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ABSTRACT

In this study, the relations between design parameters of an unmanned aerial vehicle (UAV)
are obtained using machine learning (ML) algorithms by fitting the requirements to existing
data followed by conceptual and preliminary design. The data available for 250 UAVs are
collected and 17 design parameters are used to train the ML algorithm among which 5 features
are determined as input variables and the remaining 12 are considered to be output. The output
results are then estimated by the ML algorithm in a sequential manner concerning a new model
for each output that is predicted.

INTRODUCTION

The importance and usage areas of Unmanned Aerial Vehicles (UAV) are increasing day by
day. Nowadays UAVs with different design features are being utilized in many civil and military
applications such as surveillance, reconnaissance, cargo, agriculture, imaging, fire fighting,
etc. This emphasizes the role of UAV design and mission compatibility more than ever.
Through the design process of an unmanned aerial vehicle, known design steps consisting of
conceptual, preliminary and detailed design are followed as seen in Figure 1 [Raymer, 1992].
As in aircraft design, historical data has substantial importance in order to determine the
requirements and designing a UAV [Gundlach, 2011]. During the design phase, many
parameters are determined by looking at existing UAVs while there are many design
configurations to be decided independently. Some of the methods in the literature that are used
to facilitate the complex design process leading to more suitable designs are examined below.
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Figure 1: UAV design stages scheme
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Ruben E. Perez et al. tried to improve the aircraft design by using the Genetic Algorithm and
Penalty Function with design optimization variables given in a certain interval [Perez, 2000].
Their work showed that Genetic Algorithm as a Machine Learning application gives good
results for conceptual design of an aircraft. Yousef Azabi et al. have tried to develop the Aegis
UAV geometry using the stochastic multi-objective optimization, combined with an Artificial
Neural Network (ANN) [Azabi, 2019]. According to the results of their work, the optimization
method they used resulted in a better aerodynamically design result for the Aegis UAV. There
exist plenty of applications of Machine learning on aerodynamic design in the literature. In the
study of Karali et al., a nonlinear aerodynamic model for UAVs has been developed [Karali,
2020]. They trained the model with a dataset consisting of 22,000 UAVs they created by using
non-linear lifting line tool. As a result of this study, the model was able to quickly estimate the
aerodynamic performance parameters of different wing-tail configurations and was found to be
effective for design optimization. In addition, many examples of machine learning applications
in the fields of aerodynamic design, computational fluid dynamics (CFD), and fluid mechanics
have been examined in the literature [Brunton, 2020].

Neufeld et. al. used Genetic Algorithm and Data Mining for UAV Conceptual Design [Neufeld,
2005], inspiring the subject of the current study. They have implemented machine learning that
decides various configurations using Decision Tree. They simulated a UAV which is designed
by the model using the X-Plane® software. Although the full access to the detailed information
on the database and results of this study is not possible, it provided a seminal perspective in
the use of machine learning for UAV Conceptual Design. Looking at existing studies in the
literature and the application areas of machine learning, it is seen that a machine learning
application that can give better design results is basically constructed on historical data.

In this study, the conceptual design of a UAV is carried out using a Multilayer perceptron (MLP)
machine learning algorithm which is created and taught using the database including design
parameters of available existing UAVs. MLP is one of the classes of feedforward artificial
neural networks (ANN). MLP comprises at least three layers of nodes: an input layer, a hidden
layer, and an output layer. A well-trained MLP can fully perform any complex nonlinear
functions, therefore a fully connected MLP is often an excellent choice for the most common
classification or regression problems [Zhu, 2019]. With the use of well-known classification
strategies in data mining and statistics [Zhang, 2018; Shateri, 2020; Song, 2015, Shateri,
20201, different k, ¢, and several estimators values are assigned to different test samples for
K nearest neighbor (KNN), Support Vector Regression (SVR), and Random Forest (RF)
algorithms, respectively, using the cross validation method.

