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ABSTRACT 

In this present work, one of the most used comprehensive modeling and analysis software, 
Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II), 
is coupled with linear model predictive control (Linear MPC) to generate time history of control 
input for analysis of maneuvering flight. Mathematical model of UH60 is implemented in 
CAMRAD II and model validation is presented by using the flight test results. After that, a linear 
model of UH60 is effectuated at 20knots forward speed. The linear model is linked with an 
optimization algorithm, sequential quadratic programming (SQP), and it is coupled with 
CAMRAD II to generate maneuvering flight. Finally, some acceleration-deceleration 
maneuvers are performed, and effect of length of control horizon is investigated on maneuver 
and on analysis time. 

NOTATIONS 

𝐞 Error term between optimization results and target 

𝒐 Optimization results 

𝒕 Target 

𝚫𝒖,𝚫𝒗, 𝚫𝒘 Change of velocity components along x, y, z body axes  

𝚫𝒑, 𝚫𝒒, 𝚫𝒓 Change of angular velocity components along x, y, z body axes 

𝚫𝝓, 𝚫𝜽 Change of roll and pitch angles 

𝚫�̇�, 𝚫�̇�, 𝚫�̇� Change of acceleration components along x, y, z body axes  

𝚫�̇�, 𝚫�̇�, 𝚫�̇� Change of angular acceleration components along x, y, z body axes  

𝚫�̇�, 𝚫�̇� Time derivative of roll and pitch angles 

𝜹𝒄𝒐𝒍𝒍

𝜹𝒍𝒐𝒏𝒈𝒄𝒚𝒄

𝜹𝒍𝒂𝒕𝒄𝒚𝒄

𝜹𝒑𝒆𝒅𝒂𝒍

 

 

Change of control inputs; collective, longitudinal cyclic, lateral cyclic, pedal 
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INTRODUCTION 

Calculation of loads is one of the main significant input for structural design of helicopters. 
Since, the structural sizing of the helicopter uses the calculated loads as basis. Calculation of 
helicopter loads can be divided in two part, steady flight loads and transient flight loads. Steady 
flight loads can be determined by trim analysis of the rotorcraft. However, determination of 
transient flight loads requires simulation analysis for a flight maneuver. These flight maneuvers 
can be obtained from the usage spectrum of the helicopter or certification specification for 
rotorcrafts. Therefore, maneuvering loads shall be calculated to learn how much load a 
helicopter carries its service life. 
 
Simulation of the desired flight maneuvers to calculate loads of a helicopter and airframe 
requires a coupled analysis of aerodynamics, rotor dynamics and flight dynamics. To achieve 
that fidelity of simulation, aerodynamic modelling, elastic blade modelling and modelling of 
rotor dynamics with a proper flight condition and flight maneuver is required by a 
comprehensive evaluation. In literature, one of the most used comprehensive modeling and 
analysis software is Comprehensive Analytical Model of Rotorcraft Aerodynamics and 
Dynamics II (CAMRAD II) [Johnson, 1998; Johnson, 1994; H. Yeo, 2006]. 
 
CAMRAD II involves a combined free wake approach with elastic blade and models of rotor 
dynamics and it has a capability to analyze full helicopter trim and time simulation. On the other 
hand, it can perform non-linear flight simulation with the trace of time dependent pilot inputs. 
Flight simulation can be generated by creating pilot inputs manually. However, the manual 
process both takes time and makes concessions to the accuracy of the maneuver. Therefore, 
it is needed a control algorithm to generate the pilot inputs for a desired maneuver 
automatically. For open loop control, there are several approaches. Such as, inverse 
simulation method, model predictive control etc. [Kalkan & Tosun, 2019; Yücekayalı, Şenipek, 
& Ortakaya, 2019]. The main issue of analyzing flight maneuvers by CAMRAD II costs lots of 
time because of the complexity of the helicopter models in CAMRAD II. Using an inverse 
simulation method for CAMRAD II might be expensive because it needs to call CAMRAD II 
many times to find control input. It is needed that calling CAMRAD II as less as possible. 
Therefore, model predictive control is a good choice to generate pilot inputs to simulate desired 
flight maneuvers for CAMRAD II. 
 
Model predictive control (MPC) defines the control methodology that utilizes a reference model 
to predict the future states of the plant and generates a sequence of inputs by incorporating 
an objective function with an optimizer. MPC requires a model describing the relation between 
the inputs and the states of the plant. There is a trade-off between the prediction model fidelity 
and the desired accuracy, efficiency and computational cost. This model is operated by the 
optimization algorithm to minimize a cost function while meeting related bounds and 
constraints. The optimized control set is then directed to the plant to observe the anticipated 
dynamic response of the plant. MPC is an advance control method for open loop systems and 
it became very popular in chemical industry [Patwardhan, Rawlings, & Edgar, 1990; Lee & 
Lee, 1997], robotics [Erez, 2013]. In terms of aerospace, there are application using model 
predictive control [Yücekayalı, Şenipek, & Ortakaya, 2019; Alexis, Nikolakopoulos, & Tzes, 
2012; Alexis, Papachristos, Siegwart, & Tzes, 2016; Oettershagen, Melzer, Leutenegger, 
Alexis, & Siegwart, 2014]. 
 
