equations (10) and (11) form an implicit system for the solution of the perturbed, inhomogeneous
problem, because f̂ and ĥ are both functions of the perturbed solution. The solution for the
perturbed mode structures can be obtained using an iterative methodology [Culick , 1995]. The
right-hand sides of equations (10) and (11) are computed with the available mode shape functions
and wavenumbers where the infinite sum is replaced with a finite one. The computations are started
with an initial condition of

p̂` = ψ̂N,`, k` = kN,`, (13)

Although the solution procedure by the iterative method is simple, there is a condition for the
convergence that is the source terms should be small. Another requirement for thermoacoustic
instability analysis to obtain the source term ĥ due to combustion. Determination of the unsteady
heat release distribution inside the chamber is not an easy task. The heat release rate can be found
experimentally or using numerical method like LES.
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Treatment of Unsteady Heat Release

The source of thermoacoustic instability is the unsteady heat release coupled with chamber acoustics
in a way that drives the pressure perturbations to higher levels. A common way of treating the heat
source in the inhomogeneous wave equation is to link the heat source with pressure fluctuations, by
defining a flame transfer function (FTF) based on the axial velocity fluctuation û at xref, a reference
coordinate, in the form :

FTF = Rq̂ûref(x) =
q̂(x)

û(xref)
(14)

There are two possibilities to define the velocity fluctuation in this expression. One is through the
use of the local impedance at the reference point. The other one is to use the axial momentum
equation. The former requires the explicit knowledge of the impedance at the reference point, while
the latter requires solution of the velocity fluctuation at that point.

Using the local impedance one can express the velocity fluctuation as

û(xref) =
p̂(xref)

ρ̄c̄Z∗(xref)
=
p̂(xref)A

∗(xref)

ρ̄c̄
(15)

FTF may also be written as
R̂q̂ûref = n(x)e−iωτ(x) (16)

where n(x) is called the interaction index, and τ(x) is called the time delay. Both are in general
dependent on the frequency of oscillations.

From the linearized x-momentum equation the axial velocity fluctuation and pressure perturbation
are related by

û(xref) = −∇p̂(xref)

iρ̄c̄k
(17)

In this way the heat source term appearing in the inhomogeneous Helmholtz equation becomes

ĥ = −γ − 1

c̄
ikq̂ = −γ − 1

ρ̄c̄2
ikR̂q̂ûref p̂(xref)A

∗
ref, or

=
γ − 1

ρ̄c̄2
R̂q̂ûref∇p̂(xref)

(18)

Treatment of Impedance Boundary

When a boundary of the chamber has finite impedance, that is the boundary transmits part of
the acoustic energy, the proper condition to impose there, using the impedance definition given by
equation (15) and the normal momentum equation, is

−n̂(x) · ∇p̂(x)|S = ikA∗(x)p̂(x)|S ≡ f̂ (19)

Evaluation of Stability

In this paper the iterative approach is used to predict the onset of the instabilities, i.e. linear
instabilities inside the chamber. The source terms determine the net energy balance between the
energy addition into combustion chamber due to heat release and the acoustic energy losses due to
the impedance of the nozzle and injector. Depending on this net balance, the pressure oscillations
inside the chamber will grow or decay with time. The sign of the imaginary part of the wave number
of the inhomogeneous problem will determine whether an acoustic mode is linearly stable or not.
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RESULTS AND DISCUSSION

In this section the iterative analysis approach to solving the inhomogeneous wave equation with
internal and boundary sources is tested with two different cases. The first is a simple problem for
which analytical solution can be obtained. It is a two dimensional rectangular geometry with an
impedance boundary condition applied at the right boundary. The second problem is a laboratory
combustor case known as Continuously Variable Resonance Chamber (CVRC) [Miller, 2005; Yu,
2009] for which a LES computed flame transfer function and stability analysis results are available
[Garby, 2013]. These cases are discussed below.

