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ABSTRACT 

This paper provides solution method and sample results for discontinuous Galerkin finite 
element method (DG-FEM) solutions of two dimensional Euler equations which govern the 
inviscid and adiabatic flows with a set of quasi-steady hyperbolic equations. DG-FEM 
discretization of Euler equations are presented with proper boundary conditions. 
Implementation of boundary conditions is discussed in detail. Choice of flux function and 
limiting are addressed through the discretization. An explicit time integration method is chosen. 
Since the DG-FEM solves each cell in a discontinuous manner and cells are only connected 
to their neighbors, it is highly suitable for an object oriented approach and parallelization. 

INTRODUCTION 

Particularly in aerospace industry, understanding the fluid dynamics has enormous importance 
in the design process of the products. Experimental and theoretical approaches are two 
historically major branches of fluid dynamics. Experimentation helps to understand and 
evaluate physical phenomena in fluid dynamics however it is highly expensive for design 
process. Solving governing equations (or simplified forms) is the part of theoretical approach, 
but analytical solutions exist for only a few simple flow problems. Thanks to growth in 
computation power over the last decades, a third approach, numerical approach has gained 
importance. Evolutionary works [Jameson, Schmidt & Turkel 1981], [Jameson 1983] by 
Jameson pioneered the solving governing equations numerically, rather than mimicking. Finite 
volume algorithms increased robustness for applications with strong shocks and resolution 
with viscous problems by incorporating up-winding mechanism. However, currently, most of 
the finite volume methods used in fluid dynamics is limited in accuracy to second order due to 
complications of extended stencils in higher orders. On the contrary, finite element methods 
can provide higher order accuracies by formulation but for smooth inviscid and viscous flows 
as shown by Venkatakrishnan [Ventekakrishnan, Allmaras, Kamenetskii, & Johnson, 2003]. 
Applications with strong shocks and under resolved flow features become challenging for 
continuous finite element methods. For discontinuous Galerkin methods, higher order 
accuracy achieved within elements as in finite element methods, and element to element 
coupling exist through flux at element boundaries similar to finite volume methods. Hence; DG 
discretization permits a high order solver that may provide achieving robust, reliably accurate 
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and efficient simulations. This paper is devoted to the solution of two dimensional Euler 
equations with DG-FEM.  

Euler Equations 

In the differential form, 2 dimensional Euler equations are given below: 

𝜕𝑈

𝜕𝑡
+ ∇ ∙ 𝐹𝑖(𝑈) = 0 

where 𝑈 is the conservative state vector 

𝑈 = (

𝜌
𝜌𝑢
𝜌𝑣
𝐸

) 

where  𝜌 is the fluid density, (𝑢, 𝑣) are the Cartesian components of the velocity, 𝐸 is the 

specific total energy which is composed of specific internal, 𝒆, and specific kinetic energy 

𝐸 = 𝑒 + 
1

2
(𝑢2 + 𝑣2) 

and 𝑭𝒊 is the inviscid flux tensor 

𝐹𝑖 = (𝐹𝑖
𝑥 , 𝐹𝑖

𝑦
) 

𝐹𝑖
𝑥 = (

𝜌𝑢

𝜌𝑢2 + 𝑃
𝜌𝑢𝑣

𝜌𝐸𝑢 + 𝑃𝑢

) , 𝐹𝑖
𝑦
= (

𝜌𝑣
𝜌𝑣𝑢

𝜌𝑣2 + 𝑃
𝜌𝐸𝑣 + 𝑃𝑣

) 

One more equations is required to close the system. Further relations under the thermally and 
calorically perfect gas assumption are given for the total enthalpy, 𝐻, as follows: 

𝐻 = 𝐸 +
𝑃

𝜌
 

and the equation of state provides 

𝑃

𝜌
=  
𝛾 − 1

𝛾
(𝐻 −

1

2
(𝑢2 + 𝑣2)) 

where  𝛾 is the ratio of specific heats and assumed as constant value of 1.4. 

