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ABSTRACT 

The wind tunnel experiments are one of the most common methodologies for verification of an air 
vehicle and generation of aerodynamic database to be used for simulation purposes. This paper 
summarizes a case study and approach for design of experiment that implemented for wind tunnel 
testing of an agile vehicle. In addition, modelling approach for the collected data and procedure 
of model selection is presented. Widely known Artificial Neural Networks (ANN) technique is used 
as modelling tool. The performances of the selected models are presented with simulations that 
are conducted in flight envelope using 6DoF simulation environment. 

 

NOMENCLATURE 
 
6DoF =   six-degree-of-freedom δi = i’th control surface deflection angle 
α, AoA = angle of attack δe = elevator deflection 
(A)NN = (artificial) neural networks δr = rudder deflection 
β, AoS = angle of sideslip DoE = Design of Experiment 
CFD = computational fluid dynamics HLS = Hidden Layer Size 
CX = X axis force coefficient Hz = Hertz 
CY = Y axis force coefficient MSE = Mean Squared Error 
CZ = Z axis force coefficient OFAT = one-factor-at-a-time 
Cl, CLL = X axis moment coefficient WT = Wind Tunnel 
Cm, CM = Y axis moment coefficient 𝛺 = stability axis rotation rate 
Cn, CLN = Z axis moment coefficient 𝜔 = angular rates 
δa = aileron deflection ν = measurement error 
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INTRODUCTION 

The prediction of aerodynamic coefficients before flight test is a big challenge of newly designed 
air vehicles and wind tunnel testing is extensively used for this purpose. As the flight regime 
broadens, the conduction of wind tunnel tests also becomes challenging. This paper gives a 
summary of approach of wind tunnel test design and modelling for an agile air vehicle which 
travels through subsonic, transonic and supersonic Mach number regimes.  
 

The control of the vehicle is achieved via four independent tail fins, and the vehicle is capable of 
reaching high α and β values through its flight. As a result, the flight envelope is very large which 
makes the multi-dimensional space that the design of experiment to be conducted vast and highly 
non-linear in nature. In this case study, the design of experiment for wind tunnel test is performed 
using a combination of one-factor-at-a-time (OFAT) and sequential or incremental space filling 
techniques. The paper continues with the modelling of the data collected for six aerodynamic 

coefficients of the vehicle. The Artificial Neural Networks (ANN) techniques is used in order to 
achieve high accuracy. The selection procedure is also presented for each coefficient. Simulation 
performance of the selected models is investigated.  
 

AERODYNAMIC DEFINITIONS and 6DoF MODEL 

Aerodynamic models are made of non-dimensional static and dynamic force and moment 
coefficients. The coefficients changes with variables which are non-dimensional parameters 
derived from dimensional quantities. The aerodynamic coefficient is defined as presented below; 
 

𝐶𝑖 = 𝐶𝑖 (𝛼, 𝛽, 𝛿,
𝛺𝑙

𝑉
,
�̇�𝑙2

𝑉2
,
�̇�𝑙

𝑉2
, 𝑆𝑡𝑟, 𝑅𝑒, 𝐹𝑟,𝑀,… ) 

 
    where  i = X, Y, Z, l, m, n.          (1) 

 

Since air vehicle’s mass and inertia are significantly larger than the surrounding air mass and 
inertia, fluid properties change slowly. Thereby, Froude Number effect is small. Moreover, 
because of the quasi-steady flow assumption, the flow adjusts instantaneously to changes. This 
result is an exception to Strouhal number effect [Klein, Morelli, 2006]. The change in Reynolds 
number can also be neglected because it differs only slightly in flight. Then, the Eq. 1 becomes; 
 

𝐶𝑖 = 𝐶𝑖 (𝛼, 𝛽, 𝛿,
Ω𝑙

𝑉
,
Ω̇𝑙2

𝑉2 ,
V̇𝑙

𝑉2 , 𝑀)            (2) 

 

For wind tunnel testing, the number of parameters is decreased to 𝛼, 𝛽,𝑀, 𝛿 since it is not feasible 
for the dynamic components to be tested at high rate values which is a must for an agile vehicle. 
The Eq. 2 becomes; 
 

𝐶𝑖 = 𝐶𝑖(𝛼, 𝛽, 𝛿,𝑀)                   (3) 
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The axis system that is used to define the 
aerodynamic coefficients and equations of 
motion is presented in Figure 1. The center of 
gravity of air vehicle, ‘O’, is the origin of both the 
stability and body axes. Body axis is defined as, 
 

 Positive 𝑂𝑥𝑏 axis forward and aligned with the 
nose of the vehicle 

 Positive 𝑂𝑦𝑏 axis points out the right wing  

 Positive 𝑂𝑧𝑏 axis is directed through the 
downside forming a right hand rule with xb and 
yb., 
 

Air vehicles are simulated in 6DoF model in which 
the body assumed to be rigid. This assumption 
leads to eliminate the need to consider the 
interaction between individual elements of air 
vehicle.  