Case 1: 2D Rectangular Geometry with impedance boundary condition

The rectangular domain has a length of L and height of H. All wall boundaries except the right
one is rigid. Finite impedance boundary condition is imposed on the right wall, which changes the
mode structures from the natural ones. The schematic of the problem is shown in Figure 3.

y

x
x = L

y = H

Z∗ = R∗ + iX∗

(0, 0)

Figure 3: 2D rectangular domain with impedance boundary condition

This problem is chosen as a verification case as both the natural modes and perturbed modes with
one boundary or two boundaries given in a direction may be treated with finite impedance to which
analytical solutions can be obtained. The two dimensional problem is setup with a length of L = 1 m
in the x, and a height of H = 0.25 m in the y-directions, respectively. The medium inside the domain
is assumed as stagnant air where the speed of sound and density values are set to c = 340 m/s and
ρ̄ = 1.225 kg/m3, respectively. While the internal source ĥ is taken zero, the boundary condition
with a finite impedance value at the right wall is formulated using the x-momentum equation, as
has been expressed above by equation (19).

The iterations are initiated using the natural mode shapes and wavenumbers, which are the solutions
to the homogeneous problem, f̂ = ĥ = 0, and given by

ψ̂N,`=(l,n)(x, y) = cos
(πlx
L

)
cos
(πny
H

)
, kN,` =

√(πl
L

)2
+
(πn
H

)2
, l = 0, 1, 2, ..., n = 0, 1, 2, ...

(20)

Calculations with the right boundary allowing passage of acoustic energy and thereby exhibiting
inhomogeneity are carried out for the two different impedance values of Z∗ = 4 − 4i, and Z∗ =
0.5−0.5i, respectively. The solutions for various modes are presented in forms of analytically obtained
natural modal shapes and wavenumbers, perturbed modal shapes and wavenumbers, and iteratively
found perturbed modal shapes and wavenumbers. An impedance boundary allows transmission of
wave energies, and hence is expected to yield positive imaginary parts for the perturbed wavenumbers.

The infinite sum term of equation (11) was replaced by a finite sum with Nl = 4 longitudinal and
Nn = 2 transverse modes. The iterative solutions are given in Figure 4, and Table 1 for Z∗ = 4−4i,
and in Figure 5 and Table 2 for Z∗ = 0.5−0.5i, respectively. In the tables the natural wavenumbers
are indicated by kN , the perturbed exact wavenumbers by kexact, and the iteratively calculated ones
by kiter. The mode indices are indicated by ` = (l, n) for oscillations in the axial and transverse
directions, respectively. It is clear that the analytical solutions have positive imaginary parts for
the wavenumbers as expected. It is also evident from the results that the higher one of the two
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impedance values tested resulted for a large range of mode numbers reasonably good agreement
with the analytical ones, but this statement is not true for all the modal contents of the waves at the
lower impedance value. The pressure contours of the modes (modal shapes) appear to be relatively
more sensitive to the imaginary parts of the resulting wavenumbers. As pointed out earlier that
the success of the iterative approach relies on how small the source terms in the inhomogeneous
wave equation are. Since the boundary source term f̂ is inversely proportional to the impedance
Z∗, lowering it caused larger inhomogeneity. In such cases a more direct approach to solving the
Helmholtz equation appears as a necessity.

(a) Mode (1,0) (b) Mode (1,1) (c) Mode (1,2)

(d) Mode (2,0) (e) Mode (2,1) (f) Mode (2,2)