METHOD

Dataset and Software

It is known that machine learning applications yield more accurate results by increasing the
amount of data available in the dataset. In this study, a dataset containing the design
parameters of the existing UAVs has been prepared from scratch. While doing so, it was
decided to use the following design parameters; mission, category, engine location, engine
type, wing position, wing type, tail category, maximum take-off weight (MTOW), payload,
wingspan, wing area, fuselage length, fuselage height, cruise speed, max speed, ceiling
altitude, endurance, and power. An extensive research has been carried out on UAVs
according to these design parameters and information on 250 UAVs has been collected using
many sources [Hann, 2020; Munson 2005]. As the aim of this study, the conceptual design
parameters were estimated with a fewer number of inputs. The selected 6 inputs were
determined to cover the general features of the UAV to be designed. Therefore, payload,
mission, category, cruise speed, endurance, and ceiling altitude parameters are chosen as
input variables. According to the database, there exist different types of tails and in order to
reduce this variety, it is decided to categorize tail types into only 4 categories that are shown
in Table 1.

2
Ankara International Aerospace Conference



Table 1: Tail categories.

Tail Category
TC-1 TC-2 TC-3 TC-4
2 Conventional Tall V Tail Boom no
>
= T tall Inverted V | High Boom Tail
@ X X
[ Twin Tail

Looking at the design parameters, it is seen that some of them are numerical parameters while
others represent categories. It is thought that the relevant design parameters will provide
sufficient perspective for conceptual design. A dataset was created by using above mentioned
information. A sample of the dataset is shown in Table 2. Dataset arrangements, model
training, and result graphics are made with Python 3.7 in GPU-supported Google Colab. The
codes of the classification algorithms that will be explained in detail in the next section are
taken from opensource codes in the scikit-learn library and own MLP algorithm code is created
by using Keras from the TensorFlow library.

Table 2: Dataset sample.

1 2 4 5) 6 7 8 9 10
OM VAV Aeromapper | Bramor Lockheed Warrior UAV Qods
Name Delair UX11| Systems CAEYE Martin ~ |Orlan 10 Gull 24 Factory Mohajer-2 Wulung
Eagle Eye Stalker XE Penguin B

Category MINI MICRO CR SR MR MRE LALE |LALE CR SR
Mission commercial |commercial |commercial |commercial |commercial |tactical |cargo |commercial |tactical tactical
Engine Location back back front back front front front  |back back back
Engine Type electrical piston piston electrical  |electrical |piston  [piston |piston piston piston
Wing Position mid high high mid high high high high high high
Wing Type delta tapered straight delta straight straight |straight |straight straight  |straight
Tail Category TC-4 TC-1 TC-2 TC-4 TC-1 TC-1 TC-1 |TC-2 TC-3 TC-1
Tail Type no C \ no T [} T inverted V. |HBT T
MTOW [kg] 1,5 1,81 4,5 10,9 15 18 21,5 85 125
Payload [kg] 15 0,5 0,7 0,5 2,5 6 6 10 15 35
Wingspan [m] 1,1 2 2,14 2,3 3,7 31 2,7 33 3,8 6,34
Fuselage Length [m] 0,5 1,05 1 0,96 2,5 2,5 2,2 2,27 2,91 4,42
Fuselage Height [m] 0,2 0,08 0,4 0,1 0,6 0,7 1 0,9 1 1,48
Cruise Speed [m/s] 15 13,9 16,7 16 15,6 30 30 22 150 30,9
Max speed [m/s] 18 16,5 21 22 20,1 42 38 36 200 51,4
Ceiling Altitude [m] 6000 3000 3500 5000 3700 5000 | 4000 5000 3350 1700
Endurance [h] 1 0,83 3 8 16 20 20 1,5 4
Power [kW] 0,2 0,29 0,5 0,8 2,00 3,00 1,86 18,64 16,4

MLP Models for Regression Predictions

As a result of many trials, it has been observed that it is not efficient to take all the outputs
simultaneously. Therefore, a new model was assigned for each output. The inputs to be used

hidden units

outputs

h

Figure 2: Structure of Multilayer
Perceptron.

for each model were used as 6 target inputs and
outputs of previous models. 7 different models were
created for a total of 7 regression outputs. For
regression estimations, two different models were
used: Multi Layer Perceptron (MLP) and Decision
Tree Regression (DT). Then, the most successful one
was selected for each above mentioned 7 models and
the result of this model was given as an input to the
next model. The outcomes are given in the results
section. MLP is a subgroup of Feed-forward Network
Functions. The architecture of MLP is in figure left.
Hidden layers and neuron counts were determined
after HyperTuning [Bishop, 2016]. While creating MLP
models, Mean Square Error (MSE) and Leaky-
rectified linear unit (Relu) were used as the loss and
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activation functions, respectively [Calik, 2019]. The training was carried out with 300 iterations
and EarlyStopping was used to prevent overfitting [Caruana, 2001]. Finally, Nesterov
accelerated adaptive moment (NAdam) was implemented as an optimizer [Dozat, 2016]. As a
common practice, the existing database is divided into 70% and 30% for train and test
datasets, respectively. StandardScaler and MinMaxScaler were used to scale the inputs.
There was no such procedure applied to the outputs. The StandardScaler score of sample x
is calculated as [Pedregosa, 2011]:

