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University of Turkish Aeronautical Association

Ankara, Turkey

ABSTRACT

In this work, we investigate how the Laplace method, which is an angle-only preliminary orbit
determination method, is modified if the range-rate data from Doppler measurements are asso-
ciated with the angle-only data. The Laplace method requires three angular observations at three
different time instants and we add three range-rate data at these instants to the angular data.
With the use of this additional data, we modify the Laplace’s method such that the state vector
of the intermediate instant can be obtained from a simple analytical formula. Then, we compare
the developed method with the Laplace method, Gauss method, and Escobal’s method which is
also a modification of Laplace’s method for these mixed data.

INTRODUCTION

Long before that the space race of the twentieth century led the launch of first artificial satellite
had humanity started observing the night sky and developing methods to determine the orbits of
heavenly bodies. With the efforts of establishing astronomical tables for planets and stars, numerous
methods of orbit determination have been developed for centuries. Those methods flourished with
the application of them on thousands of space missions for about sixty years.

Based on the optical observations of astronomical objects, the angle-only methods are one of the most
well-established (preliminary) orbit determination methods as they have been applied for centuries.
Among these methods, we consider the Laplace’s method (see [Klokacheva, 1991; Vallado, 2007])
and Gauss’s method [Curtis, 2013]. Although these methods are really well-established, with the
advent of numerical techniques, there are variations of them which are better suited with numerical
approaches. For example, in [Gooding, 1990], Gooding proposed an approach which turns three
angular data problem handled with Laplace or Gauss methods to the Lambert’s problem which is
another well-established method requiring two geocentric position vector measurements (see [Curtis,
2013] for the standard description of the problem).
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Figure 1: The direction of the observed object P relative to the observer O is given by the right
ascension α and declination δ angles in the topocentric equatorial frame xyz.

In this work, we investigate how the angle-only orbit determination methods are modified if the
range rate data from Doppler measurements are associated with the angle-only data. To do this, we
first consider that the range-rate data are added without changing the problem description and the
method is updated with the use of the added data. This is a standard mixed data orbit determination
problem which is solved by a numerical modification to Laplace method in [Escobal, 1965] (see also
[Yanez,Mercier and Dolado, 2017] for a recent numerical approach). Here, we consider the problem
analytically which is in the same spirit as the Gibbs method (see [Curtis, 2013] for example) which
is basically an extension of Lambert’s problem with one more position vector data. Afterwards, we
are planning to change the problem definition such that reducing the amount of angle-only data
requirements of the standard angle-only methods and adding the range-rate data in place of them.

METHOD

Angular observation of an astronomical object or a satellite by an earth-based observer is basically
determining two angular quantities representing the direction of the observed object relative to the
observer. Since this observation is made by an earth-based observer, the angles are measured in a
topocentric frame origined at the position of the observer. This topocentric frame can be chosen as
the topocentric equatorial frame or the topocentric horizon frame. As we ultimately have the position
vectors in the geocentric equatorial frame, it would be better to use the topocentric equatorial frame
and represent the relative direction with the use of topocentric right ascension α and declination δ
angles as seen in Fig. 1. The direction of the relative position vector ~ρ is given by the unit vector ρ̂
which can be calculated in terms of α and δ as

ρ̂ = cos δ cosαÎ + cos δ sinαĴ + sin δK̂. (1)

The magnitude of the relative position vector ~ρ is called the slant range and denoted as ρ.

For the both Gauss’s method and Laplace’s method, three observations at times t1 , t2 and t3 are
required. The data for these three observations are the right ascension α and the declination δ
angles which are measured through optical sightings. The measurements could be from the same
observation site or different observation sites. The geocentric position vector ~r, that is the inertial
position of the object, can be written in terms of the observer’s geocentric position vector ~R, the
slant range ρ , and the topocentric direction vector (or the line of sight vector) ρ̂ as

~ri = ~Ri + ρiρ̂i, (2)
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Figure 2: For three observations, the geocentric position vector ~r of the satellite and the relative
position vector ~ρ of the satellite with respect to observeration site given with the geocentric
position vector ~R.

where i represents the three observation times as i = 1, 2, 3, see Fig. 2. In these equations, ~Ri’s
are the known geocentric position vectors for the observation sites once the time of observation is
known. The topocentric direction vectors ρ̂i’s are to be found from (1). Thus, the slant ranges ρi’s,
and then in turn, the geocentric position vectors ~ri’s are the unknowns. To determine the orbit, one
needs to determine the state vector at an instant.

Now, let us discuss the Laplace’s method and the Gauss’s method, respectively. Since the main
result for this abstract is obtained for the Laplace’s method, it is discussed a bit more in detail.