Figure 4: Mode shapes for Z∗ = 4− 4i

Case 2: CVRC test case

In this section the experimental setup from literature called as Continuously Variable Resonance
Chamber (CVRC) [Miller, 2005], [Yu, 2009], [Sisco, 2011] is used as a validation case with the
chamber volume with LES computed heat sources as well as the chamber outlet opening to the
nozzle with an impedance condition. The combustion chamber is a cylindrical body, which has
dimensions of 38.1 cm in length and 4.5 cm in diameter. The fuel and oxidizer are introduced into
the combustion chamber by a coaxial injector. The oxidizer post length may be varied between
8.89 cm and 19.05 cm. Due to this post length the combustion chamber exhibits different stability
characteristics resulting from the interactions of the combustion in the chamber and its acoustic field
as well as that developing through the post oxidizer cavity. The numerical study is conducted with
12.065 cm post length. The combustion chamber is finalized with a converging diverging nozzle to
limit the mass flow and hence build a desired level of pressure inside the chamber. The dimensions
of the geometry used in this study are shown in Figure 6. Further details of the geometry of the
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Table 1: The wave number solutions for Z∗ = 4− 4i, Nl = 4, Nn = 2.

` = (l, n) kN,` [1/m] kexact,` [1/m] kiter,` [1/m] fiter,`/fN,` [-] Z∗

(1, 0) 3.142 (3.015, 0.124) (3.016, 0.130) 0.960 (4.00,−4.00)
(2, 0) 6.283 (6.157, 0.124) (6.157, 0.120) 0.980 (4.00,−4.00)
(3, 0) 9.425 (9.299, 0.124) (9.300, 0.112) 0.987 (4.00,−4.00)
(4, 0) 12.566 (12.440, 0.124) (12.443, 0.102) 0.990 (4.00,−4.00)
(1, 1) 12.953 (12.792, 0.121) (12.830, 0.170) 0.991 (4.00,−4.00)
(2, 1) 14.050 (13.918, 0.123) (13.920, 0.114) 0.991 (4.00,−4.00)
(3, 1) 15.708 (15.579, 0.123) (15.582, 0.105) 0.992 (4.00,−4.00)
(4, 1) 17.772 (17.644, 0.123) (17.649, 0.094) 0.993 (4.00,−4.00)
(1, 2) 25.328 (25.197, 0.024) (25.209, 0.225) 0.995 (4.00,−4.00)
(2, 2) 25.906 (25.759, 0.105) (25.769, 0.096) 0.995 (4.00,−4.00)
(3, 2) 26.842 (26.706, 0.117) (26.716, 0.089) 0.995 (4.00,−4.00)
(4, 2) 28.099 (27.968, 0.120) (27.981, 0.080) 0.996 (4.00,−4.00)

(a) Mode (1,0) (b) Mode (1,1) (c) Mode (1,2)

(d) Mode (2,0) (e) Mode (2,1) (f) Mode (2,2)

Figure 5: Mode shapes for Z∗ = 0.5− 0.5i

experimental set-up can be found in Yu [2009]. The fuel composition is pure gaseous methane. The
oxidizer is a gaseous mixture composed of 42% oxygen and 58% water in terms of mass fraction.
The oxidizer and fuel are injected into chamber at 1030 K and 300 K, respectively.

The chamber volume averaged gas properties are provided in Table 3. In order to account for more
realistic impedance values at the outlet of the combustion chamber or nozzle inlet, the frequency-
domain linearized Euler equations were solved in one dimension (in the axial direction) numerically
with a backward differencing starting from the nozzle throat where due to flow choking the impedance
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Table 2: The wave number solutions for Z∗ = 0.5− 0.5i.

