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ABSTRACT 

 
This paper focuses on the design methods of two different gain-scheduled collective blade pitch 
controllers for a 5 MW horizontal axis wind turbine using equilibrium and frozen wake 
assumptions. The design and performance tests of the controllers are carried out using the MS 
Bladed Wind Turbine Simulation Model.  
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INTRODUCTION 

Control systems of modern Horizontal Axis Wind Turbines, or HAWTs, consist of different layers; 
the highest, middle and the lowest level controls. The highest level control, also known as 
supervisory control, determines when to start or stop turbines depending on wind speed. Turbines 
start producing electricity at a wind speed that is referred to as cut-in wind speed. At another wind 
speed, referred to as cut-out wind speed, turbines are stopped in order to prevent them from 
damages. Middle-level control is about the turbine’s own control and is referred to as operational 
control. This control level includes the generator torque, blade pitch and yaw controllers. The 
generator torque control is used to obtain the optimum turbine efficiency. The blade pitch control 
is utilized to generate the rated electrical power. Yaw control is employed to direct the nacelle into 
the wind. The lowest level control, however, includes an internal generator control, actuator 
control etc.[Johnson, Pao, Balas, & Fingersh, 2006; Sahin & Yavrucuk, 2017b]. 

Modern HAWTs with the above control properties can operate at variable rotor speeds and blade 
pitch angles. They have three basic operational regions: Region 1, Region 2 and Region 3. Below 
the cut-in wind speed is Region 1, where turbines do not generate any electrical energy because 
wind speeds are not sufficient to produce electrical power even for turbines’ own systems. 
Electrical power generation starts at the cut-in wind speed and ends up at the cut-out wind speed. 
Between these two wind speeds, there are two operational regions, Region 2 and 3. The region 
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between the cut-in and rated wind speeds is Region 2, whereas the region between the rated and 
cut-out wind speeds is Region 3[Johnson et al., 2006; Merabet, Thongam, & Gu, 2011]. Region 
2 and 3 are also known as partial and full load or below and above rated regions, respectively. 
Some articles such as the reference of [Oudah, Mohd, & Hameed, 2014] considers the region 
above the cut–out wind speed as an extra region, Region 4. In this region, turbines are normally 
not allowed to operate due to the extreme turbine loadings. However, most modern turbines are 
operated even in Region 4 with one of the offline-shaped strategies such as ramp shaping, 
stepwise shaping etc.[Fischer & Shan, 2013]. In addition, between Region 1 and 2, as well as 
Region 2 and 3, there are transition regions, which are narrow and are known as Region 1.5 and 
2.5, respectively. The torque controls for these regions are referred to as Region 1.5 and 2.5 
controllers, respectively[Sahin, 2018]. 

The main objective in Region 2 is to maximize the energy capture of turbines because wind 
speeds in this region are low to produce the rated power. The maximum energy is generated by 
varying the rotor speed and keeping blade pitch angle at the optimum value against the changing 
wind speed. This is realized by a generator torque controller that allows turbines to operate at the 
optimum tip speed ratio, TSR and therefore with the maximum power coefficient, 𝐶𝑝𝑚𝑎𝑥. The main 

aim in Region 3, on the other hand, is to limit the power output of turbines to their rated values. 
Power limitation is generally achieved by keeping the generator torque constant at its rated value 
and adjusting the blade pitch angles to regulate the rotor speed. This is obtained by a blade pitch 
controller[Johnson et al., 2006; Merabet et al., 2011; Stol & Fingersh, 2004]. 

 
Figure 1: Illustration of Wind Turbine Operational Regions [Aho et al., 2012] 

 
Figure 1 depicts all these regions and their boundaries for a 5 MW turbine. The dashed red line 
shows the turbine rated power. The blue curve indicates the available power in the wind. The 
green, however, represents the controlled power curve of the 5 MW turbine. As seen in the figure, 
not all the power available in the wind is extracted into the electrical power due to the Betz limit 
and losses in turbine mechanical and electrical components.  
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In this study, two different gain-scheduled Proportional and Integral (PI) strategy based collective 
blade pitch controller design methods are investigated for the NREL 5 MW turbine using 
equilibrium and frozen wake assumptions. The design and simulations are carried out using the 
MS (Mustafa SAHIN) Bladed Wind Turbine Simulation Model or MS Bladed Model. The study is 
organized as follows: the next section defines the MS Bladed Model briefly. Afterwards, the 
subject of blade pitch control is discussed. Methodology section focuses on the details of the 
turbine model linearization, blade pitch controller designs and simulations. Finally, the 
conclusions part is drawn.    

