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ABSTRACT 

One important objective of engineering is to provide simplified models describing the behavior 
of the matter in nature. No doubt the use of continuum approach helps in this way and enables 
to make quantitative estimations for many problems from the engineering point of view. 
However, there are still some problems, such as turbulence and phenomena leading to 
turbulence, very far from a thorough understanding and of generalized tools of estimation. 
Molecular dynamics simulation techniques are popular to investigate problems in particle 
activity basis; hence they are utilized in a simulation code set, developed in MATLAB, and 
applied to thermal diffusion problem in the scope of this work. Two separate and isolated 
systems of Argon particles at different mean temperatures are defined and establishment of 
the equilibrium state is examined. Afterwards, the separation is removed and particles of two 
systems are allowed to interact. Behavior of the particles is modeled as simple particles in this 
study. Therefore, only translational motion of particles is considered, neglecting rotational 
motion. Simulation results imply the diffusion of the thermal energy between two systems and 
establishment of the new equilibrium state in the new system of particles is observed from 
different aspects. 
 

INTRODUCTION 

There was a suggestion of investigating turbulence and phenomena leading to turbulence from 
the particle activity perspective with a provided formulation for this purpose [Çıray, 2015]. 
Validation of this approach for an isolated system of particles in static conditions was 
performed previously as a Master’s Thesis [Eneren, 2016]. A similar formulation is derived in 
order to calculate the velocities and positions of particles after interactions. Different to 
available study, effects of instantaneous velocities and interactions are calculated separately 
during the derivation of the formulation. In the scope of this work, an initial set up consisting of 
two separated and well insulated systems of 1000 Argon particles each at two different 
temperatures is considered as visualized in Figure 1. Establishment of the equilibrium state is 
satisfied in both systems first. Thermal diffusion, taking place between particles of each 
system, is simulated after the removal of the separation. A simulation code set is developed in 
MATLAB for this purpose. The method, followed in the approach, is compared to the available 
data in literature. At the equilibrium state; simulation results, the probability density function of 
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the speed distribution and the velocity distribution along coordinate axes are compared with 
the theoretical values, the Maxwell-Boltzmann and Gaussian distributions respectively. Also, 
the fluid pressures acting at boundaries and mid-planes are checked in compliance with the 
literature. In the scope of diffusion dynamics analyses; establishment of equilibrium state is 
examined, particle and volume based thermal equilibrium analyses are performed and thermal 
conductivity coefficient is calculated. 

 

Figure 1: The Initial Set Up of the Problem 

 

Motivation of the Study 

Although this work does not contain any flow activity and the application is not a turbulence 
problem, it is expected to imply the feasibility of the approach and inspire for further studies 
about turbulent flow from the same point of view. The number of particles and duration of the 
simulation shall increase for these studies. Since errors will accumulate in larger systems and 
longer durations, the accuracy of the method will be critical. This study aims to increase the 
accuracy by taking the motion of particles into consideration. In the latest related study 
[Eneren, 2016]; particles were frozen at the initial state of iterations and all potential arising 
from the distance between particles was converted to kinetic energy. Since the potentials are 
large when a particle enters a fictitious shell of another, Eneren overcame this case by moving 
the particle to the equilibrium distance. The approach in this study is to estimate the next 
potential of any interacting particle in order to enhance velocity distribution accuracy. Due to 
the use of small time step in molecular dynamics simulations, the motion of particles is highly 
restricted. Therefore, effects of previous state and interaction are calculated separately. 

 

METHOD 

Base Formulation 

The method is introduced to formulate the motion of particles using Newton’s 2nd Law of Motion 
and Force Potential Theory. 
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A simple particle (e.g. particle i) of mass 𝑚𝑖 is subjected to a force 𝑭𝒊𝒋
∗  as a result of the 

interaction with any of the surrounding simple particles (e.g. particle j). Positions of particle i 
and particle j are denoted by 𝒓𝒊 and 𝒓𝒋 respectively. Total force acting on particle i (𝑭𝒊) is the 

sum of pair interactions of surrounding j particles: 

 

1 
𝑭𝒊 = ∑ 𝑭𝒊𝒋

∗

𝑁

𝑗=1
(𝑗≠𝑖)

 
 

   

where * symbol is used to denote the interaction between only two particles (the pair 
interaction) is taken into consideration. Note that these pair forces are the same in magnitude 
but opposite in direction. Direction of the force acting on particle i is selected as the positive 
direction of the pair force for convention. A consequence of the Newton’s 2nd Law of Motion: 

 