z=(x—u)/s Q)
where u is mean of the training samples, s is the standard deviation of the training samples.
The standardized result of Xscaed for MinMaxScaler is:

Xscated = S * (Xmin — Xmax) ()
where Xmin is the minimum value and Xnax is maximum value of data.

Hidden layers and neuron counts were determined after HyperTuning. Decision Tree algorithm
was called from scikit-learn library [Pedregosa, 2011]. Inputs of above mentioned 7 models
are shown in Table 3. It is worth mentioning that because of the lack of data for wing area,
during the training of the relevant model (Model 7 in Table 3), the approach was to select a
dataset containing only 60 UAVs and in addition to that to use all the outputs from the rest of
the models (models 1-6 in Table 3).

Table 3: Inputs and outputs of regression models.

Models Outputs Inputs
Model 1 MaxSpeed Payload, Cruise Speed, Endurance, Category, Mission
Model 2 Maximum Take-Off | Payload, Cruise Speed, Endurance, Category, Mission, Max.
Weight (MTOW) Speed
) Payload, Cruise Speed, Endurance, Category, Mission, Max.
Model 3 WingSpan Speed, MTOW
Model 4 Power Payload, Cruise Speed, Endurance, Category, Mission, Max.

Speed, MTOW, Wingspan

Payload, Cruise Speed, Endurance, Category, Mission, Max.
Speed, MTOW, Wingspan, Power

Payload, Cruise Speed, Endurance, Category, Mission, Max.
Speed, MTOW, Wingspan, Power, Fuselage Length

Payload, Cruise Speed, Endurance, Category, Mission, Max.
Speed, MTOW, Wingspan, Power, Fuselage Length, Fuselage
Height, Wing Position, Engine Location, Engine Type, Wing
Type, Tail Category

Model 5 Fuselage Length

Model 6 Fuselage Heigth

Model 7 Wing Area

Models for Classification Predictions

KNN, SVC, DT and RF algorithms were taken from the scikit-learn library and dataset divided
into a 70:30 ratio as training and test data for the classification part [Pedregosa, 2011]. SVM
error function and KNN probability function is given below [Bishop, 2016]:

CEN_1(6n + &) +5 w2 (3)

_ p(x|Ck)p(Ck)
p(Cklx) = 52552 4)

Where w is an error function, C is the inverse regularization parameter, ¢ is continuous one
dimension parameter and p is probability.
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Figure 3: a) SVM with regression curve tube, b) KNN class example while K=1.

Parameters in models were optimized to increase accuracy by using for-loops which include
an available range of parameters. Stratify - which is an addon to sckitlearn library - was used
so that the number of samples in the classes in test data and train data were directly
proportional [Fernandes, 2018]. MLP was not included in the comparison. It is because of the
fact that MLP models focus on a large number of data in the dataset and therefore they tend
to predict the class with the highest number of data in the dataset. Since the data in our dataset
is not evenly distributed, MLP models seem not to be appropriate.

Models Evaluations

To evaluate the regression models, their performance was compared based on MSE and R?
values. As in classification, accuracy value and cross validation score values in scikit-learn
library were used. Mean Square Error (MSE) and R?were obtained by using the formulas given
below [Kobayashi, 2000]:

1 2
MSE = o ?:1(Ypredicted - actual) ®)

n
RZ _ Zi=1(ypredicted_yactual)2 (6)
Z‘{Ll(ypredicted—ymean)z

where n is the number of test data, Ypredicted IS OUtpUt of Models, Yacwal is the real value of test
data, and Ymean is the average of Yacwa Values.