MS BLADED WIND TURBINE SIMULATION MODEL 

The MS Bladed Model, which is based on Blade Element Momentum (BEM) Theory, is developed 
for HAWT simulations. The aerodynamic calculations in the model are similar to those of Prop 
Code[Wilson & Lissaman, 1974], Wt_Perf[Platt & Buhl, 2012] and Aerodyn[Moriarty & Hansen, 
2005]. By the MS Bladed Model, performance predictions of HAWT rotors may be examined. 
Turbine controller designs, new controller algorithm developments and their simulations may be 
realized. Turbine behaviour under normal/extreme turbulent winds may be investigated in time. 
Since the model includes various coordinate systems and aerodynamic corrections, it has the 
capabilities of nacelle yawing and individual or collective blade pitching. Further, it allows to define 
pre-cone and nacelle tilt angles. More information about the model may be found in the references 
of [Sahin, 2018; Sahin & Yavrucuk, 2017a, 2017c]. The main parts of the turbine system model 
are a turbine rotor, a gearbox and a simple variable torque electrical generator. It considers all 
the turbine parts such as blade, rotor shaft etc. as rigid structures and is constructed on the 
following relations.  

𝐽𝑡Ω̇ = 𝜏𝑎𝑒𝑟𝑜 − 𝜏𝑔𝑒𝑛 
(1) 

𝐽𝑡 = 𝐽𝑟 + 𝑁𝑔𝑒𝑎𝑟
2 𝐽𝑔𝑒𝑛 (2) 

where, 𝜏𝑎𝑒𝑟𝑜 is the rotor aerodynamic torque, 𝜏𝑔𝑒𝑛, generator electromagnetic torque, 𝐽𝑡, total 

inertia of the turbine system, Ω, rotor speed, 𝑁𝑔𝑒𝑎𝑟, gearbox ratio and 𝐽𝑔𝑒𝑛, generator inertia. 

BLADE PITCH CONTROL OF TURBINES 

Collective blade pitch control allows all the turbine blades to move together with the same amount 
of pitch angles to regulate turbine power output. For variable pitch turbines, it is achieved by pitch 
to stall or pitch to feather method, which respectively puts the turbine blades into stall or feather 
condition. In the first method, blades are operated under high angle of attacks (AOAs) that 
correspond to low aerodynamic lift and high drag coefficients. In the second method, however, 
blades are operated with low AOAs and therefore with low lift and drag coefficients. Although both 
methods utilize different aerodynamic phenomena, they share almost the same control block 
diagram (Figure 2). They both use the rotor speed or generally the generator speed as feedback 
to calculate the demanded pitch angle for pitch actuators. The actuators are limited by 
constructional constraints such as rate limits, min and max etc. For modern large-scale turbines, 
pitch to feather control is commonly used. Thus, this study focuses on this method with two 
different designs based on equilibrium and frozen wake assumptions. In the equilibrium wake 
assumption, there is nothing changed in the model, whereas in the frozen wake assumption, 
some variable throughout the blade spans are kept fixed during linearization. 
 
In this study, the rotor speed is fed back to the blade pitch controller, rather than that of the 
generator. Therefore, the pitch command is determined based on the rotor speed error between 
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the rated and measured rotor speeds. The pitch angle range is limited between -0.875 and 90 
degree-pitch angles. A rate limiter of 8 deg/s is also added to the pitch control system.  

 
Figure 2: Block Diagram for Blade Pitch Controller [Sahin, 2018] 

 
METHODOLOGY 

In this part, two gain-scheduled collective blade pitch controllers are designed to regulate the rotor 
speed of the NREL 5 MW turbine and therefore to produce the rated electrical power. Proportional 
and Integral (PI) strategy based control is adopted to achieve the purpose. In the above rated 
region, a gain scheduling design is used since one linear PI-based controller designed for one 
equilibrium point demonstrates poor performance at other equilibrium points. Followings are the 
details about the designs and simulations. 

Wind Turbine System Linearization  

The MS Bladed Model consider the dynamic turbine system as in equation (1). The system is a 
nonlinear system due to both aerodynamic and generator torques. However, for the above rated 
region, or Region 3, the nonlinearity is caused by the aerodynamic torque only since generator 
torque is kept constant at its rated value. The system consists of only one state i.e rotor speed, 

Ω. It is the change of azimuth angle, 𝛬, of the turbine blades in time. The control inputs to the MS 
Bladed Model are only the pitch angles, whereas the freestream wind is a disturbance input to 
the model.  