In this study, CAMRAD II is used as a black box analysis tool for non-linear plant of model 
predictive control. For predictive stage, nonlinear model consumes lots of computation time. 
Therefore, linear model is coupled with CAMRAD II to gain analysis time in using optimization. 
Firstly, mathematical model of UH60 is implemented in CAMRAD II due to existence of lots of 
research data on UH60 and nonlinear model of UH60 is validated with flight test. Secondly, a 
linear model of this helicopter is combined with a constrained optimization method. The reason 
of the constrained optimization is to avoid unrealistic control input for linear model. Finally, 
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linear model generates the control input and sends to CAMRAD and CAMRAD feeds back the 
states to linear model until CAMRAD II reaches the desired flight maneuver. 

METHOD 

The methodology developed in this study is a combination of optimal control operating over an 
objective function generating the flight maneuver with a non-linear helicopter model. A model 
predictive control approach using with the linear model of the helicopter. A flow chart is 
depicted with Figure 1. 

 

Figure 1 Flowchart of Linear Model Predictive Control 

For this approach, CAMRAD II is used for a nonlinear plant. 

CAMRAD II 

CAMRAD II is a comprehensive aeromechanical analysis tool of rotorcrafts that includes 
multibody dynamics, nonlinear finite elements and rotorcraft aerodynamics.  

This program is used for research, conceptual design, detailed design and development. 
Performance, loads, vibration etc. might be calculated by CAMRAD II. It has also capability of 
trim, transient and flutter analysis. CAMRAD II is used in industry and research area for 
helicopters [Jones & Kunz, 2001; Silbaugh, Kang, Floros, & Singh, 2014; Meyn, 2018]. 

 

In this study, mathematical model of UH-60 is implemented in CAMRAD II and it is used with 
rigid blade and uniform flow solver [Hilbert, 1984; Howlett]. Pitch angle, power curve, collective 
and longitudinal cyclic of the mathematical model is compared with the flight test [Datta, 
Chopra, & Gessow, 2002] and it is presented at Figure 2. 

 

Figure 2 Mathematical Model Verification with Flight Test 

For the analyzing of desired flight maneuvers, the transient analysis capability of CAMRAD is 
used. It is needed that a control input history to activate transient analysis. For the generation 
of control input, linear model predictive control approach is used. 
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Model Predictive Control 

Model predictive control (MPC) defines the control methodology that utilizes a reference model 
to predict the future states of the plant and generates a sequence of inputs by incorporating 

an objective function with an optimizer. 
MPC requires a model describing the 
relation between the inputs and the states 
of the plant. There is a trade-off between 
the prediction model fidelity and the 
desired accuracy, efficiency and 
computational cost. This model is operated 
by the optimization algorithm to minimize a 
cost function while meeting related bounds 
and constraints. The optimized control set 
is then directed to the plant to observe the 
anticipated dynamic response of the plant.  

An illustration of the model predictive 
control scheme is depicted with Figure 3. In 
every optimization stage, the linear model 
is analyzed by control inputs that are 
generated by optimization algorithm for 
prediction horizon. Then, optimal inputs 

are sent to non-linear plant along control horizon. The states of the non-linear plant are fed 
back to linear system and optimization loop is activated again. This linear model – nonlinear 
model loop is continued until nonlinear model reaches the desired flight maneuver. 

The definition for the flight maneuver of interest is sent to the predictive stage where optimal 
control input is generated. Then the control input history is sent to the non-linear plant and with 
the results of the non-linear plant, the states are fed back to linear model.  

For linear model predictive control, a linear model of helicopter shall be used. In this work, a 
linear model of UH-60 which is linearized at 20kt forward flight speed [Howlett; Padfield, 2018]. 
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A =  

-0.0104 0.0374 -0.6020 -9.7600 -0.0224 -0.0574 0 -0.0596 
 
 
 

 
 
 
 

B = 

10.5981 -9.7631 0.3582 -4.7737 

-0.1460 -0.3834 10.9719 0.2286 -0.0255 0.1282 -0.9969 -0.0914 -80.5337 -8.0664 0.4943 -4.2333 

0.0036 0.0113 -0.8910 0 0.0366 0.2894 0 -0.0297 0.9778 7.1188 -0.1370 0.0827 

0  0.9948 0 0 0 0 -0.1016 0 0 0 0 

0.0181 0.0069 -0.0006 0.0234 -0.0583 0.4444 9.7565 -10.1136 0.6769 0.3078 10.4155 5.2728 