2 

𝑑𝑼𝒊

𝑑𝑡
= ∑

𝑑𝑼𝒊
∗(𝑗, 𝛥𝑡)

𝑑𝑡

𝑁

𝑗=1
(𝑗≠𝑖)

  

   

where 𝑡 is time, and 𝑼𝒊 is the velocity vector of the particle i. Equation 2 shows that the velocity 

of a particle can be calculated easily if velocity contributions of pair interactions can be 
determined. Integrating Equation 2 with respect to time between the starting and ending 
phases of the one simulation step, namely a simulation time step (𝛥𝑡): 

 

3 𝑼𝒊(𝑡 + 𝛥𝑡) − 𝑼𝒊(𝑡) = ∑ [𝑼𝒊
∗(𝑗, 𝑡 + 𝛥𝑡) − 𝑼𝒊

∗(𝑗, 𝑡)]

𝑁

𝑗=1
(𝑗≠𝑖)

  

   

4 𝑼𝒊(𝑡 + 𝛥𝑡) = 𝑼𝒊(𝑡) + ∑ 𝜟𝑼𝒊
∗(𝑗, 𝛥𝑡)

𝑁

𝑗=1
(𝑗≠𝑖)

  

   

where 𝜟𝑼𝒊
∗(𝑗, 𝛥𝑡) is the velocity contribution of any surrounding j particle on particle i during 

simulation time step. Equation 4 enables to find resulting velocities of particles in the system 
at the end of a selected simulation time step in the form of velocity contribution summations. 

 

Pair interaction force between two neighbor particles can be modified in the following form: 

 

5 𝑭𝒊𝒋
∗ (𝑟𝑖𝑗

∗ ) = 𝑚𝑖

𝑑𝑼𝒊
∗

𝑑𝑟𝑖𝑗
∗

𝑑𝑟𝑖𝑗
∗

𝑑𝑡
  

   

where 𝒓𝒊𝒋 is the relative position vector of particle i with respect to particle j and 𝑟𝑖𝑗 is the 

absolute scalar form of 𝒓𝒊𝒋. Applying the Chain Rule for differentiation in Equation 5: 

 

6 𝑭𝒊𝒋
∗ (𝑟𝑖𝑗

∗ ) = 𝑚𝑖

𝑑𝑼𝒊
∗

𝑑𝑟𝑖𝑗
∗ [

𝑑𝑟𝑖𝑗
∗

𝑑𝑥𝑖𝑗
∗

𝑑𝑥𝑖𝑗
∗

𝑑𝑡
+

𝑑𝑟𝑖𝑗
∗

𝑑𝑦𝑖𝑗
∗

𝑑𝑦𝑖𝑗
∗

𝑑𝑡
+

𝑑𝑟𝑖𝑗
∗

𝑑𝑧𝑖𝑗
∗

𝑑𝑧𝑖𝑗
∗

𝑑𝑡
]  
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The distance between the particles is simply the square-root of the sum of the squares of 
distances along the coordinate axes. Calculating the derivatives accordingly and writing in a 
vector form: 

 

7 𝑭𝒊𝒋
∗ (𝑟𝑖𝑗

∗ ) = 𝑚𝑖

𝒓𝒊𝒋
∗ (𝑼𝒊

∗ − 𝑼𝒋
∗)

𝑟𝑖𝑗
∗

𝑑𝑼𝒊
∗

𝑑𝑟𝑖𝑗
∗   

   

Since pair interaction forces are the same in magnitude but opposite in direction, Equation 9 
is valid: 

 

8 
𝑑𝑼𝒊

∗

𝑑𝑟𝑖𝑗
∗

𝑑𝑟𝑖𝑗
∗

𝑑𝑡
= −

𝑚𝑗

𝑚𝑖

𝑑𝑼𝒋
∗

𝑑𝑟𝑖𝑗
∗

𝑑𝑟𝑖𝑗
∗

𝑑𝑡
  

   

9 
𝑑𝑼𝒊

∗

𝑑𝑟𝑖𝑗
∗ = −

𝑚𝑗

𝑚𝑖

𝑑𝑼𝒋
∗

𝑑𝑟𝑖𝑗
∗   

   

This enables to rewrite Equation 7 as: 

 

10 𝑭𝒊𝒋
∗ (𝑟𝑖𝑗

∗ ) = 𝑚𝑖

𝒓𝒊𝒋
∗

𝑟𝑖𝑗
∗ [

𝑑

𝑑𝑟𝑖𝑗
∗ (

𝑈𝑖
∗2

2
) +

𝑚𝑗

𝑚𝑖

𝑑

𝑑𝑟𝑖𝑗
∗ (

𝑈𝑗
∗2

2
)]  