In order to design a linear controller, the turbine model is to be linearized around an equilibrium 
point. A perturbation technique is a commonly-used approach for linearization. For the above 
rated region, an equilibrium point for a turbine may be defined as the point at which wind speed 
and blade pitch angle, the aerodynamic torque reaches at the rated generator torque at the rated 
rotor speed. Therefore, the rotor aerodynamic torque is a continuous function and depends on 
three variables; rotor speed, Ω, blade pitch angle, β, and lastly wind speed, U. Thus, following the 
reference of [A. Wright, 2004], the aerodynamic torque may be expanded by a Taylor series as,  

𝜏𝑎𝑒𝑟𝑜(𝑈, Ω, 𝛽) = 𝜏𝑎𝑒𝑟𝑜(𝑈𝑒 , Ω𝑒 , 𝛽𝑒) +
𝜕𝜏𝑎𝑒𝑟𝑜

𝜕𝑈
(𝑈 − 𝑈𝑒) +

𝜕𝜏𝑎𝑒𝑟𝑜

𝜕Ω
(Ω − Ω𝑒) +

𝜕𝜏𝑎𝑒𝑟𝑜

𝜕𝛽
(𝛽 − 𝛽𝑒)

+ 𝐻𝑂𝑇𝑠 

 

(3) 

 

where 𝑈𝑒 , Ω𝑒 , 𝛽𝑒 are respectively the values of wind speed, shaft speed, and blade pitch angle at 
an equilibrium point. 𝑈 − 𝑈𝑒 = ∆𝑈, Ω − Ω𝑒 = ∆Ω and 𝛽 − 𝛽𝑒 = ∆𝛽 are the perturbations or small 
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deviations from the equilibrium point. For linear controller designs, the first order Taylor series 
expansion is good enough for the approximation of nonlinear system. Therefore, Higher Order 
Terms (HOTs) in equation (3) are neglected. If the series expansion is applied to the whole turbine 
system in equation (1), considering the generator torque on the LSS of gearbox, 𝜏𝑔𝑒𝑛, the 

following is obtained. 

𝐽𝑡(Ω − Ω𝑒)̇ = 𝜏𝑎𝑒𝑟𝑜(Ω𝑒 , 𝛽𝑒 , 𝑈𝑒) + ɣ∆Ω + +𝜂∆𝛽 + ϻ∆𝑈 − 𝜏𝑔𝑒𝑛 (4) 

For Region 3, the rated generator torque on LSS of the gearbox is determined as 4180074.35 
Nm[J. Jonkman, Butterfield, Musial, & Scott, 2009]. In addition, there is no rotor acceleration at 
steady-state because the aerodynamic and generator torques cancel each other at equilibrium. 
Thus, for any turbine operation at steady-state, 

JtΩ̇ = ɣ∆Ω + η∆β + ϻ∆U (5) 

where, ɣ,  𝜂, ϻ represents the partial derivatives of 
𝜕𝜏𝑎𝑒𝑟𝑜

𝜕Ω
, 

𝜕𝜏𝑎𝑒𝑟𝑜

𝜕𝛽
 and  

𝜕𝜏𝑎𝑒𝑟𝑜

𝜕𝑈
, respectively. Further,  

Ω̇ =
ɣ

𝐽𝑡
∆Ω +

𝜂

𝐽𝑡
∆𝛽 +

ϻ

𝐽𝑡
∆𝑈 (6) 

If the followings are defined 

ɣ

𝐽𝑡
= 𝐴 (7) 

 
𝜂

𝐽𝑡
= 𝐵 (8) 

ϻ

𝐽𝑡
= 𝐵𝑑 (9) 

open loop turbine system turns out to be as  

Ω̇ = 𝐴∆Ω + 𝐵∆𝛽 + 𝐵𝑑∆𝑈 (10) 

where 𝐴 is the system gain, 𝐵 is the input gain, and finally 𝐵𝑑 is the disturbance gain. They are 
the ratios of the partial derivative of aerodynamic torque with respect to rotor speed, blade pitch 
angle and wind speed to the total inertia of the turbine system, respectively. As the goal in this 
part is to design a PI-based pitch control system, following the reference of [A. D. Wright & 

Fingersh, 2008], the perturbation of pitch angle, ∆𝛽, is related directly to that of rotor speed, ∆Ω, 

∆𝛽(𝑡) = 𝐾𝑝∆Ω(𝑡) + 𝐾𝑖 ∫ ∆ Ω(𝑡)𝑑𝑡 (11) 

where 𝐾𝑝 and 𝐾𝑖 represent the proportional and integral gains, respectively. Thus, the controller 

output is as follows, 𝛽 = ∆𝛽 + 𝛽𝑒. Putting the equation (11) into the equation (10) constructs the 
closed-loop turbine system with PI strategy as in equation (12). 