Non-dimensional Form of Euler Equations:  

When working with dimensional variables, all variables will resolve in different order of 
magnitudes. This will result in ill conditioned linear systems of implicit time marching schemes, 
precision errors, etc. hence equations are normalized in order to catch the same order of 
magnitude. Non-dimensional form of the Euler equations reads 

𝑡̅ =
𝑣𝑟𝑒𝑓𝑡

𝐿𝑟𝑒𝑓
, �̅� =

𝜌

𝜌𝑟𝑒𝑓
, �̅� =

𝑃

𝜌𝑟𝑒𝑓𝑣𝑟𝑒𝑓
2
, �̅� =

𝑒

𝑣𝑟𝑒𝑓
2
, �̅� =

𝐻

𝑣𝑟𝑒𝑓
2
, �̅� =

𝑎

𝑣𝑟𝑒𝑓
, �̅� =

𝑢

𝑣𝑟𝑒𝑓
, �̅� =

𝑣

𝑣𝑟𝑒𝑓
  

The flow related reference values are taken from free-stream values, dimension related 
reference values are chosen according to problem to be solved. Finally,  

𝜕�̅�

𝜕�̅�
+ ∇̅ ∙ 𝐹𝑖(�̅�) = 0 
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METHOD 

The DG method used to solve Euler equations is described in this section. Euler equations are 
only discretized in space using DG method in the present work. In theory, it is possible to use 
a space-time DG method discretization. References [Klaij, Vegt, & Ven, 2006] can be referred 
for example works of space-time DG method. DG discretization uses basis functions that are 
continuous within an element but discontinuous between elements. A nodal hierarchical basis 
is chosen in the present work. Differential form of Euler equations is multiplied by a test function 
Φ and integrated over the domain Ω to obtain: 

∫ 𝛷(
𝜕𝑈

𝜕𝑡
+ ∇ ∙ 𝐹𝑖(𝑈))𝑑𝛺

 

𝛺

= 0 

This form is known as weighted residual form. Performing integration by parts on the advection 
term, weak form of the problem, which is the basic form of DG, is obtained: 

∫ 𝛷
𝜕𝑈

𝜕𝑡

 

𝛺

𝑑𝛺 +∮ 𝛷𝐹𝑖(𝑈) ∙ �⃗� 𝑑𝛤
 

𝜕𝛺

−∫(∇ ∙ 𝛷) ∙ 𝐹𝑖(𝑈)𝑑𝛺
 

𝛺

= 0 

 

Dividing domain into non-overlapping elements 𝐸 and summation of elements read: 

∑[∫ 𝛷
𝜕𝑈

𝜕𝑡

 

𝐸

𝑑𝛺 +∮ 𝛷𝐹𝑖(𝑈) ∙ �⃗� 𝑑𝛤
 

𝜕𝐸

−∫(∇ ∙ 𝛷) ∙ 𝐹𝑖(𝑈)𝑑𝛺
 

𝐸

]

 

𝐸

= 0 

Local solution is assumed as: 

𝑢ℎ(𝑥 , 𝑡) = ∑ �̂�ℎ(𝑥 𝑘, 𝑡)𝑙𝑘(𝑥 )

𝑁𝑝

𝑘=1

=∑(𝑢ℎ(𝑡))𝑘𝑏𝑘
(𝑥 )

𝑁𝑝

𝑘=1

 

The local solution is represented in a two way; first one is nodal representation and second 
one is the modal representation. The two representations are mathematically equivalent, 
however computationally different and have certain advantages and disadvantages (see 
[Hesthaven & Warburton, 2008] for details). Using Vandermonde matrix, 𝑉, direct 
transformation between modal and nodal representations can be achieved.  