0.0763 0.0053 -1.7300 0 -0.1295 -3.6040 0 0.0443 -1.1032 0.9970 47.9585 10.0323 

0 0 -0.0024 0 0 1.0000 0 0.1021 0 0 0 0 

-0.0184 -0.0122 -0.7563 0 0.0281 -0.2857 0 -0.3662 2.1508 -0.1835 9.3052 -7.3713 

 

 

 

 

 

 

 

Figure 3 Model Predictive Control Scheme (Dai, 
Xia, Fu, & Mahmoud, 2012) 
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Optimization 

Optimization algorithm is based on linear model, and optimal controls are generated for the 
linear model which satisfies constrains and objective. Constrains are set to control inputs and 
optimization algorithm tries to find minimum objective between these constrains. 

 
Objective function is set as following configuration; 

 
𝑒 = 𝑎𝑏𝑠(𝑡 − 𝑜) 

𝐽 = 𝑒𝑇𝑄𝑒 
(2) 

The optimization algorithm, sequential quadratic programming (SQP), is set to minimize this 
objective function. 

RESULTS 

In this chapter, several results are presented to show consistence of this control approach on 
CAMRAD II. 

For the following maneuver, control horizon is set to 1 second, and prediction horizon is set to 
3 seconds for a CAMRAD II analysis. A smooth acceleration type maneuver is presented in 
Figure 4. Helicopter attitudes, flight path and air speeds are plotted. In this maneuver, the 
helicopter aims to reach 40knots forward speed without losing altitude. Therefore, control 
pushes the longitudinal cyclic to forward and pulls the collective up to gain forward velocity. 

 

 

Figure 4 20Knots to 40Knots Acceleration Maneuver Path and States 

A sensitivity analysis is performed for this approach as given in Figure 5. Prediction horizon is 
set to 3 seconds and, 1 second, 0.5 second, 0.2 second and 0.1 second of the prediction 
horizons are set as control horizon. It is seen that giving more disturbance chance to controller 
makes the approach more unstable. 
 



 
AIAC-2019-167                                 Atalay, Şenipek & Yücekayalı 

6 

Ankara International Aerospace Conference 
 

 

Figure 5 Comparison of the Flight States with Different Control Horizon 

 

Another comparison is done for the 
computational time of this approach 
as given in Figure 6. Decreasing of 
the control horizon, or in other way, 
increasing the disturbance of 
controller on nonlinear plant 
increases the computation time and 
optimization iterations. It causes 
increase   on computation time of 
this coupled approach. 

 

Following maneuvers are used with 
a control horizon 1 second and 
prediction horizon 3 seconds.  

 

A deceleration maneuver is performed similar to acceleration maneuver in Figure 7. In this 
maneuver, flight simulation is aimed to decrease helicopter forward speed to 20 knots from 40 
knots. Helicopter decreases its forward speed by pitching up while keeping the altitude as 
constant as possible. 

Figure 6 Computational Time of the Analyses 
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Figure 7 40Knots to 20Knots Deceleration Maneuver Path and States 

Another acceleration maneuver is performed and depicted with Figure 8. This maneuver is 
initiated from hover position to 10 knots side velocity, increasing the roll angle and holding the 
altitude constant to the best of its ability. 
 
 

 

Figure 8 Hover to 10Knots Acceleration Maneuver to Left Path and States 

Last maneuver, is an acceleration from hover to 20 knots forward speed presented in Figure 
9. This maneuver has almost similar control input characteristics as in 20 knots to 40 knots 
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acceleration. Helicopter changes its attitude as pitch down and tries to accelerate while 
keeping the altitude constant as possible. 

 

Figure 9 Hover to 20Knots Acceleration Maneuver Path and States 

CONCLUSION 

At the predictive stage, a linear mathematical model of UH60 is coupled with the optimization 
algorithm [Hilbert, 1984; Padfield, 2018]. This enables to perform fast optimization to generate 
maneuver history for maneuvering flight conditions. This approach permits to create flight 
maneuvers automatically. 

 

It is evaluated that, analysis stability of the non-linear plant is effected by the length of the 
control horizon. Decreasing of the control horizon has two disadvantages; increasing the 
instability and increasing the whole analysis time. 

 

In this study, a methodology is introduced to generate a maneuvering flight for a highly complex 
non-linear plant with using linear model predictive control. While performing the analyses, it is 
observed that the assignation of the objective function, weight coefficients and types of the 
penalty functions have a significant influence on the generation of the history of the control 
input. There are some possibilities to improve the performance of this approach; 

 A learning algorithm for the linear model, 

 Adaptive prediction and control horizon can be implemented to increase performance, 

 Feedback of the time-derivative of the states to linear model. 

 

To conclude, this approach seems as a promising method to create control history 
automatically and fast for an open loop non-linear plant used as black box models. 
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