Ω̇ = 𝐴∆Ω + 𝐵 (𝐾𝑝∆Ω(𝑡) + 𝐾𝑖 ∫ ∆ Ω(𝑡)𝑑𝑡) + 𝐵𝑑∆𝑈 (12) 

Taking the Laplace Transform of equation (12) as follows, 
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𝑠Ω(𝑠) = 𝐴∆Ω(𝑠) + 𝐵 (𝐾𝑝∆Ω(𝑠) +
𝐾𝑖

𝑠
∆Ω(𝑠)) + 𝐵𝑑∆𝑈(𝑠) (13) 

and then carrying out some algebraic manipulations, the closed loop transfer function between 
the rotor speed, ∆Ω(𝑠) and the wind, ∆𝑈(𝑠) is obtained as,  

𝐺𝐶𝐿(𝑠) =
∆Ω(𝑠)

∆𝑈(𝑠)
=

𝐵𝑑𝑠

𝑠2 + (−𝐴 − 𝐵𝐾𝑝)𝑠 + (−𝐵𝐾𝑖)
 (14) 

The denominator of the transfer function or the characteristic equation of the closed loop system 
gives the information about the system stability considering the controller gains, 𝐾𝑝 and 𝐾𝑖. 

Therefore, by designing 𝐾𝑝 and 𝐾𝑖, the desired performance is easily obtained from the system. 

In order to have a closed loop turbine system stable, both roots of the characteristic equation are 
to be at least negative. Thus, the terms in parenthesis of the characteristic equation are to be 
larger than zero.  

−𝐴 − 𝐵𝐾𝑝 > 0 (15) 

−𝐵𝐾𝑖 > 0 (16) 

However, in order to achieve the desired response from the system, proper gains should be 
selected according to the design requirements. For a second order system, design requirements 

are determined by the desired natural frequency, 𝑤𝑛 and damping ratio, 𝜁. The following subpart 
deals with the selection of natural frequency, damping ratio and the calculation of these gains. 

Design and Performance of Collective Blade Pitch Controller  

Here, the first PI-based control method, which consider the equilibrium wake, is discussed. 
Initially, for a selected equilibrium point, the effect of damping ratio on the turbine rotor speed 
response is examined to determine a suitable damping ratio. However, the desired natural 
frequency is kept the same as in the literature[Hansen et al., 2005]. The damping ratio of 0.8 is 
determined to give the best performance result in terms of settling time at the selected equilibrium 
point. Later, the blade pitch controller giving the best performance is also tested at other 
equilibrium points. However, the test simulations have demonstrated poor performance results. 
Thus, a gain-scheduled PI-based controller is designed for the NREL 5 MW turbine to have almost 
the same performance at every equilibrium point in the above rated region. The followings are 
the details of this design process. 

In the first method, in order to design a blade pitch controller, the values of partial derivatives ɣ  
and 𝜂 are required to be first determined to calculate the values of A and B gains at the selected 
equilibrium point. These gains are explicitly seen in the characteristic equation in (14). Here, these 
gain values are determined using the MS Bladed Model. The nonlinear aerodynamic model is 
linearized around a desired equilibrium point. Model linearization is carried out using the central 
difference theorem considering the equilibrium wake assumption. When the characteristic 
equation in (14) is considered as a standard second order system in Laplace form as  

𝑠2 + 2𝑤𝑛𝜁𝑠 + 𝑤𝑛
2 (17) 

Then, equations (18) and (19) become the relations among the natural frequency, damping ratio, 
system and input gains as well as controller gains. 
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2𝑤𝑛𝜁 = −𝐴 − 𝐵𝐾𝑝 (18) 

𝑤𝑛
2 = −𝐵𝐾𝑖 (19) 

Therefore, 𝐾𝑝 and 𝐾𝑖 gains are obtained by equations (20) and (21), respectively if the desired 

natural frequency and damping ratio are already known. 