        

DESIGN of EXPERIMENT 

Preparation of the test matrix is a vital part of wind tunnel testing.  Design of Experiments (DoE) 
are commonly utilized for this preparation. Different approaches can be used while designing an 
experiment. However, they can be simplified into one-factor-at-a-time (OFAT) methods and the 
methods that consider multiple factors simultaneously. One needs to consider the space to be 
covered and the requirements of testing while selecting the right DoE method.  
 

Wind tunnel testing of air vehicles, typically consist of angle of attack (α), angle of sideslip (β), 
Mach number, and control surface deflection (δi) parameters. As a result, space for the DoE is 
defined by these parameters. As the parameter limits grows wider, so does the test matrix. In 
addition, the effect of interactions of parameters is also under consideration. Both factors increase 
the number of test points needed to cover the space, which is an issue since the number of test 
points are usually limited in a test campaign.  
 

The vehicle under consideration has parameters with wide range due to its design and function.  
Following the requirements for the test matrix generation given above, the DoE methods that 
consider multiple factors simultaneously becomes more beneficial. These methods favor the 
statistical modelling of the data as well. In addition, these methods can be used in an additive 
manner. Test matrix can be generated at multiple phases where test points on each phase is built 
over the previous ones. On the other hand, since the wind tunnel is also a design tool, some 
OFAT test points are also required in the test matrix to understand the aerodynamic 
characteristics of the vehicle which may require test points at determined parameter values. 
 

As a result, an approach to DoE is purposed as follows. Firstly, a uniform test matrix with OFAT 
approach is designed with a limited number of test points (Phase 1). Remaining test points are 
used to cover the space intended while simultaneously considering multiple parameters. For this 
study, two phases (Phase 2 & 3) are planned for the latter part with usage of space filling design 
methodology, [Crombecq, Dhaene, 2010; GENT University 2012].  
 

 
Figure 1. Air vehicle body and stability axis                                                                          

[Cook, 2007] 
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Figure 1 represents a sample DoE result. The blue points are Phase 1 test points that are placed 
with OFAT method in a uniform manner. These points are used as initial points for Phase 2 test 
points which are generated using space filling methodology. Phase 2 points are illustrated by the 
red points.  Finally, phase 1 and 2 points are used as initial points for Phase 3 test points. 
 

 
Figure 2. Sequential space-filling example in 3D domain 

The resulted test matrix is presented with parallel coordinates visualization technique in Figure 3. 
It can be seen that the design space is fully covered, which means that the DoE approach was 
able to achieve the test matrix that is aimed at the beginning. 
 

 
Figure 3. Parallel coordinates chart of DoE 

In addition to the parallel coordinates chart given above, another technique is also applied to 
assess the performance of DoE. In this technique, flight simulation results of the scenario pool of 
the missile is run and plotted on the same axis with respect to Mach number. For example, angle 
of attack profile of every simulation is obtained and all of them are plotted with respect to the 
corresponding Mach number. That graphs are given for angle of attack and angle of sideslip with 
changing Mach numbers. Together with that, a final graph is plotted where angles of attack are 
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plotted against angles of sideslip. That way, one can see the scenario coverage performance of 
the DoE. 

 

 
Figure 4. Scenario coverage for angle of attack 

 
Figure 5. Scenario coverage for angle of sideslip 
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Figure 6. Scenario coverage for α-β 

As can be seen from Figures Figure 4-Figure 6, test points which are represented by red points are 
adequately covering the flight scenario results of flow parameters in the simulation model.  
 

MODELING 

The data collected from wind tunnel tests are used for the modelling of the aerodynamic 
coefficients. The accuracy of the modeling is crucial since it is the sole thing that affects the 
simulation accuracy. Models with higher complexity and accuracy leads to higher simulation 
accuracy, however, as a model becomes more complex couple of issues may surface. Firstly, the 
model which will be used during simulations has to be able to perform in a reasonable speed. 
Secondly, the overfitting problem which dangers the integrity of the model in the modelling space 
may occur. Hence there emerges a trade-off among accuracy, performance and model integrity. 
 