` = (l, n) kN,` [1/m] kexact,` [1/m] kiter,` [1/m] fiter,`/fN,` [-] Z∗

(1, 0) 3.142 (2.124, 0.402) (1.673,−1.356) 0.532 (0.50,−0.50)
(2, 0) 6.283 (5.266, 0.402) (6.460, 0.502) 1.028 (0.50,−0.50)
(3, 0) 9.425 (8.408, 0.402) (8.212, 1.417) 0.871 (0.50,−0.50)
(4, 0) 12.566 (11.549, 0.402) (6.108, 4.537) 0.486 (0.50,−0.50)
(1, 1) 12.953 (12.672, 0.009) (10.644, 2.618) 0.822 (0.50,−0.50)
(2, 1) 14.050 (13.484, 0.067) (10.465, 2.476) 0.745 (0.50,−0.50)
(3, 1) 15.708 (14.967, 0.144) (14.895, 0.782) 0.948 (0.50,−0.50)
(4, 1) 17.772 (16.931, 0.210) (10.166,−3.165) 0.572 (0.50,−0.50)
(1, 2) 25.328 (25.184, 0.002) (22.395, 3.275) 0.884 (0.50,−0.50)
(2, 2) 25.906 (25.588, 0.018) (22.391, 3.281) 0.864 (0.50,−0.50)
(3, 2) 26.842 (26.377, 0.046) (22.520, 3.314) 0.839 (0.50,−0.50)
(4, 2) 28.099 (27.515, 0.082) (19.474, 3.312) 0.693 (0.50,−0.50)

Lch = 38.1Lop = 12.065

Dch = 4.5 Dth = 2.08 Dex = 3.91

Figure 6: Geometry of the CVRC (dimensions are in cm)

was set, with exp(+iωt) dependence, to

Z

ρ0c0

∣∣
throat

= Z∗|throat =
2du0dx + iω

(γ − 1)du0dx + iω

∣∣∣∣
throat

(21)

where u0 is the mean axial velocity through the nozzle which was calculated based on the 1-D
ideal gas dynamics relations. The computed impedance values for the nozzle inlet boundary are
shown in Figure 7. It is clear that at low frequencies the impedance values are high, and hence the
first a couple of longitudinal modes are expected to have significant reflection from the chamber
outlet boundary. For these modes the iterative method is expected to work well with the boundary
inhomogeneity.

Table 3: Chamber averaged gas properties in CVRC setup.

T [K] p [MPa] Ttot [K] ptot [MPa] γ R [J/kgK]
2512 1.54 2526.29 1.598 1.182 389.2

To test the iterative algorithm quickly against the outlet impedance condition, a 2-D rectangular
geometry with the length of the CVRC chamber, and height of the CVRC diameter was considered.
Although the CVRC chamber is of cylindrical shape, the results for pure longitudinal modes do not
get altered in absence of volumetric (heat) sources. 2-D calculations with heat sources could still
be performed, but by taking the actual volume weighting into account properly (i.e. radius effect).
The computed wavenumbers for the 2-D rectangular shape are shown in Table 4. It is clear that the
outlet impedance condition changed the wavenumbers only slightly from the those of the natural
modes.

Now in this part of the numerical study, the FTF given graphically in the study of Garby [2013] is
modelled by a functional fit, and then incorporated into the iterative solution approach as the volume
heat source, given by equation (18), in addition to the sources due to the outlet and inlet impedance
conditions (19). The FTF is defined based on the axial velocity fluctuation û at xref = (x, r) = (0, 0),

9
Ankara International Aerospace Conference



AIAC-2021-049 ÖZTÜRKMEN, ÖZYÖRÜK

Figure 7: CVRC nozzle inlet impedance.

Table 4: Wavenumbers of longitudinal modes in CVRC chamber with frequency-dependent
impedance, Z∗2 = Z∗2 (f) at the outlet boundary, i.e. f̂ 6= 0, ĥ = 0, Nl = 5, Nn = 2.

` = (l, n) kN,` [1/m] kexact,` [1/m] kiter,` [1/m] Re(fiter,`) [Hz] Z∗
2 (f)

(1, 0) 8.267 (8.196, 0.044) (8.192, 0.055) 1401.5 (16.66,−26.64)
(2, 0) 16.535 (16.393, 0.052) (16.394, 0.050) 2804.8 (5.98,−16.39)
(3, 0) 24.802 (24.591, 0.063) (24.604, 0.051) 4209.4 (3.43,−11.40)
(4, 0) 33.069 (32.790, 0.080) (32.822, 0.051) 5615.4 (2.50,−8.67)

which is the reference coordinate used in FTF processing, the injector exit at the chamber centerline.
The LES computed FTF results of Garby [2013] and their functional fits are given in Figure 8. The
fits shown in the bottom row of this figure were obtained approximately from the contour plot levels
given in the top row of the figure. In the computations, the interaction index n(x) and time delay
τ(x) levels (refer to equation (16) for the definition of FTF) shown in the fits were scaled to match
the global interaction index ng = 10525 J/m, and global time delay τg = 2.89 × 10−4 s values of
[Garby, 2013]. The global values are volume integrated values:

nge
−iωτg =

∫
V
n(x)e−iωτ(x) dV (22)