𝐾𝑝 =
−2𝑤𝑛𝜁

𝐵
−

𝐴

𝐵
 (20) 

𝐾𝑖 =
−𝑤𝑛

2

𝐵
 (21) 

According to the explanations above, Table 1 is prepared here for the discussions of controller 
design and analysis thought this subchapter. In Table 1, EP represents the equilibrium point. 

Table 1: Selected Equilibrium Points for Controller Design and Simulations 

Equilibrium 
Points 

Wind Speed 
(m/s), 

𝑼𝒆 

Rotor Speed 
(rpm), 

Ω𝒆 

Pitch Angle 
(deg), 

𝜷𝒆 

Rotor Torque 
(Nm), 

𝝉𝒆 

EP1 18 12.1 14.9525 4180074.35 

EP2 16 12.1 10.5521 4180074.35 

EP3 13 12.1 6.7206 4180074.35 

EP4 11.5 12.1 2.2792 4180074.35 

EP5 12.6607 12.1 5.9676 4180074.35 

EP6 23 12.1 20.9964 4180074.35 

 
EP1 is taken into account, first. One PI-based blade pitch controller is designed for this equilibrium 
point. During a controller design for a turbine, the reference of [Hansen et al., 2005] has suggested 

utilizing a natural frequency, 𝑤𝑛 of 0.6 and a damping ratio, 𝜁 of 0.6-0.7 to have a satisfactory 
response. However, by keeping the natural frequency as 𝑤𝑛 of 0.6, Wright and Fingersh have 
selected a damping ratio of 1 for the NREL 600 KW CART turbine after some trials during the 
pitch controller design[A. D. Wright & Fingersh, 2008]. Therefore, these values, particularly the 
damping ratio, depends on turbines. Thus, a similar approach in the reference of [A. D. Wright & 
Fingersh, 2008] is adopted here to find the best damping ratio. Later on, the same damping ratio 
is kept being used for both controller designs. Through the linearization of MS Bladed Model, 𝐴, 

𝐵 and  𝐵𝑑 gains at EP1 are obtained as follows.  

𝐴 = −0.2401 

𝐵 = −1.1672 

𝐵𝑑 = 0.0275 

Using the above system gain, 𝐴 and input gain, 𝐵 and natural frequency, 𝑤𝑛 and damping ratio, 𝜁 
respectively as 0.6 and 0.7 in equations (20) and (21) results in a proportional gain, 𝐾𝑝 of 0.5140 

and an integral gain, 𝐾𝑖 of 0.3084. By this designed controller, the rotor speed response of 
controlled turbine (dashed blue) to a step increasing wind input from 17 to 18 m/s at 50s of the 
simulation is shown in Figure 3. Rotor speed response overshoots slightly the steady-state at 
around 58s and settles down eventually at around 65s. The rotor speed response to a disturbance 
wind input looks quite satisfactory in terms of settling time because it is only a duration of 
approximately 15 seconds. However, there may be another damping ratio that gives a better rotor 
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speed response than the one obtained. To decide an appropriate damping ratio, the value of 
damping ratio of the closed turbine system is decreased and increased. All these responses are 
also given in Figure 3.  

 
Figure 3: The Best Rotor Speed Response with the Damping Ratio of 0.8 at EP1 

As seen from the figure, with the damping ratio of 0.4, the response is an undamped oscillation 
and takes a quite large time to settle down. Even in 15 seconds, it does not reach the steady-
state and still oscillates. In terms of settling time, the same is also valid for the response with the 
damping ratio of 2. However, the damping ratios of 0.7 and 1 demonstrate closer settling times. 
The response with damping ratio of 1 gives a closer output to the steady-state around 61s. On 
the other hand, the response with damping ratio of 0.7 gives a closer value to the steady-state 
around 58s. It overshoots slightly and settles down approximately within 15 seconds. Thus, the 
damping ratio of 0.7 seems to be a better damping ratio. However, it also seems that selecting a 
damping ratio of 0.8 provides the best performance in terms of settling time.  
 
Table 2 shows the corresponding proportional and integral gains of the closed-loop system as 
well as the system roots when the above-mentioned damping ratios and natural frequency are 
used for controller design. In Table 2, when the damping ratio is less than 1, the closed-loop 
system has complex conjugate roots, turning into an undamped system and therefore 
demonstrates an oscillatory response. This response typically occurs since the closed-loop 
system is turned into an underdamped system. However, when the damping ratio is increased to 
1, the system operates with the repeating roots. 