The ANN technique is selected to model the aerodynamic coefficients due to non-linear behavior 
of coefficients with the change of modelling parameters. The technique is one of the most 
commonly used non-parametric modelling techniques and used in aerospace with success [Lo, 
Zhao, DeLoach, 2000; Selvi, Rama, Mahendran, 2007]. The technique is quite powerful to model 
any kind of data, however, one needs to be careful since non-parametric methods are prone to 
overfitting. 

A. Artificial Neural Networks 

Artificial Neural Networks (ANN) is a computing technique inspired by human brain and nervous 
system as a network of units called neurons. The mathematical model view of a neuron as a basic 
building block of ANN can be shown as in Figure 7. ANN works with layers such as input layer, 
output layer and optional hidden layers. Input layer presents the patterns of the data and through 
hidden layers, where the data processing is performed, input layer makes a connection to the 
output layer. 
 



AIAC-2019-181                                                     Topbaş, Savaş, Ünal & Karaca 

7 

Ankara International Aerospace Conference 
 

 
Figure 7. A simple artifical neural network, [Patel ,2003] 

There are a number of different architectures of ANN to propose solution to different type of 
problems. Since in this study is about curve fitting to wind tunnel test data, curve fitting aspect of 
ANN is considered. The idea behind curve fitting is to select the suitable parameters that minimize 
the error over the set of data. ANN is a widely used nonlinear modeling technique that relates the 
output(s) with the input(s) on curve fitting problems. The most successful applications in curve 
fitting / modeling of neural networks are multilayer networks. This type of networks simply accepts 
the input values and successive layers of nodes. The outputs of neurons in a layer are inputs to 
neurons in the next layer. The last layer is called the output layer. Layers between the input and 
output layers are called as hidden layers (Figure 8). 
 

 
Figure 8. Multi-layer artificial neural network, [Patel ,2003] 

ANN works well on large set of data with nonlinear relationships. That’s why it is appropriate  to 
use ANN when modeling large and nonlinear aerodynamic datasets. 

B. Modeling Results 

Model Selection: Modeling process is not a one-step procedure. When modeling with ANN, 
hidden layer size is changed and models are generated. After that, model selection is performed 
mainly considering statistical performance. Models are generated with changing hidden layer size 
until the test sample error stops decreasing or a model with sufficient prediction capability is 
achieved. 
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In this paper, a model selection procedure is purposed and applied as follows. The modelling data 
is divided into test and training parts where 30% percent is dedicated for testing. The training data 
is used for attaining a model. The test data is used to evaluate the model’s prediction capability 

which is initially evaluated by 𝑟2 value. The next check is applied on inspecting the data by eye 
to see if the physical phoneme is captured or not. 

 

As the complexity of the models are increased, the performance of the model over the test data 
is observed. The models that are considered to be worthy of the data at hand shall not show a 
significant decrease on prediction performance over the test data comparing to lower complexity 

models. In addition, the stability parameter over the r2 is considered as the complexity increased. 

The ratio of  r2 performance over the test data and the training data is also followed to ensure 
that the training performance and the prediction performance is increased as the complexity 
increases. 

 

Finally, cross-validation is applied to the models that are considered after the upper steps. The 
cross-validation proves whether the considered models are capable of predicting the test data 
regardless of where the test data is selected. In this study, 5-fold cross-validation is performed 
and the final model is selected considering the cross-validation results. 

 

Selected Models: In this section, statistical results for the models that are selected using he 
purposed methodology are presented. Two hidden layers are considered for modelling since the 
data at hand is highly nonlinear. The models that are used in the simulations are the ones with 50 
nodes on hidden layers. The other models are considered to be capable, however, downgraded 
models compared to 50 – 50 ones. 

 

Modeling results are evaluated by their statistical performance in terms of r2 and MSE, physical 
modeling performance. Table 1 shows the statistical performance of technique on every coefficient 
in terms of r2 and mean squared error. In addition, it should be noted that r2 is a non-dimensional 
statistical metric, whereas MSE depends on the parameters’ magnitude. Therefore, in Table 1, 
MSE of CM and CLN coefficients appear to have larger values unlike the other parameters. 