   

Note that pair force is in the direction of the line connecting center of the particles in Equation 
10 as expected. Considering the force potential theory, the mutual force on particle i under the 
effect of particle j is described by the following equation: 

 

11 𝑭𝒊𝒋
∗ (𝑟𝑖𝑗

∗ ) = − 𝛁𝒓𝒊
∗  𝜓𝑖𝑗(𝑟𝑖𝑗

∗ )  

   

12 𝑭𝒊𝒋
∗ (𝑟𝑖𝑗

∗ ) = − ( 
𝜕𝑟𝑖𝑗

∗

𝜕𝑥𝑖
∗ 𝒆𝒙 +

𝜕𝑟𝑖𝑗
∗

𝜕𝑦𝑖
∗ 𝒆𝒚 +

𝜕𝑟𝑖𝑗
∗

𝜕𝑧𝑖
∗ 𝒆𝒛)

𝑑𝜓𝑖𝑗(𝑟𝑖𝑗
∗ )

𝑑𝑟𝑖𝑗
∗   

   

13 𝑭𝒊𝒋
∗ (𝑟𝑖𝑗

∗ ) = − (
𝑥𝑖𝑗

∗

𝑟𝑖𝑗
∗ 𝒆𝒙 +

𝑦𝑖𝑗
∗

𝑟𝑖𝑗
∗ 𝒆𝒚 +

𝑧𝑖𝑗
∗

𝑟𝑖𝑗
∗ 𝒆𝒛)

𝑑𝜓𝑖𝑗(𝑟𝑖𝑗
∗ )

𝑑𝑟𝑖𝑗
∗   

   

14 𝑭𝒊𝒋
∗ (𝑟𝑖𝑗

∗ ) = −
𝒓𝒊𝒋

∗

𝑟𝑖𝑗
∗

𝑑𝜓𝑖𝑗
∗

𝑑𝑟𝑖𝑗
∗   

   

where 𝜓𝑖𝑗 term represents the so-called force potential between i and j particles. Note that 

Equation 10 and Equation 14 describe the same pair force from two different perspectives and 
they are equal. Therefore, these two equations can be combined as: 

 

15 𝑚𝑖

𝒓𝒊𝒋
∗

𝑟𝑖𝑗
∗ [

𝑑

𝑑𝑟𝑖𝑗
∗ (

𝑈𝑖
∗2

2
) +

𝑚𝑗

𝑚𝑖

𝑑

𝑑𝑟𝑖𝑗
∗ (

𝑈𝑗
∗2

2
)] +

𝒓𝒊𝒋
∗

𝑟𝑖𝑗
∗

𝑑𝜓𝑖𝑗
∗

𝑑𝑟𝑖𝑗
∗ = 0  

   

16 
1

2
[𝑚𝑖

𝑑𝑈𝑖
∗2

𝑑𝑟𝑖𝑗
∗ + 𝑚𝑗

𝑑𝑈𝑗
∗2

𝑑𝑟𝑖𝑗
∗ ] +

𝑑𝜓𝑖𝑗
∗

𝑑𝑟𝑖𝑗
∗ = 0  
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which shows that sum of kinetic and potential energy terms is constant during interaction. 
Rearranging and integrating Equation 16 between two simulation time steps: 

 

17 [𝑈𝑖
∗2(𝑡 + 𝛥𝑡) − 𝑈𝑖

∗2(𝑡) +
𝑚𝑗

𝑚𝑖
[𝑈𝑗

∗2(𝑡 + 𝛥𝑡) − 𝑈𝑗
∗2(𝑡)]] +

2

𝑚𝑖
[𝜓𝑖𝑗

∗ (𝑡 + 𝛥𝑡) − 𝜓𝑖𝑗
∗ (𝑡)] = 0 

   

18 𝜓𝑖𝑗
∗ (𝑡 + 𝛥𝑡) − 𝜓𝑖𝑗

∗ (𝑡) = Ф𝑖𝑗
∗ (𝛥𝑡)  

   

The term given in Equation 18, which also appears in Equation 17, represents the potential 
change during the time step. Between any two particles, separated by a distance, there exist 
a potential energy which appears molecular dynamics simulation formulations. Physicists 
developed several approaches to represent this potential. In his study, Lennard-Jones 
presented a model describing the repulsive and attractive parts of molecular field, the first form 
of the so-called Lennard-Jones Potential, in order to explain the equation state of a gas using 
available experimental data [Jones, 1924]. In this method, Lennard-Jones potential model, 
given in Equation 19, is utilized. 