Table 2: Estimation of the Best Damping Ratio 

Damping 
Ratio 

𝜻 

Natural 
Frequency 

𝒘𝒏 

Proportional 
Gain 

𝑲𝒑 

Integral 
Gain 

𝑲𝒊 

System 
Root 1 

System 
Root 2 

0.4 0.6 0.2055 0.3084 -0.24-0.5500i -0.24+0.5500i 

0.7 0.6 0.5140 0.3084 -0.42-0.4285i -0.42+0.4285i 

0.8 0.6 0.6168 0.3084 -0.48-0.3600i -0.48+0.3600i 

1 0.6 0.8224 0.3084 -0.6 -0.6 

2 0.6 1.8505 0.3084 -2.2392 -0.1608 

Thus, the system becomes a critically damped system. Increasing the damping ratio further into 
2, the system has two different negative real roots which make the system overdamped. 
Therefore, the eventual response of the system is determined by the smaller root in magnitude. 
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For all the cases in Table 2, the turbine system with the controller is stable due to negative real 
parts in the system roots. Therefore, it eventually reaches at the steady-state. 

 
Figure 4: Controller Performance Deterioration at other Equilibrium Points 

Until now, for EP1, a PI-based pitch controller with different gains are considered. It is seen in 
Figure 3 that the best performance is obtained with the damping ratio of 0.8. Therefore, from now 
on, the damping ratio of 0.8 is kept being used as the desired damping ratio, while the same 
natural frequency, 0.6, is kept being utilized as before. However, when the controller with 𝐾𝑝 of 

0.6168 and 𝐾𝑖 of 0.3084 is tested at other equilibrium points, EP2 and EP3 (Table 1), the controller 
performance deteriorates, particularly at EP3, a very close equilibrium point to the rated 
equilibrium point. Figure 4 shows the deterioration which occurs due to the variation in control 
input gain, 𝐵 with the changes in pitch angle and wind speed[A. D. Wright & Fingersh, 2008]. The 
value of input gain, 𝐵 is directly related to 𝜂, the partial derivative of aerodynamic torque, 𝜏𝑎𝑒𝑟𝑜  
with respect to the blade pitch angle, β at the rated torque and rotor speed. 

 
Figure 5: Aerodynamic Torque versus Pitch Angle at Various Wind Speeds 
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Figure 5 is obtained using the MS Bladed Model and shows the aerodynamic torque versus pitch 
angle at different wind speeds. The solid black line is the rated torque on the LSS of the gearbox. 
The crossing points of this line with the blue torque curves are the equilibrium points for the open 
loop turbine system. As seen in the figure, the value of input gain, 𝐵, is directly related to the 

partial derivative of  
𝜕𝜏𝑎𝑒𝑟𝑜

𝜕𝛽
, whose value in magnitude increases when the pitch angle increases 

and vice versa. Therefore, the input gain, 𝐵 differs at every equilibrium point. For this reason, a 
controller designed at any equilibrium point does not give the same performance at other 
equilibrium points. Thus, in order to get similar performance at every equilibrium point, the 
controller gains are required to be scheduled relying on the blade pitch angle. As seen in Figure 
5, the pitch angles correspond to different wind speeds at different equilibrium points. Thus, a 
gain-scheduled PI-based blade pitch controller is designed and implemented, here.  
 
In the literature, the gain scheduling of PI methodology is realized by two similar means. These 

are based on the partial derivative of aerodynamic torque with respect to pitch angle, 
𝜕𝜏𝑎𝑒𝑟𝑜

𝜕𝛽
 [A. D. 

Wright & Fingersh, 2008] or rotor aerodynamic power with respect to pitch angle, 
𝜕𝑃

𝜕𝛽
 , known as 

pitch sensitivity[J. Jonkman et al., 2009]. For a gain scheduling purpose, both methods use a term 
referred to as gain correction factor, 𝐺𝐾(𝛽). By simply multiplying the calculated controller gains 
by 𝐺𝐾(𝛽), a superior performance may be achieved from the controller at any equilibrium point 

throughout the above rated region. The equation for 𝐺𝐾(𝛽) is defined in the references of [J. 
Jonkman et al., 2009; A. D. Wright & Fingersh, 2008] as follows. 