𝑉𝑢 = �̂�,      𝑉𝑘𝑗 = 𝑏𝑗(𝑥 𝑘) 

where  𝑥 𝑘 is the nodal points in each element.  𝑙𝑘 is multidimensional Lagrangian polynomial 
based on nodal points and 𝑏𝑘 is the multidimensional polynomial basis of 𝑁th order with 𝑁𝑝 =

(𝑁 + 1)(𝑁 + 2) 2⁄ . Finally, as in general Galerkin approach, choosing test and basis functions 
from the same space, semi-discrete form is reached: 

𝜕

𝜕𝑡
∫𝑏𝑘𝑢ℎ

 

𝐸

𝑑𝛺
⏟        

𝐼

+∮ 𝑏𝑘𝐹𝑖(𝑢ℎ) ∙ �⃗� 𝑑𝛤
 

𝜕𝐸⏟            
𝐼𝐼

−∫(∇ ∙ 𝑏𝑘) ∙ 𝐹𝑖(𝑢ℎ)𝑑𝛺
 

𝐸⏟              
𝐼𝐼𝐼

= 0, 0 ≤ 𝑘 ≤ 𝑛 

The part 𝐼 of the semi-discrete form is generally written as 𝑀 ∙ 𝑈 where 𝑀 is the element mass 
matrix and 𝑈 is the vector composed of the solutions degrees of freedom. The mass matrix for 
modal representation is defined as: 

𝑀𝑘𝑗 = ∫𝑏𝑘𝑏𝑗

 

𝐸

𝑑𝛺 

For an orthonormal basis function set, mass matrix becomes diagonal. 

𝑀𝑘𝑗 = ∫𝑏𝑘𝑏𝑗

 

𝐸

𝑑𝛺 = 0, 𝑘 ≠ 𝑗 

The part 𝐼𝐼 of the semi-discrete form, which is physical flux, is approximated using a numerical 
flux, 𝐻𝑖(𝑢ℎ

−, 𝑢ℎ
+), due to the fact that solution is allowed to be discontinuous between 

elements. 
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∮ 𝑏𝑘𝐹𝑖(𝑢ℎ) ∙ �⃗� 𝑑𝛤
 

𝜕𝐸

≈ ∮ 𝑏𝑘𝐻𝑖(𝑢ℎ
−, 𝑢ℎ

+) ∙ �⃗� 𝑑𝛤
 

𝜕𝐸

 

∮ 𝑏𝑘𝐻𝑖(𝑢ℎ
−, 𝑢ℎ

+) ∙ �⃗� 𝑑𝛤
 

𝜕𝐸

= ∑ [∮ 𝑏𝑘𝐻𝑖(𝑢ℎ
−, 𝑢ℎ

+) ∙ �⃗� 𝑑𝛤
 

𝜕𝑒

]

 

𝑒∈𝜕𝐸\𝜕𝛺⏟                      
𝑖𝑛𝑛𝑒𝑟 𝑓𝑙𝑢𝑥𝑒𝑠 (𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑓𝑙𝑢𝑥 )

+ ∑ [∮ 𝑏𝑘𝐻𝑖
𝑏(𝑢ℎ

−, 𝑢ℎ
𝑏) ∙ �⃗� 𝑑𝛤

 

𝜕𝑒

]

 

𝑒∈𝜕𝐸∩𝜕𝛺⏟                      
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑓𝑙𝑢𝑥𝑒𝑠 (𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

 

Notation (∙)− and (∙)+ represents the values are taken from interior and exterior solutions, 
respectively, as depicted in Figure 1. 

 

Figure 1 Interior and Exterior Cell Notation and Normal Vector (Landmann, 2008) 

The part 𝐼𝐼𝐼 of the semi-discrete form is evaluated using Gaussian quadrature. Since basis 
functions span ideal elements, Gaussian integration is evaluated in computational space. 
Quadrature points and weights are computed on equilateral triangle with equidistant points 
using barycentric coordinates.  Equidistant points are transformed into Legendre-Gauss-
Lobatto points to achieve exact integration and well-conditioned Vandermonde matrix 
(Hesthaven & Warburton, 2008). LGL quadrature points are mapped to simplex and presented 
in Figure 2. 