 

19 𝜓𝑖𝑗(𝑟𝑖𝑗) = 4𝜀 [(
𝜎

𝑟𝑖𝑗
)

12

− (
𝜎

𝑟𝑖𝑗
)

6

]  

   

where 𝜀 is the well-depth which is a measure of attraction strength and 𝜎 is the equilibrium 

distance (also referred to as van der Waals radius) defined as the distance where the 
intermolecular potential between the particles is zero. 

 

For velocity of particles and their contributions, following relations can be used in Equation 17: 

 

20 𝑼𝒊
∗(𝑡 + 𝛥𝑡) = 𝑼𝒊

∗(𝑡) + 𝜟𝑼𝒊
∗(𝑗, 𝛥𝑡)  

   

21 𝜟𝑼𝒊
∗(𝑗, 𝛥𝑡) = 𝛥𝑈𝑥,𝑖

∗ (𝑗, 𝛥𝑡)𝒆𝒙 + 𝛥𝑈𝑦,𝑖
∗ (𝑗, 𝛥𝑡)𝒆𝒚 + 𝛥𝑈𝑧,𝑖

∗ (𝑗, 𝛥𝑡)𝒆𝒛  

   

22 𝑈𝑖
∗2(𝑡 + 𝛥𝑡) = 𝑈𝑥,𝑖

∗2(𝑡 + 𝛥𝑡) + 𝑈𝑦,𝑖
∗2(𝑡 + 𝛥𝑡) + 𝑈𝑧,𝑖

∗2(𝑡 + 𝛥𝑡)  

   

23 𝑈𝑥,𝑖
∗2(𝑡 + 𝛥𝑡) = 𝑈𝑥,𝑖

∗2(𝑡) + 2𝑈𝑥,𝑖
∗ (𝑡)∆𝑈𝑥,𝑖

∗ (𝑗, 𝛥𝑡) + ∆𝑈𝑥,𝑖
∗2(𝑗, 𝛥𝑡)  

   

Note that, four equations above are also applicable for surrounding j particles. Furthermore, 
Equation 23 can be expressed in y and z directions similarly. Due to conservation of 
momentum, Equation 24 is valid: 

 

24 𝜟𝑼𝒋
∗(𝑖, 𝛥𝑡) = −

𝑚𝑖

𝑚𝑗
𝜟𝑼𝒊

∗(𝑗, 𝛥𝑡)  

   

where 𝜟𝑼𝒊
∗(𝑗, 𝛥𝑡) term is used to describe the velocity contribution for particle i due to the 

interaction with particle j during 𝛥𝑡 time step. Applying Equations 19-24, Equation 18 takes the 

following form: 

 

25 

𝛥𝑈𝑖
∗2(𝑗, 𝛥𝑡) + 2𝑼𝒊

∗(𝑡)𝜟𝑼𝒊
∗(𝑗, 𝛥𝑡)

+
𝑚𝑗

𝑚𝑖
[(

𝑚𝑖

𝑚𝑗
)

2

𝛥𝑈𝑖
∗2(𝑗, 𝛥𝑡) − 2 (

𝑚𝑖

𝑚𝑗
) 𝑼𝒋

∗(𝑡)𝜟𝑼𝒊
∗(𝑗, 𝛥𝑡)] +

2

𝑚𝑖
Ф𝑖𝑗

∗ (𝛥𝑡)

= 0 
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26 (1 +
𝑚𝑖

𝑚𝑗
) 𝛥𝑈𝑖

∗2(𝑗, 𝛥𝑡) + 2[𝑼𝒊
∗(𝑡) − 𝑼𝒋

∗(𝑡)]𝜟𝑼𝒊
∗(𝑗, 𝛥𝑡) +

2

𝑚𝑖
Ф𝑖𝑗

∗ (𝛥𝑡) = 0  

   

27 

(1 +
𝑚𝑖

𝑚𝑗
) [𝛥𝑈𝑥,𝑖

∗ 2(𝑗, 𝛥𝑡) + 𝛥𝑈𝑦,𝑖
∗ 2(𝑗, 𝛥𝑡) + 𝛥𝑈𝑧,𝑖

∗ 2(𝑗, 𝛥𝑡)]

+ 2 [(𝑈𝑥,𝑖
∗ (𝑡) − 𝑈𝑥,𝑗

∗ (𝑡)) 𝛥𝑈𝑥,𝑖
∗ (𝑗, 𝛥𝑡)

+ (𝑈𝑦,𝑖
∗ (𝑡) − 𝑈𝑦,𝑗

∗ (𝑡)) 𝛥𝑈𝑦,𝑖
∗ (𝑗, 𝛥𝑡) + (𝑈𝑧,𝑖

∗ (𝑡) − 𝑈𝑧,𝑗
∗ (𝑡)) 𝛥𝑈𝑧,𝑖

∗ (𝑗, 𝛥𝑡)]

+
2

𝑚𝑖
Ф𝑖𝑗

∗ (𝛥𝑡) = 0 

 

   

Estimation of the Next Potential 

As described in Equation 18, the formulation needs an estimation of the next potential at the 
end of time step. Lennard-Jones potential is utilized for estimation of the next potential. Only 
the interaction between two particles should be taken into consideration for this change 
because the effect of the previous state and interaction is separately calculated. 