𝐺𝐾(𝛽) =
1

(1 +
𝛽

𝛽𝐾
)
 

(22) 

where 𝛽 is the blade pitch angle required for the turbine to produce the rated torque at any wind 
speed when the turbine operates at the rated rotor speed. The estimation of 𝛽𝐾 is similar and is 

probably derived from the same idea in both approaches. According to Wright and Fingers, 𝛽𝐾 is 
the blade pitch angle where the input gain, B, calculated at an equilibrium point close to the border 
of Region 2 into 3 has doubled in its value at another equilibrium point further in Region 3[A. D. 
Wright & Fingersh, 2008]. Their application of gain scheduling employs the FAST linearization 
considering the equilibrium wake assumption. However, according to the approach used by 

Jonkman et al.(J. Jonkman et al., 2009),  𝛽𝐾 is defined as the blade pitch angle at which the pitch 

sensitivity, 
𝜕𝑃

𝜕𝛽
 at zero pitch angle has doubled in its value further in Region 3. The partial derivative  

𝜕𝑃

𝜕𝛽
  at zero pitch angle is obtained by a curve fitting approach to the pitch sensitivity values at 

various pitch angles. The best fit line is used to calculate the pitch sensitivity at zero blade pitch 
angle and is later utilized for obtaining the 𝛽𝐾 value. The pitch sensitivity values are estimated 
considering the frozen wake assumption rather than the equilibrium wake assumption during the 
FAST Model linearization[J. Jonkman et al., 2009].  

𝜕𝑃

𝜕𝛽
(𝛽 = 𝛽𝐾) = 2

𝜕𝑃

𝜕𝛽
(𝛽 = 0) (23) 

Therefore, the blade pitch controller design is started here with the approach employed by Wright 
and Fingersh, initially. According to them, an operating point close to the entry of Region 2 into 
Region 3 is first selected[A. D. Wright & Fingersh, 2008]. This corresponds to the EP4 in Table 1. 
Later, 𝛽𝐾 is calculated according to the approach they utilized. By the linearization of MS Bladed 
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Model, the following system gain 𝐴, input gain, 𝐵 and disturbance gain, 𝐵𝑑 are obtained for the 
EP4.  

𝐴 = −0.0554 

𝐵 = −0.2658 

𝐵𝑑 = 0.0227 

When the desired damping ratio and natural frequency are used respectively as 0.8 and 0.6, the 
proportional and integral gains are calculated through equations (20) and (21), respectively as 

𝐾𝑝 = 3.4033 

𝐾𝑖 = 1.3544 

EP5 is the equilibrium point in Region 3 at which the input gain, 𝐵 has doubled in its value. This 
equilibrium point is estimated by means of model linearization. Here, at the EP5, 𝛽𝐾 has a blade 

pitch angle value of 5.9676 degrees. Therefore, the gain correction factor, 𝐺𝐾(𝛽), is obtained 
using this 𝛽𝐾 value. The 𝛽 value in 𝐺𝐾 formula in may be obtained by different ways. Here, the 
adopted method is the interpolation of pitch angles with respect to wind speeds. For the gain 
scheduling purpose, the above proportional, 𝐾𝑝  and integral, 𝐾𝑖 gains are multiplied by the gain 

correction factor, 𝐺𝐾. 
 
Figure 6 shows the performance of the gain-scheduled PI-based controller at other three 
equilibrium points, where step increasing wind inputs such as from 12 m/s to 13 m/s and 17 m/s 
to 18 m/s and lastly 22 m/s to 23 m/s are applied to the controlled MS Bladed Model. 

 

Figure 6: Gain Scheduled PI-based Pitch Controller, the Damping Ratio of 0.8 

Which are, in fact, correspond to EP3, EP1 and a newly added equilibrium, EP6, respectively. As 
seen from the simulations, the gain-scheduled pitch controller demonstrates almost the same 
performance at three different equilibrium points. This is contrary to the previously demonstrated 
poor performance of one linear controller in Figure 4. The settling times of rotor speed responses 
in Figure 6 are around 22 seconds. They are quite satisfactory even though they have slightly 
different rise and decay rates. 
 
Figure 7 shows the change of gain correction factor, 𝐺𝐾, with respect to blade pitch angle, 𝛽, 

whereas Figure 8 shows the changes in proportional and integral gains based on 𝐺𝐾 with respect 
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to blade pitch angle according to the approach of Wright and Fingersh[A. D. Wright & Fingersh, 
2008]. 