RESULTS
Model Results

Table 4 shows MSE and R? values for the models used in regression estimation. Comparing
DT and MLP seems to give better results for MLP in each model. According to the values listed
in the table, the average of R? values is about 90%, suggesting that the results are substantial.
The table also shows the models and the number of related neurons that were used for training.
While many neurons were required for the wing area model (Model 7), a comparably small
number of those was sufficient for MTOW model (Model 2). MSE values in some models are
due to the fact that the outputs are either not scaled or the scalers are different. The low
accuracy in fuselage height could be due to the low accuracy of data for some of the UAVs in
the dataset, where the landing gear is included in the total height, while in others is not. The
actual results are compared with the predictions in the test data for each model and it is
presented in Appendix A.
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Table 4: Regression models results. Outputs are given in Table 3.

Higlgé?lbf;;;rs N(-art?rtg:]s el Rz ks Rz s
Model 1 6 38 StandardScaler | 0,9827 | 171,7 | 0,9296 | 700,84
Model 2 6 33 StandardScaler | 0,8961 | 1750 | 0,5089 8272
Model 3 5 75 StandardScaler | 0,8611 | 0,76 | 0,7418 1,412
Model 4 6 87 MinMaxScaler | 0,9518 | 13,74 | 0,9233 | 21,88
Model 5 5 81 StandardScaler | 0,9087 | 0,137 | 0,8515 | 0,2223
Model 6 5 81 StandardScaler | 0,8195 | 0,04 | 0,5821 | 0,093
Model 7 21 175 StandardScaler | 0,9309 | 0,196 | 0,4509 1,55

Classification models seem to have low accuracy according to the classification results that
are listed in Table 5. This is due to the fact that the geometric parameters are not taken into
account in the preliminary design stage and are subject to change during the analysis and are
not finalized. The engine location model has the highest accuracy in classification models.
Although RF model has higher accuracy for 3 classification models, only DT models were used
for them because otherwise, they may lead to unclassified results. Since tail type accuracy is
low, only those configurations of tail were chosen that were believed to be relevant to each

other.

Table 5: Classification models results.

Model Numbers

Classification Models

Wing Position DT RF KN SVR
Accuracy 0,74 0,69 0,66 0,67
Cross Validation 0,72 0,69 0,61 0,67
Standart Deviation 0,08 0,11 0,05 0,09
Engine Location DT RF KN SVR
Accuracy 0,62 0,72 0,6 0,62
Cross Validation 0,59 0,65 0,59 0,58
Standart Deviation 0,04 0,05 0,1 0,11
Engine Type DT RF KN SVR
Accuracy 0,85 0,89 0,84 0,85
Cross Validation 0,79 0,88 0,84 0,86
Standart Deviation 0,08 0,06 0,08 0,08
Wing Type DT RF KN SVR
Accuracy 0,8 0,84 0,76 0,78
Cross Validation 0,72 0,8 0,69 0,75
Standart Deviation 0,14 0,14 0.1 0,11
Tail Category DT RF KN SVR
Accuracy 0,69 0,65 0,52 0,42
Cross Validation 0,55 0,47 0,46 0,4
Standart Deviation 0,05 0,08 0,1 0,1
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Table 6: Confusion classification matrix.

High Mid Low
Model 8 High 48 3 3
(Wing Position) Mid 3 y n
Low 8 1 4
Model 9 Back Front
(E?]g?ne Location) Back 36 9
Front 12 18
Model 10 Electrical |Internal C.
(Engine Type) Electrical 22 5
Internal C. 3 45
Delta Straight Tapered
Model 11 Delta 5 12 0
(Wing Type) Straight 1 50 0
Tapered 0 5 2
TC-1 TC-2 TC-3 TC-4
Model 12 TC-1 22 13 1 1
(T(r:\ileCategory) TC-2 2 10 1 0
TC-3 0 1 14 1
TC-4 1 1 1 6

Table 6 shows the confusion classification matrix wherein the columns represent the models
predictions and rows show the actual values of the dataset. Looking at the results, it is seen
that no model made a choice in only one class. In addition, it has been observed that the error
distributions are not concentrated in one class. Therefore, it can be thought that although the
accuracy rates of the models are low, models could properly find a relation between the data
in the dataset. It is observed that the accuracy of the low class prediction is very low in wing
position and most of the predictions in the wing position model are of straight type.

Test Results

Models were tested using input parameters determined for 10 different UAV designs out of
which, 3 test outputs are shown in Table 7 and the rest are given in Appendix B. Design
parameters of a similar UAV are also given in order to compare with the results.