 

28 𝑚𝑖

𝑑2𝒓𝒊
∗

𝑑𝑡2
= −

𝒓𝒊𝒋
∗

𝑟𝑖𝑗
∗

𝑑𝜓𝑖𝑗
∗

𝑑𝑟𝑖𝑗
∗   

   

29 𝑚𝑖

𝑑2𝒓𝒊
∗

𝑑𝑡2 = −
𝒓𝒊𝒋

∗

𝑟𝑖𝑗
∗ {−

24𝜀

𝑟𝑖𝑗
∗ [2 (

𝜎

𝑟𝑖𝑗
∗ )

12

− (
𝜎

𝑟𝑖𝑗
∗ )

6

]}  

   

30 
𝑑2𝒓𝒊

∗

𝑑𝑡2 =
𝒓𝒊𝒋

∗

𝑟𝑖𝑗
∗ {

24𝜀

𝑚𝑖𝑟𝑖𝑗
∗ [2 (

𝜎

𝑟𝑖𝑗
∗ )

12

− (
𝜎

𝑟𝑖𝑗
∗ )

6

]}  

   

Since the motion of particles is restricted, accelerations do not change significantly during time 
step. By this assumption, next distance and next potential between interacting particles can be 
estimated. 

 

31 𝒓𝒊𝒋
∗ (𝑡 + 𝛥𝑡) = 𝒓𝒊𝒋

∗ (𝑡) +
1

2

𝑑2𝒓𝒊𝒋
∗ (𝑗, 𝛥𝑡)

𝑑𝑡2  ∆𝑡2  

   

32 𝒓𝒊𝒋
∗ (𝑡 + 𝛥𝑡) = 𝒓𝒊𝒋

∗ (𝑡) + {(
𝑚𝑖 + 𝑚𝑗

𝑚𝑖 𝑚𝑗
)

12𝜀

𝑟𝑖𝑗
∗ 2(𝑡)

[2 (
𝜎

𝑟𝑖𝑗
∗ (𝑡)

)

12

− (
𝜎

𝑟𝑖𝑗
∗ (𝑡)

)

6

] 𝒓𝒊𝒋
∗ (𝒕)} ∆𝑡2  

   

33 𝜓𝑖𝑗(𝑡 + 𝛥𝑡) = 4𝜀 [(
𝜎

𝑟𝑖𝑗
∗ (𝑡 + 𝛥𝑡)

)

12

− (
𝜎

𝑟𝑖𝑗
∗ (𝑡 + 𝛥𝑡)

)

6

]  

   

Relations of Velocity Contributions 

Equation 27 is insufficient to describe the interaction itself because there are still unknown 
velocity contributions in each direction. As found in Equation 10 and being compatible with 
Newton’s 2nd Law of Motion; the acceleration vector, arising due to the interaction, is along the 
line connecting particle centers. Therefore; the force and the velocity contribution should also 
be along the same line which implies the relation of velocity contributions in each direction, as 
Figure 2 describes an attraction case in two dimensions. 
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Figure 2: Attractive Velocity Contribution of One Particle on Another 

 

Note that velocity contribution vector is a unit vector, just describing the direction. The velocity 
contribution is the multiplication of the average acceleration and simulation time step during 
interaction: 

 

34 𝜟𝑼𝒊
∗(𝑗, 𝛥𝑡) =

𝑑2𝒓𝒊
∗(𝑗, 𝛥𝑡)

𝑑𝑡2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝛥𝑡  

   

To determine average accelerations, the acceleration of particle i can be calculated using the 
distance between the particles for the start and finish set up: 

 

35 
𝑑2𝑟𝑥,𝑖

∗ (𝑗, 𝛥𝑡)

𝑑𝑡2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
=

1

2
[
𝑑2𝑟𝑥,𝑖

∗ (𝑗, 𝑡 + 𝛥𝑡)

𝑑𝑡2 +
𝑑2𝑟𝑥,𝑖

∗ (𝑗, 𝑡)