Laplace Method

For this part, we followed the exposition of the Laplace’s method given in [Vallado, 2007]. In this
method, to use the equation of motion for the two-body problem, that is ~̈r = − µ

r3
~r, the first and

second derivatives of
~r (t) = ~R (t) + ρ (t) ρ̂ (t) , (3)

are taken to have

~v = ~̇R+ ρ̇ρ̂+ ρ ˙̂ρ, (4)

~a = ~̈R+ ρ̈ρ̂+ 2ρ̇ ˙̂ρ+ ρ ¨̂ρ. (5)

Combining the last equation with ~a = − µ
r3
~r and rearranging gives

ρ̈ρ̂+ 2ρ̇ ˙̂ρ+ ρ
(

¨̂ρ+
µ

r3
ρ̂
)

= − ~̈R− µ

r3
~R. (6)

This equation is considered at the middle instant. The rate of change of the position vector of the
observation site is

~̇R = ~Ω× ~R, (7)

where ~Ω is the angular velocity of Earth. In addition, the accelaration of the observation site is

~̈R = ~Ω× ~̇R. (8)
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Each ρ̂’s is at a particular time, hence we can use the Lagrange interpolation formula to derive an
expression for ρ̂ (t) in the time interval [t1, t3] and its derivatives in this interval as

ρ̂ (t) =
(t− t2) (t− t3)

(t1 − t2) (t1 − t3)
ρ̂1 +

(t− t1) (t− t3)
(t2 − t1) (t2 − t3)

ρ̂2 +
(t− t1) (t− t2)

(t3 − t1) (t3 − t2)
ρ̂3, (9)

˙̂ρ (t) =
2t− t2 − t3

(t1 − t2) (t1 − t3)
ρ̂1 +

2t− t1 − t3
(t2 − t1) (t2 − t3)

ρ̂2 +
2t− t1 − t2

(t3 − t1) (t3 − t2)
ρ̂3, (10)

¨̂ρ (t) =
2

(t1 − t2) (t1 − t3)
ρ̂1 +

2

(t2 − t1) (t2 − t3)
ρ̂2 +

2

(t3 − t1) (t3 − t2)
ρ̂3. (11)

Then, assuming the magnitude of the position vector, that is

r =

√
R2 + 2ρ~R · ρ̂+ ρ2, (12)

is known, we can write (6) in matrix form as

[
ρ̂
∣∣∣ 2 ˙̂ρ

∣∣∣ ¨̂ρ+ µ
r3
ρ̂
] ρ̈

ρ̇
ρ

 = −
[
~̈R+

µ

r3
~R
]
, (13)

which can be solved for ρ as

ρ = −2D1

D
− 2µD2

r3D
, (14)

after applying the Cramer’s rule and using some matrix algebra. Here, the determinants D, D1, and
D2 are defined as

D ≡ 2
∣∣∣ ρ̂ ∣∣∣ ˙̂ρ

∣∣∣ ¨̂ρ
∣∣∣ , (15)

D1 ≡ 2
∣∣∣ ρ̂ ∣∣∣ ˙̂ρ

∣∣∣ ~̈R
∣∣∣ , (16)

D2 ≡ 2
∣∣∣ ρ̂ ∣∣∣ ˙̂ρ

∣∣∣ ~R
∣∣∣ . (17)

One way to solve (14) is to assume a value for ρ, and then iterating to obtain the final value. Or,
substituing (14) in (12) yields

r8 +

(
4CD1

D
− 4D2

1

D2
−R2

)
r6 + µ

(
4CD2

D
− 8D1D2

D2

)
r3 − 4µ2D2

D2
= 0, (18)

where C = ρ̂ ·
−→
R . In the case where multiple real roots exist, each root must be tested. Once the

correct r value is found, the final step is to find ρ through (14), and then, using ρ value can be used
to find the geocentric position vector for the middle instant.

The process is then repeated for ρ̇ to have the solution

ρ̇ = −D3

D
− µD4

r3D
, (19)

where D3 and D4 are found as

D3 ≡
∣∣∣ ρ̂ ∣∣∣ ~̈R ∣∣∣ ¨̂ρ

∣∣∣ , (20)

D4 ≡
∣∣∣ ρ̂ ∣∣∣ ~R ∣∣∣ ¨̂ρ

∣∣∣ . (21)

Using ρ and ρ̇ values in (4) yields the velocity vector for the middle instant. Thus, the state vector
for the middle instant is determined.
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Gauss Method

Due to the conservation of the angular momentum, the geocentric position vectors ~ri’s lie in the
same plane, which is the orbital plane. Then, for noncollinear geocentric position vectors, one of
the ~ri vectors can be written as a linear combination of the other two as