The next step after obtaining the output values is to select the airfoil for the wing and tail.
During the calculations, values of zero-lift drag coefficient (c4,) were chosen between 0.01-
0.05 in accordance with the literature as well as the characteristics of the current UAV to be
designed [Raymer, 1992]. For a steady state flight it is assumed that lift is equal to the weight,
therefore - using the formulas given below - lift (equation 3) and induced drag (equation 4)
coefficients as well as drag force (equation 5) and required power (equation 6) can be
calculated. While determining stall speed, the maximum lift coefficient (c;,,,,) that the airfoil
can provide has been taken into consideration. Airfoil selection was made in accordance with
the ¢; value required for the stall speed determined here.

The maximum speed obtained by the maximum power approximates some designs for a UAV
while there might be some cases that are far overpredicted by the approach. An example of
calculations for test UAVs is given in Appendix C. When the airfoil selection is made, the
fuselage as well as the wings and control surfaces, can be drawn in CAD software in
accordance with the outputs. Comparison of output UAVs and similar existing ones are shown
in figure 2. These solid models are given as simple representational pictures and the final
design can be improved using the same outputs.
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Table 7: Design parameter results of Test-1, Test-2 and, Test-3 UAVSs.

AeroVirenment UAV Factory
Wasp AE-RQ Test1 D5 IA-1T Test-2 Penguin C Test-3
12A
Category MiCRO MICRO 5R SR LALE LALE
= Mission commercial commercial commercial commercial commercial commercial
= Payload [kg] 0.2 0.2 25 25 T 7
% Cruise Speed [m/s] 10,30 10,20 T a7 22 22
== |Ceiling Altitude [m] 500 500 4500 4500 5000 5000
Endurance [h] 0.8 0.8 5 5 20 20
MTOW [kg] 1,3 2,47 275 22,87 23 25,62
Wingspan [m] 1,02 1.256 2,8 2, 3,3 2.40
Fuselage Length [m] 0,786 0,22 1,27 1.43 2,286 1.82
Fuselage Height [m] 0.2 0.28 0,22 0,37 0,201168 0,84
Max speed [m/s] 23,20 23,59 44.4 43,58 36 34,57
Stall speed [mi's] Unknown 2,00 Unknown 20,00 Unknown 18,00
= Wing Area [m2] Unknown 0,28 Unknown 0,20 0,74 0.88
=2 |ar Unknown 8,10 Unknown 541 13,78481013 17.08
& WIS Unknown 55.00 Unknown 250,00 Unknown 270,00
= Power [KW] 0,2 0.42 1,8 1,96 1,86 1,73
D Engine Location front front back badk back badk
Engine Type electrical electrical piston piston piston piston
Wing Position lowar high mid mid high high
Wing Type tapered tapersd delta delts straight straight
Tail Category TC-1 TC-1 TC-4 TC-4 TC-2 TC-2
Tail Type C c no no inverted V inverted
Airfoil Unknown Selig 51223 Unknown MACA 83412 Unknown Selig 51222
cl = Lz (7)
0,5xpxV=xS
cl?
Cdi " mrexAR (8)
D =cd, + cd; 9
P=D=xV (10)
DISCUSSION

When similar existing UAVs are compared with the results obtained as outputs of the ML
algorithm, it is predictable to get a general similarity in terms of design parameters. These
values are considered to be sufficient for the phase of the conceptual design of UAVs.
Considering that the current study is based on a limited number of training populations while
keeping such different and mostly independent parameters, it will not be exaggerative to
consider this method to be efficient. To get more reliable results it is recommended to create
an independent dataset for each category of UAVs. However, it is often difficult to obtain all
the characteristics of UAVs due to either commercial or military concerns which is the biggest
obstacle in the current study. By creating such separated datasets, it is probable to get more
stable results for each model. Due to the nature of MLP which can be fixed to the local
minimums, different weights in each training model can result. To avoid this and to use MLP
more efficiently, 7 samples were selected to cover the entire data. Among the trained models
the ones that made the most accurate predictions for these 7 samples were selected. In
addition, this method was found to be helpful in reducing the margin of error that increases
sequentially. The high error value of the previous model has been reduced in the later models.
Further customized models can be created by increasing the number of these 7 samples or
selecting samples in different UAV categories.