The reference velocity fluctuation required for the computations with FTF is assumed to be given by
equation (15), which in turn requires the impedance at the reference point. Since in the computations
the domain is assumed to start from the injector location, the reference point impedance and the
impedance of the open part of the inlet boundary are the same and equal to Z∗1 = 1/A∗1 (see
Figure 9). In the computations its value is taken as fixed at Z∗1 = 3.3 [Garby, 2013]. On the
other hand the outlet impedance Z∗2 = 1/A∗2 needed for the outlet condition (Figure 9) is taken as
frequency-dependent. The outlet impedance is shown in Figure 7.

In the experiments the chamber inlet and outlet experience small velocities. Therefore, along with
the default assumption of no flow at the boundaries, the slight modification introduced by the local
flow to the impedance is taken into account by relating the fluctuating axial velocity and pressure
using the convected momentum equation. This brings a correction to the impedance given by the
following expression:

1

Z∗corr
= A∗corr = A∗ + M · n̂ (23)

where Z∗corr is the corrected dimensionless impedance, M is the mean flow Mach number and n̂ is
10
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Figure 8: Flame transfer function for the CVRC chamber – interaction index and time delay
distributions, as defined in Ref. [Garby, 2013] as FTF = n(x)eiωτ(x). Top : LES results of Ref.
[Garby, 2013] - left: n(x), right: τ(x), bottom : Function fit to LES results - - left: n(x), right:
τ(x). Both are scaled to match the global values of Ref. [Garby, 2013] in the computations.

the unit normal at the boundary. An interpretation of the correction term may be that the flow out
of the boundary helps transmission of the outgoing waves. The entire boundary conditions applied
in the iterative procedure is shown in Figure 9. The flow Mach numbers at the inlet and outlet
during the experiments were M1 = 0.32 and M2 = 0.18, respectively [Garby, 2013].

Figure 9: Treatment of the CVRC combustion chamber inlet and outlet boundaries in the
iterative solution.

Iterations are started from the natural modes for the closed cylindrical chamber which are given by

ψ̂N,`(x, r, θ) = cos
(πlx
L

)
cos(mθ) Jm(kr,mnr) (24)

where (x, r, θ) represent the cylindrical polar coordinates, l is the longitudinal mode index, m is the
azimuthal mode index, n is the radial mode index, Jm is the m-th order Bessel function of the first
kind, and kr,mnR is the n-th eigenvalue (root) of the equation resulting from the rigid wall condition
applied at the chamber surface radius R,

n̂ · ∇ψ̂|r=R = 0 ∴
dJm(krr)

dr

∣∣
r=R

= 0. (25)

` = (1, 0, 0) is the plane wave mode propagating in the x-direction. The natural wavenumber is
obtained from the dispersion relation:

k2N,` =
(πl
L

)2
+ k2r,mn (26)
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The computed wavenumbers by the iterative approach using the first Nl = 20 longitudinal modes
in the sum term of equation (11) are shown in Table 5 without the inlet and outlet flow effects, and
in Table 6 with the boundary flow effects. Despite the FTF is not necessarily independent of the
modes (frequency), the same interaction index n and time delay τ distributions given in Figure 8
were used for all on the right hand side of equation (11), since no other information was available
for FTF. Also included in the tables are the natural and exact wavenumbers that contain only the
boundary impedance effects. It is evident from the tables that the heat source resulted a significant
effect on the chamber resonance frequencies. By including the unsteady heat release the first mode’s
frequency increased from only the impedance included value of 1401.5 Hz (see Table 4) to 1483.0
Hz in the case of M1 = M2 = 0, and to 1514.7 Hz in the case of M1 = 0.32 and M2 = 0.18. Notice
that due to consideration of the unsteady heat release ĥ the first and third modes have become
unstable, as their perturbed wavenumbers have negative imaginary components. The iteratively
computed frequency of the first longitudinal mode is in line with other studies, as shown in Table 7.
It is particularly interesting to observe in this table that the iteratively found frequency and Garby’s
LES predicted frequency for the first mode match quite well, despite the use of the same FTF for
all the modes involved in the sum term of equation (11). This may be an indication to that the
LES predicted FTF is really nearly independent of the frequency for this case. A few additional
calculations with varying number of longitudinal modes in the summation in equation (11) were also
performed to see whether these were converged results or not. The frequencies calculated are shown
in Figure 10 as a function of the number of longitudinal modes included in sum of equation (11). It
is evident that first a few modes were sufficient to yield a convergent solution.

Table 5: Stability analysis by the iterative approach for the CVRC configuration with heat and
boundary sources, i.e. f̂ 6= 0, ĥ 6= 0, M1 = 0,M2 = 0. Nl = 20.

` = (l,m, n) kN,` [1/m] kexact,` [1/m], ĥ = 0 kiter,` [1/m] fiter,` [Hz] Z∗
2 (f)

(1, 0, 0) 8.246 (8.175, 0.954) (8.668,−1.048) 1483.0 (15.40,−25.87)
(2, 0, 0) 16.491 (16.350, 0.961) (16.285, 0.159) 2786.2 (6.03,−16.49)
(3, 0, 0) 24.737 (24.527, 0.973) (24.532,−0.266) 4197.2 (3.44,−11.42)

Table 6: Stability analysis by the iterative approach for the CVRC configuration with heat and
boundary sources, i.e. f̂ 6= 0, ĥ 6= 0, M1 = 0.32,M2 = 0.18. Nl = 20.

` = (l,m, n) kN,` [1/m] kexact,` [1/m], , ĥ = 0 kiter,` [1/m] fiter,` [Hz] Z∗
2 (f)

(1, 0, 0) 8.246 (8.175, 0.954) (8.853,−0.762) 1514.7 (14.94,−25.58)
(2, 0, 0) 16.491 (16.350, 0.961) (16.326, 0.422) 2793.2 (6.01,−16.45)
(3, 0, 0) 24.737 (24.527, 0.973) (24.528,−0.012) 4196.4 (3.45,−11.43)

Table 7: CVRC chamber frequency [Hz] of the first mode.

fexp [Garby, 2013] fLES [Garby, 2013]
fAVSP [Garby, 2013] fiter fiter

M1 = M2 = 0 M1 = M2 = 0 M1 = 0.32, M2 = 0.18
1400 1510 1621 1483 1515
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Figure 10: Convergence of iterative calculation for the first mode of CVRC with heat sources,
M1 = 0.32,M2 = 0.18.

CONCLUSIONS

The objective of the paper is to predict linear thermoacoustic instabilities occurring in combustion
chambers of rocket engines using an iterative method. It basically includes computation of the natural
eigenmodes of the combustion chamber first, and then a corrective iterative process for determining
the chamber eigenmodes and wavenumbers due to the inhomogeneities arising from the unsteady
heat release in the chamber and actual conditions at its boundaries. The results for a two dimensional
rectangular test geometry with impedance boundary conditions indicated good agreement with the
analytical solution. The iterative computations using a literature based unsteady heat release data
set for the experimental setup called CVRC indicated that reasonably good predictions could be
obtained by the approach. Since thermoacoustic instability prediction requires the unsteady heat
release field for a given chamber, a numerical framework for its computation employing LES is being
established as part of this continuing work.
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