𝑑𝑡2 ]  

   

36 
𝛥𝑈𝑥,𝑖

∗ (𝑗, 𝛥𝑡)

𝛥𝑈𝑦,𝑖
∗ (𝑗, 𝛥𝑡)

=

𝑑2𝑟𝑥,𝑖
∗ (𝑗, 𝛥𝑡)

𝑑𝑡2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑2𝑟𝑦,𝑖
∗ (𝑗, 𝛥𝑡)

𝑑𝑡2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝑑2𝑟𝑥,𝑖
∗ (𝑗, 𝑡 + 𝛥𝑡)

𝑑𝑡2 +
𝑑2𝑟𝑥,𝑖

∗ (𝑗, 𝑡)

𝑑𝑡2

𝑑2𝑟𝑦,𝑖
∗ (𝑗, 𝑡 + 𝛥𝑡)

𝑑𝑡2 +
𝑑2𝑟𝑦,𝑖

∗ (𝑗, 𝑡)

𝑑𝑡2

  

   

37 
𝛥𝑈𝑥,𝑖

∗ (𝑗, 𝛥𝑡)

𝛥𝑈𝑦,𝑖
∗ (𝑗, 𝛥𝑡)

=

𝛥𝑋(𝑡 + 𝛥𝑡)
𝑟𝑖𝑗(𝑡 + 𝛥𝑡)

+
𝛥𝑋(𝑡)
𝑟𝑖𝑗(𝑡)

𝛥𝑌(𝑡 + 𝛥𝑡)
𝑟𝑖𝑗(𝑡 + 𝛥𝑡)

+
𝛥𝑌(𝑡)
𝑟𝑖𝑗(𝑡)

=
𝛥𝑋(𝑡 + 𝛥𝑡) 𝑟𝑖𝑗(𝑡) + 𝛥𝑋(𝑡) 𝑟𝑖𝑗(𝑡 + 𝛥𝑡)

𝛥𝑌(𝑡 + 𝛥𝑡) 𝑟𝑖𝑗(𝑡) + 𝛥𝑌(𝑡) 𝑟𝑖𝑗(𝑡 + 𝛥𝑡)
=

𝑘𝑥

𝑘𝑦
  

   

where 𝑘𝑥 and 𝑘𝑦 parameters are used to simplify the relations. Next positions are estimated 

using Equation 32. The remedy is also applicable in z-direction and following relation can be 
written: 

 

38 𝑘 = √kx
2 + 𝑘𝑦

2 + 𝑘𝑧
2  

   

Using these relations, Equation 27 can be reduced to one unknown: 
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39 

(1 +
𝑚𝑖

𝑚𝑗
) [

𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2

𝑘𝑥
2 ] 𝛥𝑈𝑥,𝑖

∗ 2(𝑗, 𝛥𝑡)

+ 2 [(𝑈𝑥,𝑖
∗ (𝑡) − 𝑈𝑥,𝑗

∗ (𝑡)) + (𝑈𝑦,𝑖
∗ (𝑡) − 𝑈𝑦,𝑗

∗ (𝑡))
𝑘𝑦

𝑘𝑥
 

+ (𝑈𝑧,𝑖
∗ (𝑡) − 𝑈𝑧,𝑗

∗ (𝑡))
𝑘𝑧

𝑘𝑥
] 𝛥𝑈𝑥,𝑖

∗ (𝑗, 𝛥𝑡) +
2

𝑚𝑖
Ф𝑖𝑗

∗ (𝛥𝑡) = 0 

 

   

40 

(1 +
𝑚𝑖

𝑚𝑗
)

𝑘2

𝑘𝑥
𝛥𝑈𝑥,𝑖

∗ 2(𝑗, 𝛥𝑡)

+ 2 [(𝑈𝑥,𝑖
∗ (𝑡) − 𝑈𝑥,𝑗

∗ (𝑡)) 𝑘𝑥 + (𝑈𝑦,𝑖
∗ (𝑡) − 𝑈𝑦,𝑗

∗ (𝑡)) 𝑘𝑦  

+ (𝑈𝑧,𝑖
∗ (𝑡) − 𝑈𝑧,𝑗

∗ (𝑡)) 𝑘𝑧] 𝛥𝑈𝑥,𝑖
∗ (𝑗, 𝛥𝑡) +

2𝑘𝑥

𝑚𝑖
Ф𝑖𝑗

∗ (𝛥𝑡) = 0 

 

   

Separation of Previous State and Interaction Effects 

Since time step is kept very small during molecular dynamic simulations, the motion of the 
particles is highly restricted. Therefore, effect of previous velocities and interactions can be 
calculated separately which provides a significant simplification and time efficiency in 
simulation process. In other words, particles are assumed stationary at the start of the iteration 
and interactions take place with other particles during the small time step. Afterwards, present 
velocity of the particle is added in calculations. Therefore, the velocity contributions due to the 
interaction can be determined using Equation 41 and relations of velocity contributions as 
given in Equation 37. The 𝛾 term takes -1 or +1 value depending on the interaction being 

attractive or repulsive respectively. 