8
Ankara International Aerospace Conference



AeroVironment Wasp AE-RQ 12A Test-1

IDS 1A-17 Test-2

UAV Factory Penguin C Test-3
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Figure 4: Solid models of chosen UAVs and test results.

CONCLUSION

This study was conducted with the idea of making UAV design efficient using machine learning
algorithms. Initially, a dataset consisting of 17 different parameters of 250 UAVs was created.
All models were trained by selecting 5 input parameters and the relevant outputs of the
sequential training process. Various improvements were made to the dataset as well as
models to increase the accuracy of the approach. Determined targets were transferred to
previously trained models and the algorithm was tested on 10 different cases. These results
were visualized adhering to methods in the literature. The resulting solid models were
compared with existing UAVs. Recommendations have been made to propose more efficient
and reliable models in the future.
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APPENDIX - C

Test-1
W (N) |W/S (N/m2)|V= (m/s)| A - taper ratio [Croot (m)|Ctip (m)|b (m)|S (m2)|p (kg/m3)| CL |AR| e | w [CdO| Cdi Cd D (N) |P (N*m/s)
24,27 94,16 1,00 0,70 0,24 0,17 |1,25]| 0,26 1,23 |153,73|6,10|0,80|3,14|0,05|1541,23|1541,28|243,32| 243,32
24,27 94,16 2,00 0,70 0,24 0,17 |1,25]| 0,26 1,23 38,43 [6,10/0,80(3,14|0,05| 96,33 | 96,38 | 60,86 | 121,72
24,27 94,16 3,00 0,70 0,24 0,17 |1,25]| 0,26 1,23 17,08 |6,10/0,80|3,14|0,05| 19,03 | 19,08 | 27,11 | 81,32
24,27 94,16 4,00 0,70 0,24 0,17 |1,25]| 0,26 1,23 9,61 |6,10({0,80|3,14|0,05| 6,02 6,07 |1533| 61,33
24,27 94,16 5,00 0,70 0,24 0,17 |1,25| 0,26 1,23 6,15 |6,10/0,80(3,14|0,05| 2,47 2,52 9,93 49,65
24,27 94,16 6,00 0,70 0,24 0,17 |1,25] 0,26 1,23 4,27 16,10/0,80|3,14|0,05] 1,19 1,24 7,04 42,26
24,27 94,16 7,00 0,70 0,24 0,17 |1,25]| 0,26 1,23 3,14 16,10|0,80/3,14(0,05| 0,64 0,69 5,35 37,47
24,27 94,16 8,00 0,70 0,24 0,17 | 1,25]| 0,26 1,23 2,40 16,10/0,80/3,14|0,05| 0,38 0,43 4,31 34,46
24,27| 94,16 10,00 0,70 0,24 0,17 |1,25| 0,26 1,23 1,54 |6,10/0,80|3,14/0,05| 0,15 020 | 322 | 3223
24,27 94,16 15,00 0,70 0,24 0,17 |1,25]| 0,26 1,23 0,68 |6,10/0,80|3,14|0,05] 0,03 0,08 2,86 42,86
24,27 94,16 20,00 0,70 0,24 0,17 |1,25| 0,26 1,23 0,38 |6,10/0,80|3,14|0,05| 0,01 0,06 3,77 75,31
24,27 94,16 25,00 0,70 0,24 0,17 |1,25]| 0,26 1,23 0,25 |6,10/0,80|3,14|0,05| 0,00 0,05 5,32 133,07
24,27 94,16 30,00 0,70 0,24 0,17 |1,25]| 0,26 1,23 0,17 |6,10/0,80|3,14|0,05| 0,00 0,05 7,37 | 221,24
24,27 94,16 35,00 0,70 0,24 0,17 |1,25]| 0,26 1,23 0,13 |6,10/0,80|3,14|0,05| 0,00 0,05 9,87 | 345,39
24,27 94,16 36,00 0,70 0,24 0,17 |1,25]| 0,26 1,23 0,12 |6,10/0,80|3,14|0,05| 0,00 0,05 |10,42| 375,04
24,27 94,16 37,00 0,70 0,24 0,17 |1,25]| 0,26 1,23 0,11 |6,10/0,80|3,14|0,05| 0,00 0,05 | 10,98 | 406,41
24,27 94,16 38,00 0,70 0,24 0,17 | 1,25]| 0,26 1,23 0,11 |6,10/0,80|3,14|0,05| 0,00 0,05 | 11,57 | 439,54
24,27 94,16 40,00 0,70 0,24 0,17 |1,25] 0,26 1,23 0,10 |6,10/0,80|3,14|0,05| 0,00 0,05 |12,78| 511,27