~r2 = c1~r1 + c3~r3. (22)

In addition, using the Lagrange coefficients, the ~r1 and ~r3 vectors can be written in terms of the
state vector in the middle time instant as

~r1 = f1~r2 + g1~v2, (23)

~r3 = f3~r2 + g3~v2. (24)

Using these three vector equations, first it is possible to write the c1 and c3 coefficients in terms of
the Lagrange coefficients. Then, expanding the Lagrange coefficients in τ1 = t2−t1 and τ3 = t3−t2
time intervals and extensive use of the vector algebra yield the state vector in the middle time point.
For a detailed discussion of the Gauss’s method see [Curtis, 2013].

Escobal’s Modification of Laplace Method

One of the methods suggested in the literature that assumes the range-rate to be known is presented
by Escobal in [Escobal, 1965]. In this section, we recapitulate this discussion.

The method starts to deviate from Laplace method by taking the dot product of (6) with ρ̂ yielding

− µ
r3
ρ− µ

r3
ρ̂ ·
−→
R = ρ̈+ ρρ̂ · ¨̂ρ+ ρ̂ ·

−̈→
R. (25)

Then, using ρ̂ · ˙̂ρ = 0 and its time derivative

ρ̂ · ¨̂ρ = − ˙̂ρ · ˙̂ρ, (26)

one can write (25) as, (
˙̂ρ · ˙̂ρ− µ

r3

)
ρ = ρ̈+ ρ̂ ·

−̈→
R +

µ

r3
ρ̂ ·
−→
R. (27)

Here, note that ¨̂ρ, which is one of the terms determined from the interpolating function (9), is
eliminated from this expression. Then, (27) can be rearranged to have the range at the second time
point as

ρ =
A+B/r3

C +D/r3
, (28)

where A, B, C, and D are calculated at the second time point as

A ≡ ρ̈+ ρ̂ ·
−̈→
R, B ≡ µρ̂ ·

−→
R, C ≡ ˙̂ρ · ˙̂ρ, D ≡ −µ. (29)

As in the Laplace’s method, one way to solve (28) is to assume a value for ρ, and then iterating to
obtain the final value. Or, substituing (28) in (12) yields again an 8th order polynomial in r which
can again be solved by Newton-Raphson like iterative methods. Once r and ρ are obtained, the
state vector is obtained from (3) and (4).

APPLICATION

Let us first consider how the Laplace’s method is modified with the inclusion of Doppler data yielding
ρ̇ values at each instant. Considering (6) for the middle instant, the ρ̇ value is now known and to
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1 25544U 98067A 19241.83275787 .00001839 00000-0 39700-4 0 9998

2 25544 51.6448 355.9501 0007912 342.5346 99.5642 15.50401679186686

Table 1: TLE for 29th of August 2019, 19:59:10 UTC

determine ρ̈ value following the spirit of the Laplace’s method, we can have the interpolating function
for ρ̇ as

ρ̇ (t) =
(t− t2) (t− t3)

(t1 − t2) (t1 − t3)
ρ̇1 +

(t− t1) (t− t3)
(t2 − t1) (t2 − t3)

ρ̇2 +
(t− t1) (t− t2)

(t3 − t1) (t3 − t2)
ρ̇3. (30)

From this interpolating function one can have ρ̈ (t) as

ρ̈ (t) =
(2t− t2 − t3)

(t1 − t2) (t1 − t3)
ρ̇1 +

(2t− t1 − t3)
(t2 − t1) (t2 − t3)

ρ̇2 +
(2t− t1 − t2)

(t3 − t1) (t3 − t2)
ρ̇3. (31)

Putting the ρ̈ (t = t2) value in (6) and taking the dot product with ~R× ρ̂ yields

2ρ̇
(
~R× ρ̂

)
· ˙̂ρ+ ρ

(
~R× ρ̂

)
· ¨̂ρ = −

(
~R× ρ̂

)
· ~̈R. (32)

This equation can easily be solved for ρ as

ρ = −

(
~R× ρ̂

)
· ~̈R+ 2ρ̇

(
~R× ρ̂

)
· ˙̂ρ(

~R× ρ̂
)
· ¨̂ρ

. (33)

Remember that ρ̂ and ρ̇ are obtained through observations. The vector ~R is the known geocentric
position vector of the observation site, and the inertial acceleration of the observation site can easily
be calculated from ~R and the angular velocity of Earth. The remaining quantities on the right hand
side are the ˙̂ρ and ¨̂ρ vectors which can be calculated by use of the Lagrange interpolation formula
involving three angular observations. Thus, ρ is directly calculable from (33).