  

 

Figure 2 Legendre-Gauss-Lobatto Quadrature Points 

 



 
AIAC-2019-196                                                               Güngör & Özgen 

5 

Ankara International Aerospace Conference 
 

Basis Functions 

The discrete DG solution 𝑢ℎ is expanded in a series of basis functions. Number of 

modes/nodes are chosen such that complete basis of order 𝑁 is obtained. A hierarchical set 
of basis function is chosen. The basis function set is the Legendre polynomials which are 
special types of Jacobi polynomials valid in [-1, 1] and orthonormal. Jacobi polynomials are 
evaluated using following recurrence relations [Szegö, 1939]: 

𝑥𝑃𝑛
(𝛼,𝛽)(𝑥) = 𝑎𝑛𝑃𝑛−1

(𝛼,𝛽)(𝑥) + 𝑏𝑛𝑃𝑛
(𝛼,𝛽)(𝑥) + 𝑎𝑛+1𝑃𝑛+1

(𝛼,𝛽)(𝑥) 

where: 

𝑎𝑛 =
2

2𝑛 + 𝛼 + 𝛽
√

𝑛(𝑛 + 𝛼 + 𝛽)(𝑛 + 𝛼)(𝑛 + 𝛽)

(2𝑛 + 𝛼 + 𝛽 − 1)(2𝑛 + 𝛼 + 𝛽 + 1)
 

𝑏𝑛 = −
𝛼2 − 𝛽2

(2𝑛 + 𝛼 + 𝛽)(2𝑛 + 𝛼 + 𝛽 + 2)
 

Initial values of Jacobi polynomials are: 

𝑃0
(𝛼,𝛽)(𝑥) = √2−𝛼−𝛽−1

𝛤(𝛼 + 𝛽 + 2)

𝛤(𝛼 + 1)𝛤(𝛽 + 1)
 

𝑃1
(𝛼,𝛽)(𝑥) =

1

2
𝑃0
(𝛼,𝛽)(𝑥)√

𝛼 + 𝛽 + 3

(𝛼 + 1)(𝛽 + 1)
((𝛼 + 𝛽 + 2)𝑥 + (𝛼 − 𝛽)) 

where  𝛤(𝑥) is the classic Gamma function [Abromowitz & Stegun, 1972]. 𝑃𝑛
(0,0)(𝑥) type of 

Jacobi polynomials are known as Legendre polynomials. The Jacobi polynomials are 1 
dimensional, hence extension to multidimensional case is needed and complicated. Details of 
extensions to multidimensional case are given in [Koorwinder, 1975], [Suetin, 1999]. A 
complete set of basis functions on simplex for an order of 3 element is given in Figure 3. 

 

Figure 3 Complete 2 Dimensional Basis Set for Order of 3 Element 

Boundary Conditions 

Slip Wall: 

Slip wall requires that flow should be tangent to the wall. Hence, velocity normal to the wall 
should be zero and velocity tangent to the wall should be preserved. 

�⃗� 𝑏 ∙ �⃗� = 0 

�⃗� 𝑏 ∙ 𝑡 = �⃗� − ∙ 𝑡  



 
AIAC-2019-196                                                               Güngör & Özgen 

6 

Ankara International Aerospace Conference 
 

Solving for �⃗� 𝑏 provides boundary state as follows: 

𝑈𝑏 =

(

 
 

𝜌−

𝜌−𝑢𝑏

𝜌−𝑣𝑏

𝜌−𝑤𝑏

𝐸− )

 
 

 

Far-field: 

Far-field boundary condition uses the Riemann solver at the far-field boundary. Riemann 
invariants should remain constant for boundary state. Conditions of characteristics for subsonic 
and supersonic flow regime are given in Figure 4 for inflow and outflow boundaries. 

 

  
Subsonic Supersonic 

Figure 4 Inflow and Outflow Characteristic Information Propagation Directions for Subsonic and 

Supersonic Flow [Burgess, 2011] 

For subsonic flow regime, the Riemann invariants used to determine boundary state are: 

For inflow (�⃗� − ∙ �⃗� < 0): 

𝑅𝑅 = �⃗� 
− ∙ �⃗� +

2𝑐−

𝛾 − 1
 

𝑅𝐿 = �⃗� 
∞ ∙ �⃗� −

2𝑐∞

𝛾 − 1
 

𝑠𝑏 =
𝑝∞

(𝜌∞)𝛾
 

(�⃗� ∙ 𝑡 )
𝑏
= �⃗� ∞ ∙ 𝑡  

For outflow (�⃗� − ∙ �⃗� > 0): 