Test-2
W (N) [W/S (N/m2) |V (m/s)| A - taper ratio | Croot (m)|Ctip (m)|b (m)|S (m2)|p (kg/m3)| CL |AR| e | w [CdO| Cdi Cd D (N) [P (N*m/s)
224,35| 249,28 5,00 0,10 0,56 0,06 [291]| 0,90 1,23 16,28 |9,41(0,80(3,14|0,01| 11,20 | 11,21 | 154,53 | 772,64
224,35| 249,28 6,00 0,10 0,56 0,06 [291| 0,90 1,23 11,31 |9,41|0,80(3,14|0,01| 5,40 541 | 107,39 | 644,36
224,35| 249,28 7,00 0,10 0,56 0,06 [291| 0,90 1,23 8,31 ]9,41/0,80(3,14|0,01| 2,92 2,92 79,00 | 553,00
224,35| 249,28 8,00 0,10 0,56 0,06 |[291| 0,90 1,23 6,36 19,41/0,80(3,14|0,01| 1,71 1,72 60,60 | 484,81
224,35| 249,28 9,00 0,10 0,56 0,06 [291]| 0,90 1,23 5,02 19,41/0,80(3,14|0,01| 1,07 1,08 48,02 | 432,15
224,35| 249,28 10,00 0,10 0,56 0,06 [291]| 0,90 1,23 4,07 19,4110,80|3,14|0,01| 0,70 0,71 39,05 | 390,45
224,35| 249,28 15,00 0,10 0,56 0,06 |[291| 0,90 1,23 1,81 |9,41/0,80|3,14/0,01| 0,14 0,15 18,15 | 272,25
224,35| 249,28 25,00 0,10 0,56 0,06 |[291| 0,90 1,23 0,65 |9,41|0,80(3,14|0,01| 0,02 0,03 8,93 223,32
224,35| 249,28 30,00 0,10 0,56 0,06 [291]| 0,90 1,23 0,45 19,41|0,80(3,14|0,01| 0,01 0,02 8,26 247,75
224,35| 249,28 35,00 0,10 0,56 0,06 [291]| 0,90 1,23 0,33 |9,41{0,80|3,14|0,01| 0,00 0,01 8,55 299,38
224,35| 249,28 36,00 0,10 0,56 0,06 |[291| 0,90 1,23 0,31 |9,41{0,80(3,14|0,01| 0,00 0,01 8,69 312,99
224,35| 249,28 37,00 0,10 0,56 0,06 [291| 0,90 1,23 0,30 |9,41{0,80(3,14|0,01| 0,00 0,01 8,86 327,72
224,35| 249,28 38,00 0,10 0,56 0,06 [291| 0,90 1,23 0,28 |9,41|0,80(3,14/0,01| 0,00 0,01 9,04 343,58
224,35| 249,28 39,00 0,10 0,56 0,06 [291]| 0,90 1,23 0,27 19,41(0,80|3,14|0,01| 0,00 0,01 9,25 360,58
224,35| 249,28 40,00 0,10 0,56 0,06 291 | 0,90 1,23 0,25 |9,41/0,80|3,14|0,01| 0,00 0,01 9,47 378,75
224,35| 249,28 45,00 0,10 0,56 0,06 [291| 0,90 1,23 0,20 |9,41{0,80/3,14|0,01| 0,00 0,01 10,84 | 487,65
224,35| 249,28 50,00 0,10 0,56 0,06 [291| 0,90 1,23 0,16 |9,41|0,80|3,14|0,01| 0,00 0,01 12,57 | 628,46
224,35| 249,28 55,00 0,10 0,56 0,06 [291| 0,90 1,23 0,13 |9,41|0,80(3,14/0,01| 0,00 0,01 14,62 | 803,90
224,35| 249,28 60,00 0,10 0,56 0,06 [291]| 0,90 1,23 0,11 |9,41{0,80|3,14|0,01| 0,00 0,01 16,95 | 1016,90
224,35| 249,28 65,00 0,10 0,56 0,06 [291| 0,90 1,23 0,10 |9,41{0,80|3,14|0,01| 0,00 0,01 19,55 | 1270,49
224,35| 249,28 70,00 0,10 0,56 0,06 |[291| 0,90 1,23 0,08 |9,41{0,80(3,14/0,01| 0,00 0,01 22,40 | 1567,78