 

41 𝛥𝑈𝑥,𝑖
∗ (𝑗, 𝛥𝑡) = 𝛾

𝑘𝑥

𝑘
√

−2𝑚𝑗

(𝑚𝑖 + 𝑚𝑗)𝑚𝑖
Ф𝑖𝑗

∗ (𝛥𝑡)  

   

Interaction between Unlike Molecules 

When the interaction of two dissimilar non-bonded atoms takes place in simulations, the 
potential energy definitions are still used with the help of combining rules. Lorentz-Berthelot 
Combination Rule can be applied in Equation 41, taking its ease of implementation into 
consideration. The Rule suggests to use the arithmetic mean of the equilibrium distance and 
the geometric mean of the well-depth. 

 

42 𝜎 =
𝜎𝑖 + 𝜎𝑗

2
  

   

43 𝜀 = √𝜀𝑖𝜀𝑗  

   

RESULTS 

Along the positive side of X axis, 1000 Argon particles were placed at a temperature of 300 K. 
Also, 1000 Argon particles were placed at a temperature of 120 K along the negative side of 
X axis as shown in Figure 1. First phase of the simulation, where both systems were separated 
in order to reach their equilibrium state, took place about 50 picoseconds. Afterwards, the 
separation was removed and the second phase of the simulation took place about 100 
picoseconds. 
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Establishment of the Equilibrium State 

At the end of the first phase of the simulation, the visual interpretation of the state is given in 
Figure 3. Corresponding speeds of all particles are represented in “jet colormap array” of 
MATLAB. Color scheme of the array is provided in Figure 4. Dark blue color tones express low 
speeds while dark red color tones are used to represent high speeds. 

 

Figure 3: Visual Interpretation of the State at the End of the First Phase 

 

 

 
120 K 210 K 300 K 

Figure 4: Jet Colormap Array 

 

As it can be indicated from Figure 3, particles have various speeds in equilibrium condition. 
Speed distribution of ideal gases in equilibrium is described with the Maxwell-Boltzmann 
distribution. Also, velocity contributions along coordinate axes should comply with the 
Gaussian distribution at the equilibrium state. In Figure 5 and Figure 6, speed distributions and 
velocity contributions along the x-axis of both systems are compared with the Maxwell-
Boltzmann and Gaussian distributions. 
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Figure 5: Speed Distribution and Velocity Contribution (x-axis) of the System at 300 K 

 

 

Figure 6: Speed Distribution and Velocity Contribution (x-axis) of the System at 120K 

 

In Table 1, the most probable speed, average speed and root mean square (rms) speed 
obtained by this study are compared with the theoretical values and the results presented in 
Eneren’s study [Eneren, 2016] in order to reveal the improvement in accuracy. 

 

 

Average 
Temperature 

[K] 

Most Probable 
Speed 

[m/s] 

Average 
Speed 

[m/s] 

rms Speed 

[m/s] 

Theoretical 

Eneren’s Simulation 

Improved Simulation 

120 

223.5 

228.1 (+2.06%) 

223.5 (0.00%) 

252.2 

250.2 (-0.79%) 

254.0 (+0.71%) 

273.8 

273.9 (+0.03%) 

273.7 (-0.03%) 

Theoretical 

Eneren’s Simulation 

Improved Simulation 

300 

353.4 

346.0 (+2.10%) 

353.4 (0.00%) 

398.8 

389.8 (-2.26%) 

398.8 (0.00%) 

432.8 

432.9 (+0.03%) 

432.8 (0.00%) 

Table 1: Comparison of Theoretical and Simulation Speeds 
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Gas pressure of two separated systems at boundaries and mid-planes, theoretical pressure 
obtained from the ideal gas pressure equation and their difference are presented in Table 2. 

 

Average 
Temperature 

[K] 

Theoretical 
Pressure 

[kPa] 

Simulation Pressure [kPa] Difference [%] 

Boundaries Midplanes Boundaries Midplanes 

120 52.17 51.97 52.59 -0.38 0.81 

300 130.44 130.37 130.43 -0.05 -0.01 

Table 2: Gas Pressures at the End of the First Phase 

 

The state and the speed distribution at the end of the second phase (mixing phase) are 
represented in Figure 7 and Figure 8 respectively. 