𝑅𝑅 = �⃗� 
− ∙ �⃗� +

2𝑐−

𝛾 − 1
 

𝑅𝐿 = �⃗� 
∞ ∙ �⃗� −

2𝑐∞

𝛾 − 1
 

𝑠𝑏 =
𝑝−

(𝜌−)𝛾
 

(�⃗� ∙ 𝑡 )
𝑏
= �⃗� − ∙ 𝑡  

For supersonic flow regime, the Riemann invariants used to determine boundary state are: 

For inflow (�⃗� − ∙ �⃗� < 0): 

𝑅𝑅 = �⃗� 
∞ ∙ �⃗� +

2𝑐∞

𝛾 − 1
 

𝑅𝐿 = �⃗� 
∞ ∙ �⃗� −

2𝑐∞

𝛾 − 1
 

𝑠𝑏 =
𝑝∞

(𝜌∞)𝛾
 

(�⃗� ∙ 𝑡 )
𝑏
= �⃗� ∞ ∙ 𝑡  

For outflow (�⃗� − ∙ �⃗� > 0): 

𝑅𝑅 = �⃗� 
− ∙ �⃗� +

2𝑐−

𝛾 − 1
 

𝑅𝐿 = �⃗� 
− ∙ �⃗� −

2𝑐−

𝛾 − 1
 

𝑠𝑏 =
𝑝−

(𝜌−)𝛾
 

(�⃗� ∙ 𝑡 )
𝑏
= �⃗� − ∙ 𝑡  

Boundary states are calculated as follows: 

(�⃗� ∙ �⃗� )𝑏 =
1

2
(𝑅𝑅 + 𝑅𝐿) 
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𝑐𝑏 = 4(𝛾 − 1)(𝑅𝑅 − 𝑅𝐿) 

𝜌𝑏 = (
(𝑐𝑏)

2

𝛾𝑠𝑏
)

1
𝛾−1⁄

 

𝑝𝑏 =
𝜌𝑏(𝑐𝑏)

2

𝛾
 

where 𝑐 and 𝑠 are speed of sound and entropy. Solving for �⃗� 𝑏 provides boundary state as 
follows: 

𝑈𝑏 =

(

  
 

𝜌𝑏

𝜌𝑏𝑢𝑏

𝜌𝑏𝑣𝑏

𝜌𝑏𝑤𝑏

𝐸𝑏 )

  
 

 

Exact: 

The boundary condition value is simply obtained from analytic solution. 

𝑢ℎ
+ =  𝑓(𝑥, 𝑦, 𝑡) 

RESULTS AND DISCUSSIONS 

Isentropic Vortex 

Isentropic vortex problem is very popular in CFD field to assess the performance of high order 
schemes [Spiegel, Huynh, & DeBonis, 2015]. The reason is being relatively simple problem 
and there is a known analytical solution at any time. Hence, solution error can be obtained 
easily. The isentropic vortex problem is defined by the following equation: 

𝑢 = 1 − 𝛽𝑒(1−𝑟
2)
𝑦 − 𝑦0
2𝜋

 

𝑣 = 𝛽𝑒(1−𝑟
2)
𝑥 − 𝑥0
2𝜋

 

𝜌 = (1 − (
𝛾 − 1

16𝛾𝜋2
)𝛽2𝑒2(1−𝑟

2))

1
𝛾−1

 

𝑝 =  𝜌𝛾 

𝑟 =  √(𝑥 − 𝑡 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 

𝑥0 = 5, 𝑦0 = 0, 𝛽 = 5, 𝛾 = 1.4 

 
A square computational domain is used. The vortex is located at the center of the 
computational domain. Domain boundaries have equivalent distance to the vortex center. 
Computational domain extends from 0 to 10 in x-direction and from -5 to 5 in y-direction. In 
literature, grid refinement methodology is used to verify the numerical accuracy as the main 
purpose of problem. The series of grids are generated in the computational domain having 16, 
32 and 64 nodes on the boundaries. Initially, grids are generated in structured grid fashion 
using boundary elements. The structured domain is diagonalized to obtain unstructured 
triangular grid. The triangular grids used in convergence study are shown in Figure 5. 
Simulations are conducted with polynomial orders from 1 to 5 for each grids which results in 
total of 15 simulations. Exact boundary conditions are employed at the domain boundaries 
which mean that analytical solution is enforced at boundary elements at each time step. Local 
Lax-Friedrichs flux method is utilized due to its convenient nature to low subsonic flows. The 
density error for each simulation is evaluated at time, t = 1. The density contour is presented 
in Figure 6 at initial condition, t = 0.5 and t = 1 for various orders. 
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Figure 5 The Solution Grids of Various Resolutions 