 
Figure 7: Gain Correction Factor versus Blade Pitch Angle 

 
Figure 8: Proportional and Integral Gains versus Blade Pitch Angle 

 
The second way of designing a gain scheduled blade pitch controller is to use the approach 
employed by Jonkman et al.[J. Jonkman et al., 2009]. According to them, the proportional and 
integral gains are found by equation (24) and (25). More information about obtaining these 
equations are available in the reference of [J. Jonkman et al., 2009]. However, these two 
equations are modified here in order not to include the gearbox ratio effect since the rotor speed 
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is fed here to the controller, rather than the generator speed. During the blade pitch controller 
design or obtaining the gains, 𝐾𝑝 and 𝐾𝑖 with the approach of Jonkman et al., a frozen wake 

assumption is ought to be considered while obtaining the blade pitch sensitivity,  
𝜕𝑃

𝜕𝛽
.   

𝐾𝑝 =
2𝐽𝑡Ω𝑒𝜁𝑤𝑛

−
𝜕𝑃
𝜕𝛽

(𝛽 = 0)
𝐺𝐾(𝛽) 

(24) 

𝐾𝑖 =
𝐽𝑡Ω𝑒𝑤𝑛

2

−
𝜕𝑃
𝜕𝛽

(𝛽 = 0)
𝐺𝐾(𝛽) (25) 

This is due to the problem of a loss of control authority. Therefore, the frozen wake assumption 
is realized by fixing the elemental axial and tangential induced velocities, −𝑉𝑏𝑥𝑖,𝑗

𝑎𝑖,𝑗 and 𝑉𝑏𝑦𝑖,𝑗
𝑎′

𝑖,𝑗 

throughout each blade span during model linearization[J. M. Jonkman & Jonkman, 2016]. 
However, in the equilibrium wake assumption, there is nothing changed in the model during 
linearization. The same 𝐺𝐾 formula in (22) is utilized as in (24) and (25). The pitch angle, 𝛽 is 
obtained as in the previous case. On the other hand, 𝛽𝐾 is obtained as follows.  

 

Figure 9: The Best-fit Line of Turbine Blade Pitch Sensitivity in Region 3 
 
Figure 9 shows the pitch sensitivity versus blade pitch angle with the equilibrium wake and frozen 
wake assumptions. These are obtained using the MS Bladed Model and are given respectively 
by red and blue diamond symbols. Green and black lines are the best fit lines to these sensitivity 

values. Pitch sensitivity, 
𝜕𝑃

𝜕𝛽
 at zero pitch angle is obtained as -24076000. Therefore, 𝛽𝐾, which 

corresponds to the double value of pitch sensitivity at zero pitch angle, is determined as 5.6775 
degrees. Therefore, the gain-scheduled controller designed by the approach used by Jonkman 
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et al.[J. Jonkman et al., 2009] with the same natural frequency, 𝑤𝑛 of 0.6 and damping ratio, 𝜁 of 
0.8 gives the responses in Figure 10 at the same equilibrium points, EP3, 1 and 6. 

 
Figure 10: Gain Scheduled PI-based Pitch Controller, the Damping Ratio of 0.8 

When the gains are scheduled according to the approach used by Jonkman et al.[J. Jonkman et 
al., 2009] using the gain correction factor, 𝐺𝐾(𝛽) as in equations (24) and (25), all the responses 
settle similarly at around 22s after the same step increasing wind inputs are applied at 30s of the 
simulations. However, all the simulation results have larger peak responses than the ones in 
Figure 6, which are obtained by using the approach of Wright and Fingersh.  

 
Figure 11: Proportional and Integral Gains versus Blade Pitch Angle 

 
Figure 11 shows the proportional, 𝐾𝑝 and integral, 𝐾𝑖 gain values with respect to blade pitch angle. 

They are less than the ones obtained by the approach of Wright and Fingers at the same blade 

pitch angle, 𝛽. 
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CONCLUSIONS 
 
This study has investigated the performance of two different PI strategy-based controller designs 
using two different methods which are based on equilibrium and frozen wake assumptions during 
turbine linearization. Two different methods are utilized to obtain the controller gains. In the first 
method, where equilibrium wake assumption is considered, the gain scheduled controller gains 
are obtained larger than those of the second method, which are obtained using pitch sensitivity 
and frozen wake assumptions.  In terms of transient responses, the approach which uses pitch 
sensitivity has larger rotor speed peaks, slightly longer settling times at the same equilibrium 
points. Both methods give approximately the same performances. However, the first approach 
uses larger proportional and integral gains at the same operating or equilibrium points. 
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