Table 1. Selected model statistical performance comparison 

R2  MSE 

Coefficient 50-50 30-30 10-10  Coefficient 50-50 30-30 10-10 

CX 0.9994 0.9990 0.9943  CX 0.0006 0.0011 0.0058 

CY 0.9988 0.9986 0.9954  CY 0.0202 0.0278 0.0818 

CZ 0.9995 0.9994 0.9970  CZ 0.0127 0.0215 0.0823 

CLL 0.9949 0.9919 0.9725  CLL 0.0108 0.0184 0.0593 

CM 0.9988 0.9978 0.9889  CM 0.4429 0.8664 4.0416 

CLN 0.9975 0.9958 0.9846  CLN 0.6067 1.0917 3.7103 

 

The modelling results show that as the model complexity increases, the modeling performance 
follows along. Since the models are not validated by flight test, the 50 – 50 models are considered 
as the most accurate models at this point. 30 – 30 models are showing similar performance to 50 
– 50 ones. However, 10 – 10 models have significantly lower performance at moment coefficients. 
Also additional investigation shows that the 10 – 10 models struggles to capture the information 
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in the data for moment coefficients which is a sign of high complexity model requirement. 
Nevertheless, the models will be used for comparison purposes. 
 

The variable importance results on coefficients are presented in Figure 9. Each parameter affects 
the aerodynamic coefficients in different amount. For instance, pitching moment coefficient (Cm) 
is mostly related with α, whereas side force coefficient (CY) is with β. Figure 9 shows the variable 
importance on all coefficients. 
 

 
Figure 9. Variable importance check 

 

SIMULATIONS 

Three representative simulations that are conducted via 6DoF simulation environment are 
considered for this study.  The simulations are conducted using the models with 50 – 50 nodes 
on 2 hidden layers which controller is also based on. 
 

The scenarios generated as angle of attack biased (scenario 1), angle of sideslip biased (scenario 
2). The last simulation excites both angle of attack and angle of sideslip. The selections are made 
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to compare results for models with different complexity levels. Simulation results for flight 
variables are presented in Figure 10. 
 

 
Figure 10. Simulation results 

A. Model Result Comparisons 

The results shown here are for simulations conducted with 50 – 50 models. The controller used 
for simulations is based on the 50 – 50 models. The variables collected from simulation results 
are fed to 10 – 10 and 30 - 30 models to generate the results presented below. This way, the 
response of the vehicle is not altered due to the model change. 

 

As stated before, since the models are not validated by flight test, the 50 – 50 models are 
considered to be the most accurate models. Consequently, 50 – 50 models are considered as 
test bed and the results of remaining models are evaluated against 50 – 50 results.  

 

The comparison results for three scenarios are presented below. The percent differences are 
calculated based on the interval of change for each coefficient. 

 

Cm coefficient results for scenario 1 and for scenario 2 are given in Figure 11. As expected, in 
scenario 1, the 30 – 30 model result is relatively close to 50 – 50 models where the 10 – 10 results 
have large differences. In addition, it is clear that 10 – 10 models have as significant trend change 
from the other models at the middle of the scenario. Similarly, to scenario 1, in scenario 2, the 30 
– 30 results have lower differences from the 50 – 50 models. 
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Figure 11. Scenario #1 (left) and #2 (right), model results comparisons 

Finally, Cm and Cn coefficient results for scenario 3 is given in Figure 12. Overall, the 30 – 30 
results have lower differences from the 50 – 50 models. However, the differences on Cn 
coefficient are larger compared to the scenario 2 results. 

 
 

 
Figure 12. Scenario #3, model results comparisons 

The comparison results are summarized in Table 2. Cl coefficient results are not presented since 
the coefficient is not excited properly during simulations and small differences results with large 
percentiles. 

Table 2. 10 – 10 and 30 – 30 Model Results Summary 

  10 - 10 30 - 30 

  CX CY CZ Cm Cn CX CY CZ Cm Cn 

Max. Absolute 
Difference 

[%] 

Scenario #1 14 2 3 27 26 16 1 1 11 9 

Scenario #2 27 3 4 16 17 18 2 3 18 13 

Scenario #3 28 2 3 51 21 18 1 4 22 19 

Mean Absolute 
Difference 

[%] 

Scenario #1 2 0 1 6 5 3 0 0 2 2 

Scenario #2 10 1 2 7 6 3 1 1 6 3 

Scenario #3 6 1 1 8 5 2 0 1 3 4 
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For the force coefficients, the results show high differences for CX. The CX coefficient is highly 
nonlinear and very hard to model by nature. As a result, the high differences in this coefficient is 
not unexpected. The rest of the force coefficients have little differences with lower values for 30 
– 30 models. 
 