 

Figure 6 The Density Solution at Time = 1 for Various Orders 

The L2-norm of the density error is plotted in Figure 7 for each polynomial order in order to 
show the accuracy of the scheme. The x-axis is the grid size while y-axis presents the density 
error in logarithmic scale. The convergence rate for each polynomial order computed using 
change of error with change of grid size. Convergence rate for polynomial order of 1,2,3,4 and 
5 is 1.52, 2.61, 3.17, 3.95 and 4.92 respectively.  Theoretically, optimal convergence rate is 

ℴ(ℎ𝑁+1), however convergence rate is observed to be around ℴ(ℎ𝑁+1/2)which is suboptimal 
convergence rate. 
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Figure 7 Convergence Rates for Solution Orders 1 to 5 

Bump in a Channel 

Inviscid smooth bump in a channel problem is a popular test case for high order CFD methods. 
Recently at 5th High Order CFD Workshop 2018, it is assigned to participants to test their 
solvers. The smooth bump test case aims to test high order CFD methods with curved 
boundary representation for the computation of internal flows. The flow through channel is 
subsonic with a Mach number of 0.5. The bump profile in the lower wall is given by an equation 
and has smooth variation. The analytical solution of the problem is unknown however; since 
the flow is subsonic and inviscid, entropy should be constant in the channel. Hence, L2 norm 
of entropy error given can be used as the indication of accuracy. 

 

Figure 8 Numerical Model of Bump in a Channel Problem 

The computational domain presented in Figure 8 is bounded between x = -1.5 and x = 1.5, and 
between y = 0 and y = 0.8. The inlet boundary is defined at x = -1.5 while outlet is defined at x 
= 1.5. The bump geometry is placed at the point [0,0] which is at equivalent distance to inlet 
and outlet boundaries. The subsonic inlet boundary condition is defined with total pressure, 
total temperature and Mach number. The static pressure is set at outflow boundary. Upper and 
lower boundaries are slip wall boundaries and bump geometry is represented with curved wall 
boundary approach. The flow is started from uniform M = 0.5 flow. HLL approximate Riemann 
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solver is selected as numerical flux function. Time integration is carried out by fourth order 
explicit Runge-Kutta method. 

 

Figure 9 Sequence of Grids in Bump in a Channel Problem 

Three meshes different in element sizes are generated to use in accuracy analysis. Coarse 
mesh has 667 elements. 1226 elements are utilized in medium mesh while fine mesh has 2444 
elements. Coarse, medium and fine meshes are presented in Figure 9. The series of 
simulations are conducted with three meshes for polynomials order from 1 to 4 until 
convergence in entropy error achieved. Entropy error histories of coarse mesh solutions are 
presented in Figure 10 where x-axis is iteration number and y-axis is log scale of entropy error. 
The entropy error for all polynomial orders settled to a certain level. The low order simulations 
quickly converged however, error reduction capabilities are limited. The high order simulations 
took longer time to converge with oscillatory behavior. 