Test-3
W (N) [W/S (N/m2)|V= (m/s)| A - taper ratio |Croot (m)|Ctip (m)|b (m)|S (m2)|p (kg/m3)| CL | AR | e | w |CdO| Cdi Cd D (N) |P (N*m/s)
251,33| 370,70 5,00 1,00 0,20 0,20 3,40 | 0,68 1,23 24,21 |17,08/0,80(3,14|0,05| 13,65 | 13,70 | 142,27 | 711,33
251,33| 370,70 10,00 1,00 0,20 0,20 |3,40]| 0,68 1,23 6,05 |17,08/0,80|3,14/0,05| 0,85 0,90 37,51 | 375,13
251,33| 370,70 15,00 1,00 0,20 0,20 |3,40| 0,68 1,23 2,69 |17,08/0,80|3,14|0,05| 0,17 0,22 20,42 | 306,32
251,33| 370,70 16,00 1,00 0,20 0,20 |3,40]| 0,68 1,23 2,36 |17,08/0,80|3,14|0,05| 0,13 0,18 19,16 | 306,53
251,33| 370,70 17,00 1,00 0,20 0,20 |3,40| 0,68 1,23 2,09 [17,08/0,80(3,14/0,05| 0,10 0,15 18,26 | 310,46
251,33| 370,70 19,00 1,00 0,20 0,20 | 3,40 0,68 1,23 1,68 |17,08/0,80/3,14/0,05| 0,07 0,12 17,31 | 328,93
251,33| 370,70 20,00 1,00 0,20 0,20 3,40 | 0,68 1,23 1,51 |17,08/0,80|3,14|0,05| 0,05 0,10 17,16 343,29
251,33| 370,70 21,00 1,00 0,20 0,20 |3,40| 0,68 1,23 1,37 |17,08/0,80(3,14]|0,05| 0,04 0,09 17,19 | 361,04
251,33| 370,70 22,00 1,00 0,20 0,20 |3,40]| 0,68 1,23 1,25 |17,08/0,80(3,14|0,05| 0,04 | 0,09 | 17,37 | 382,17
251,33| 370,70 23,00 1,00 0,20 0,20 |3,40]| 0,68 1,23 1,14 |17,08|0,80/3,14/0,05| 0,03 0,08 17,68 | 406,70
251,33| 370,70 24,00 1,00 0,20 0,20 |3,40]| 0,68 1,23 1,05 |17,08|0,80|3,14{0,05| 0,03 0,08 18,11 | 434,69
251,33| 370,70 25,00 1,00 0,20 0,20 |3,40]| 0,68 1,23 0,97 |17,08/0,80|3,14|0,05| 0,02 0,07 18,65 | 466,18
251,33| 370,70 30,00 1,00 0,20 0,20 |3,40]| 0,68 1,23 0,67 |17,08/0,80|3,14/0,05| 0,01 0,06 22,62 | 678,74
251,33| 370,70 35,00 1,00 0,20 0,20 3,40 | 0,68 1,23 0,49 |17,08|0,80|3,14|0,05| 0,01 0,06 28,33 991,49
251,33| 370,70 40,00 1,00 0,20 0,20 |3,40]| 0,68 1,23 0,38 |17,08/0,80|3,14/0,05| 0,00 0,05 35,44 | 1417,47
251,33| 370,70 41,00 1,00 0,20 0,20 |3,40| 0,68 1,23 0,36 |17,08|0,80|3,14/0,05| 0,00 0,05 37,01 | 1517,49
251,33| 370,70 42,00 1,00 0,20 0,20 |3,40| 0,68 1,23 0,34 |17,08(0,80|3,14/0,05| 0,00 0,05 38,64 | 1622,72
251,33| 370,70 44,00 1,00 0,20 0,20 |3,40]| 0,68 1,23 0,31 |17,08/0,80|3,14|0,05| 0,00 0,05 | 42,03 | 1849,28
|251,33] 370,70 | 45,00 | 1,00 | 020 [ 020 [340] 068 | 1,23 | 0,30 [17,08]0,80]3,14[0,05] 0,00 | 0,05 | 43,80 | 1970,84 |
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