The moment coefficients however, have larger differences overall. The non-linear nature of the 
coefficients can be pointed out as the reason of this result. Normally, 10% of difference is not 
unexpected during modelling the moment coefficients for highly nonlinear aerodynamics with 
higher differences at certain extreme points. As can be seen from the results, the mean values of 
the differences are within 10% for 10 – 10 and 30 – 30 models. On the other hand, the maximum 
differences vary greatly between models with 10 – 10 models on the larger side. Both differences 
are significant but, the results for 10 – 10 models are very high. 

 

The results show that with such nonlinearly behaving aerodynamics, the modelling complexity is 
a factor that effects how the models behave with same inputs. While the, models with close 
statistical performance behaves similarly, models with wide complexity gaps may result in 
unexpectedly different results. In that sense, 30 – 30 models can be considered as or low 
complexity alternative model to 50 – 50 models for robustness analysis. 10 – 10 models are far 
off to the 50 – 50 models and they are not recommended to be used for simulations. This result 
is not unexpected since the modelling results showed that the 10 – 10 models are struggling to 
capture the necessary information in moment coefficients as well.  

B. Simulation Result Comparisons 

In this section, the models that are presented above are used as the aerodynamic models for the 
simulations. The controller used is not altered. The one designed based on the 50 – 50 models is 
kept in use. Scenario 3 is selected as candidate since it excites both angle of attack and angle of 
sideslip at the same time. The results are presented in Figure 13. 
 

 
Figure 13. Scenario #3, simulation results comparison 
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Simulation results show that the controller is still able to function with the 30 – 30 models. On the 
other hand, it struggles on the middle part of the simulation for 10 – 10 models. It is clear that the 
10 – 10 models are producing unexpected results for the controller to coop with which is expected 
as presented in the previous sections. 

 

30 – 30 models simulation results are behaving similarly in trend with the 50 – 50 results, however, 
on the first maneuver two results are separating from each other. The separation is expected 
since the moment coefficients have a difference at the point as presented in the previous section. 
The rest of the simulation goes with a bias and the end part becomes separated since the 
trajectory difference due to the bias changes the requirement for the ending maneuver. Overall, 
the results are supporting the claim that the 30 – 30 can be considered as or low complexity 
alternative model to 50 – 50 models. 
 

CONCLUSION 

In this paper, an approach for design of experiment for wind tunnel testing and modeling of the 
collected aerodynamic data for an agile air vehicle is presented with a case study. The purpose 
is to improve the air vehicle’s 6DoF simulation accuracy and performance by a good 
representation of the aerodynamics. 

 

Wind tunnel tests are costly, as a result, one needs to optimize the number of test points at hand 
to obtain the maximum benefit. For this purpose, DoE is considered to determine the test matrix. 
DoE is a vast subject in statistics and there are lots of different algorithms. Among those different 
algorithms, sequential space filling is purposed and applied when designing the experiment. The 
benefit of this approach is that it enables the user to generate designs that can be implemented 
in multiple phase test campaigns.  

 

For agile air vehicles, the dependency of aerodynamic coefficients on the flight variables are 
highly non-linear due to large flight envelope. An approach with ANN modeling technique, which 
is in common use in the field, is purposed and utilized to construct models to predict aerodynamic 
coefficients. 

 

The purposed approach is applied to produce models with three complexity levels for each 
coefficient. Due to the fact that the aerodynamics has not validated with flight test yet, the highest 
complexity models are considered as the reference. The other models with lower complexity 
levels are compared to the reference model and evaluated.  

 

The results show that reducing the complexity on force coefficients except CX does not have a 
major effect on the results since the nonlinearity is low on these coefficients. On the other hand, 
the moment coefficients are much more sensitive to changes. 

 

Decreasing complexity mildly in moment coefficients can result in similar models to the high 
complexity one. Simulation results with similar trends and acceptable biases can be achieved. In 
addition, model results can be used in robustness analysis. 

 

Decreasing the model complexity sharply results in a different way however. A model that 
struggles to capture the necessary information can result in unexpectedly high differences in 
simulations which mostly falls out of controller limits. 
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The study results show that the modelling of nonlinear aerodynamics is a challenge since even 
at the modelling stage, it can produce different results for simulation models. The controller design 
must have a certain allowance on the coefficient changes to coop with the actual airframe during 
flight. In addition, the final models must be validated with the flight test to reduce the risk of model 
variety. At the same time, the flight tests should ensure the accuracy of the simulations is 
improved or not. 
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