 
AIAC-2019-196                                                               Güngör & Özgen 

11 

Ankara International Aerospace Conference 
 

 

Figure 10 L2 Norm of Entropy Error History for Polynomials Order of 1,2,3 and 4 on Coarse Grid 

The pressure contours from two different polynomial order on coarse mesh are presented in 
Figure 11. The pressure contour is ranged between 0.82 and 1.04. The outlet boundary 
condition is assumed to be undisturbed flow and has the pressure value of 1.0. Hence, 
pressure values lower than 1.0 represents suction regions. The solution presented in Figure 
11.(a) uses elements with polynomial order of 1 while Figure 11.(b) presents the same solution 
for polynomial order of 4. The pressure field in Figure 11.(a) has discontinuities at regions high 
pressure gradient presents. Moreover, suction region at the bump peak is poorly captured. On 
the other hand, fourth order polynomials provide smooth well developed solution. Suction and 
high pressure regions are well captured. It can be summed up that high order solution can 
provide smooth solution on even coarse mesh while low order solution has disturbed regions. 
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Figure 11 Steady State Pressure Contours of (a) Second and (b) Fifth Order Solutions 

 

The entropy error of each simulation is plotted with grid size in Figure 12. The convergence 

rates are observed between ℴ(ℎ𝑁+1/2) and ℴ(ℎ𝑁+1). The expected convergence rate in High 

Order CFD Workshop is stated as ℴ(ℎ𝑁+1) hence it can be concluded that consistent results 
are obtained. 
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Figure 12 Convergence Rate for Bump in Channel Problem 

Bump with Straight Cells: 

In high order DG simulations, the use of curved wall boundary representation is stated as 
mandatory to achieve high order accurate solution. In order to experience importance of curved 
wall boundary condition, the bump in a channel solutions are computed with polynomial orders 
of 2 and 4 using straight sided cells on wall boundaries. The Figure 12 is re-drawn to compare 
curved and straight sided cells solution on Figure 13. As it is aforementioned, convergence 

rate is expected to be ℴ(ℎ𝑁+1). For the third order accurate solution, convergence rate drops 
from 3.08 to 1.69 and for the fifth order solution, convergence rates are 4.88 and 1.80. The 
convergence rate of straight sided cell simulations is around 2 regardless of polynomial order. 
Other than first order solutions, geometry representation of straight sided cells is identical to 
second order boundary representation of curved cells. Hence, it can be said that order of 
accuracy is limited by representation of wall boundaries. 
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Figure 13 Convergence Rate Comparison of Curved and Straight Sided Cell Solutions 

In order to further investigate the accuracy loss, entropy generation in solution domain is 
calculated for each simulation. The maximum entropy generation in each simulation occurred 
around the bump however, away from the bump geometry in solution domain, generation of 
entropy is vanished. The entropy contours of simulations with curved and straight sided wall 
are compared in Figure 14 zooming at bump geometry. The maximum and minimum values of 
each contour plot is set equivalent. The grid and Legendre-Gauss-Lobatto nodes are also 
activated. The grid nodes are connected with solid lines while LGL nodes are connected 
dashed lines to show deformation of cell edges and node blending. In each simulation, 
maximum entropy generation occurs at the bump peak; however, simulations with straight 
sided cells have greater entropy generation.  
Another important observation is that, entropy error of curved cell simulations have smooth 
variation and diminish away from bump. However, in straight sided cell simulations, entropy 
error generated at bump geometry convected downstream and disturbed solution field. 
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Figure 14 Entropy Error Contours, (a) Curved Cell with Polynomial Order of 2, (b) Straight Sided Cell 

with Polynomial Order of 2, (c) Curved Cell with Polynomial Order of 4, (d) Straight Sided Cell with 

Polynomial Order of 4 

RAE2822 Airfoil 

The RAE2822 airfoil is a transonic airfoil which has a maximum camber of %2 positioned at 
%80 chord length and %22 maximum thickness to chord length ratio. The RAE2822 airfoil has 
a well-documented test campaign which made it popular test case in computational fluid 
dynamics literature. The upper and lower surface coordinates of the airfoil and experimental 
results are obtained from test document [Cook, McDonald, & Firmin, 1979]. The airfoil 
geometry is plotted in Figure 15. 

 

Figure 15 RAE2822 Airfoil Geometry 

The solution domain for RAE2822 is generated between airfoil geometry and farfield boundary. 
Leading edge of the airfoil is located at [0,0]. Curved wall boundary is applied to airfoil 
geometry. Farfield is generated as circular geometry with radius equal to 40 chord length and 
center at [0,0]. The number of elements placed on the airfoil geometry is 120 while farfield 
boundary is divided into 40 equal elements. The domain between airfoil and farfield boundaries 
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contains 1846 triangular elements. The generated grid is presented in Figure 16.(a). The 
zoomed viewed of grid around airfoil geometry is plotted on Figure 16.(b). HLL approximate 
Riemann solver is employed as numerical flux function. 