 

Figure 7: Visual Interpretation of the State at the End of the Second Phase 

 

Figure 8: Speed Distribution and Velocity Contribution (x-axis) of the Final System 
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Gas pressure of the mixture at boundaries and mid-planes, expected theoretical pressures and 
their differences are presented in Table 3. 

 

Average 
Temperature 

[K] 

Theoretical 
Pressure 

[kPa] 

Simulation Pressure [kPa] Difference [%] 

Boundaries Midplanes Boundaries Midplanes 

210 91.30 91.41 91.33 0.12 0.03 

Table 3: Gas Pressures at the End of the Second Phase 

 

Particle-Tracking Based Thermal Equilibrium Analysis: If particles are grouped as hot and cold 
system particles according to their initial states, visual interpretation of the state at the end of 
the second phase is provided in Figure 9 and average temperature of particles groups during 
phases of the simulation is shown in Figure 10. 

 

Figure 9: Particle-Tracking Based State at the End of the Second Phase 

 

Figure 10: Particle-Tracking Based Thermal Equilibrium 
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Volume Based Thermal Equilibrium Analysis: Simulation results of the average temperatures 
inside the boundaries of the two initial systems during phases of the simulation is given in 
Figure 11. 

 

Figure 11: Volume Based Thermal Equilibrium 

 

Thermal Diffusion 

In order to calculate the thermal diffusion coefficient, the system is divided into cubical 
elements and average temperatures of particles in their coverage area is calculated. Then 
compliance of the simulation results to the Heat Equation, presented in Equation 44, is 
checked. 

 

44 
𝜕𝑇

𝜕𝑡
= 𝛼 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2 )  

   

In equation 45, 𝑻 is the temperature of the system and 𝜶 is the thermal diffusivity of the medium 

which is further described in Equation 45: 

 

45 𝛼 =
𝑘

𝑐𝜌
  

   

where 𝒌 is the thermal conductivity of the material, 𝒄 is the specific heat capacity and 𝝆 is the 
mass per unit volume. Using the available data and simulation results, the average of thermal 
conductivity during the second phase of the simulation is calculated as 0.0115 Watts per meter 
Kelvin. Since the simulation is conducted with only 2000 particles, there exist some peak and 
minus values. This is because the number of particles is low for making such statistical 
analysis. When the peak and minus values are removed, i.e. results between 0 and 0.0400 
are taken into consideration, corrected thermal conductivity is found as 0.0141 Watts per meter 
Kelvin. 

 

k in Literature [W/mK] k Results in Simulation [W/mK] 

At 100 [K] At 200 [K] At 300 [K] 
Average 

at 210 [K] 

Corrected Average 

at 210 [K] 

0.0062 0.0124 0.0179 0.0115 0.0141 

Table 4: Comparison of Thermal Conductivity Results with the Literature 
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CONCLUSION 

Establishment of the equilibrium states of the initial set up, represented in Figure 1, are 
analyzed. In Figure 5 and Figure 6, the distribution of the velocity along any coordinate axis is 
understood to be the Gaussian type for each separated system. As it can be seen in the same 
figures, average speeds of particles are conserved but the speed distribution is formed very 
similar to the Maxwell-Boltzmann distribution. Therefore, the speeds of particles are defined in 
an interval. Since the average speed of each system remains the same; in Figure 3, blue color 
tones appear in the negative side of the x-axis while red color tones are more dominant in the 
positive side of the x-axis. Effect of improvements on speed results is represented in Table 1. 
The accuracy of results is mostly below 1/10000. Simulation results for gas pressures from two 
different perspectives are very close to theoretical values as presented in Table 2. Similar 
results are obtained; depicted in Figure 7, Figure 8 and Table 3; for the mixing phase of the 
both systems. Thermal energy is distributed uniformly between the particles locations inside 
the boundary as given in Figure 10 and Figure 11. Thermal conductivity coefficient for the 
system, given in Table 4, is considerably close to the values available in literature. 

 

To conclude, simulation results imply that this approach is convenient to investigate the 
behavior of fluid by using molecular dynamics simulation techniques. A significant 
improvement in accuracy is achieved for calculation of velocity contributions during 
interactions. This improvement will allow to extend duration and number of sample particles in 
simulations by means of preventing large accumulated errors. Therefore, further applications 
on fluid flow under the turbulent flow regimes, biomolecules or fracture mechanics can be 
accomplished. 
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