RESULTS AND DISCUSSION

The main result of this paper is the solution for ρ given in (33). After obtaining ρ value, ~r and ~v can
be found from (2) and (4), respectively; and in turn, the state vector (~r2, ~v2) becomes determined.

Numerical Results

In this study, to understand how having an analytical solution for the range effects the accuracy
in preliminary orbit determination, we developed the codes for the Laplace method, the Escobal’s
modification of Laplace method, and the modification that we presented. In addition, for the Gauss’s
method, we used the code developed by Curtis [Curtis, 2013]. Since we have not had an observation
based data for the angles and the range-rates, we used the two-line element (TLE) data from Space-
Track.org to generate the input for the developed codes via a two-body propagator code which also
includes the J2 perturbations averaged over a period. We studied the visible pass of International
Space Station (ISS) over Ankara on 30th of August 2019 between 05:02:43 and 05:07:27 in the local
time (UTC+03:00). To generate the data, we used the TLE given in Table 1, and obtain the angle
and range-rate data given in Table 2. Using the input data in Table 2, the four preliminary orbit
determination methods mentioned above provide the classical orbital element (COE) values at the
second time point as given in Table 3 in which the propagated COE values are also presented. In
addition, the state vector output of these methods for the second time point are also given in Table
4 again together with the propagated state vector.

The results in the Table 3 and Table 4 shows that the Gauss method is far more accurate than
the Laplace method and the modifications of Laplace method with the range-rates. In addition,
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Instant (UTC+03:00) α δ ρ̇ (m/s)

05:04:17 355.780◦ 64.0511◦ 3.46074× 10−3

05:05:17 135.154◦ 72.1947◦ 4.69583

05:06:17 151.300◦ 52.7665◦ 6.29005

Table 2: The angular (topocentric right-ascension and declination) and range-rate data for the
visible pass of ISS over Ankara on 30th of August 2019 starting and ending at the local times
(UTC+03:00) of 05:02:43 and 05:07:27, respectively.

e Ω i ω θ a (km)

Propagated 7.91200× 10−4 354.690◦ 51.6448◦ 343.474◦ 1.37510◦ 6793.7

Laplace 0.244440 354.813◦ 52.0371◦ 56.2401◦ 6.37031◦ 9051.7

Gauss 3.21672× 10−3 354.708◦ 51.6563◦ 47.8353◦ 14.4197◦ 6814.4

Escobal 0.465945 356.066◦ 52.7169◦ 52.0675◦ 9.98270◦ 12809

Developed 0.668629 354.754◦ 52.4888◦ 58.6413◦ 4.60440◦ 20877

Table 3: Comparison of COEs generated by the four preliminary orbit determination methods
with the COEs obtained by the two-body propagator in which average J2 effects are added.

~r ~v

Propagated
(

3493.2, 3422.1, 4714.5
) (

−6.5436, 2.8337, 2.8002
)

Laplace
(

3475.3, 3439.9, 4793.4
) (

−7.2098, 3.1733, 3.2151
)

Gauss
(

3493.0, 3422.3, 4715.4
) (

−6.5535, 2.8356, 2.8054
)

Escobal
(

3466.7, 3448.5, 4831.4
) (

−7.6697, 3.4181, 3.7879
)

Developed
(

3449.5, 3465.5, 4906.4
) (

−8.3052, 3.6302, 3.7202
)

Table 4: Comparison of the state vector (~r,~v) generated for the four preliminary orbit determi-
nation methods with the (~r,~v) obtained by the two-body propagator in which average J2 effects
are added.
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the Laplace method provided more accurate results compared to its modifications. Finally, the
modification of the Laplace method given by Escobal provided more accurate results compared to
the method we developed. These conclusions are derived from only one pass of a specific satellite for
a specific set of data in this pass. With only these results, these conclusions about the comparison
of the methods cannot be definitive. One definitely needs to study more passes of the same satellite
with different topocentric elevations. In addition, the same pass should be studied with different
time intervals, with various equal elevation changes, with the symmetrized data around the highest
elevation point. Furthermore, several other satellites should be studied in various orbits such as
GEO, MEO, sun-synchronous, and highly elliptic (for example, Molniya).

CONCLUSIONS

In this study, we obtained an analytical expression for the solution of the mixed data problem in the
case of Laplace method. We studied this solution together with other preliminary orbit determination
methods. We observed that providing an analytical solution for the mixed data problem does not
provide an increased accuracy in preliminary orbit determination. In addition, the case we studied
indicated that adding more input data in the form of range-rate also does not increase the orbit
determination accuracy. These observations are not conclusive as we have not studied several
different data sets and such a study would be the next step in this work.
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