 

Figure 16 Solution Grid Used in RAE2822 Airfoil Simulations (a) Solution Grid, (b) Zoomed View on Airfoil 

Geometry 

RAE2822 Airfoil at Mach 0.3: 

The RAE2822 test campaign does not include low Mach number flows. However, an inviscid 
shock-free flow around RAE2822 airfoil at zero angle of attack should produce no drag force 
due to fact that pressure forces cancel in stream-wise direction. Hence, verification study can 
be carried out.  
 
Verification analyses are conducted with polynomial order of 3. Simulation is run until 
convergence achieved. The density residual and drag force history is plotted in Figure 17. 
Iteration number is used as x-axis while density residual and drag force are plotted on y-axis. 
Logarithmic scale is applied to the y-axis of density residual plot.  The density residual is 
reduced to around order of -11. Similarly, drag force initially oscillates and converges to value 
of 1.18E-05 which is almost zero. 

 

Figure 17 Convergence History for RAE2822 Airfoil Solution at M = 0.3 (a) Density Residual Plot, (b) Drag 

Force Convergence History 

The pressure contour of converged solution is presented in Figure 18.(a). Pressure contour is 
ranged between 0.97 and 1.06 and spaced equally 21 lines. Figure 18.(b) shows Mach number 
contours which is also equally spaced 20 lines between values of 0.0 and 0.38. The contour 
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plots show smooth variation of flow variables in solution domain. Moreover, drag force is 
obtained near zero as it is aimed. It can be concluded that numerical approach is verified. 

 

Figure 18 RAE2822 Solution at M = 0.3, (a) Pressure Contour, (b) Mach Number Contour 

RAE2822 Airfoil at Mach 0.73: 

The 2 transonic flow test cases of RAE2822, Case9 and Case10 [Cook, McDonald, & Firmin, 
1979], has actually become a standard test case for turbulence modelling. Case9 is run at 
Mach number of 0.73 and 2.8 degrees angle of attack. The case9 is evaluated as subcritical 
flow condition where little to no separation occurs due to shock. However, Case10 is 
supercritical flow condition where massive separation is observed downstream of shock. Since 
the fidelity present work is limited by governing equations, Case9 can be used as validation 
case.  
 
The same grid and numerical flux used in low Mach number verification case is utilized. 
However, since there is a presence of shock, high gradient values in the solution field are 
expected. Therefore, slope limiter is utilized to stabilize the solution. 
 
The transonic test case simulations are conducted with polynomial orders of 1. The density 
residual history is plotted in Figure 19.(a). Pressure values on the airfoil geometry are extracted 
from converged solution. The pressure values are converted to pressure coefficient and 
compared with experimental results in Figure 19.(b). The simulation and experimental results 
match quite well in the lower surface However, results are less successful in capturing the 
upper surface vales. Nonetheless, shock positon is correctly captured. Leading edge region of 
upper surface shows notable discrepancy which may appear due to low resolution of surface 
curvature. Downstream of the shock, results are satisfactory. 
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Figure 19 RAE2822 Solution with Slope Limiter at M = 0.73 and α = 2:82, (a) 

Density Residual, (b) Pressure Coefficient [Cook, McDonald, & Firmin, 1979] 

The pressure and Mach number contours of the converged solution around the airfoil geometry 
are presented in Figure 20.(a) and Figure 20.(b), respectively. The pressure contour is divided 
into equal 20 levels between 0.6 and 1.4. Mach number contour is consists of 25 levels with 
maximum value of 1.2 and minimum value of 0.0. The air accelerates on the upper surface 
resulting in shock formation. However, lower surface has smooth variation in flow field. 

 

Figure 20 RAE2822 Solution with Slope Limiter at M = 0.73 and α= 2:82, (a) Pressure Contour, (b) Mach 

Number Contour 
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