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ABSTRACT 
Until now, deterministic approaches have been applied in many studies on buckling of 
columns. Since the properties and dimensions of the material may vary due to the defects in 
production stages, which have a significant effect on the critical buckling load, should be 
considered as uncertain. In this study, closed form linear buckling formulas including the 
material and dimensional uncertainties have been developed by using the First-Order Shear 
Deformation Theory for orthotropic composite columns with I and L sections. The lowest critical 
buckling equations for different uncertainty levels are obtained analytically by using convex 
model. Resulting equations are then solved by the Lagrange multipliers method. For the 
verification of the equations, columns are also modeled by finite element method. It’s seen 
that, even minor deviations on the parameters lead to remarkable losses on critical buckling 
loads. 

INTRODUCTION 
Composite columns are being widely used in industry because they offer high strength-to-
weight and high stiffness to weight ratios. Because of advanced properties, composite 
materials are getting more attention in aerospace industry. Therefore, it is crucial to know the 
real buckling behavior of these structures to minimize the life and property losses. For this 
purpose, the uncertainty phenomena [Oktem and Adali, 2018] should be included in the 
analysis to get more realistic results. Buckling occurs when a member is under compressive 
load, particularly in thin-walled structures. When the applied load reaches a point that 
unbalances the column, large lateral deviations occur on the structure and this phenomenon 
is defined as buckling. The critical buckling load is an important limit for the structural stability 
of the column. Engineers should be able to predict whether the columns are structurally stable 
under a certain axial load. Therefore, critical buckling load has an important role in columns. 
In many analytical studies that have investigated the buckling of columns, certain 
(deterministic) approaches have been applied. Barbero and Tomblin (1993), based on the 
Euler-Bernoulli beam theory, obtained the buckling load equation in the I-section composite 
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columns with the classical lamination theory. However, in analytical results that were compared 
experimentally, it was found that the study could be valid only for long columns. Akbulut et al. 
(2010) examined the behavior of buckling based on the first-order shear deformation theory 
(FSDT) in the columns of gradually changed cross-section. In the region where the column 
section varies gradually, it was observed that the buckling resistance is increased in case of 
using the curved structure. The analytically obtained results were validated by finite element 
method. Schnabl and Planinc (2011) presented an effective mathematical model to study the 
geometrically perfect elastic two-layer composite columns with the sliding behavior of layers. 
The analytical model was based on the linearized stability theory and could predict the exact 
critical buckling loads. According to the reported information, the negative impact of transverse 
shear deformation on buckling can be up to 20% for wood composite columns and up to 40% 
for composite columns that can exhibit very flexible behavior. This work showed that the 
utilization of the first-order shear deformation theory in composite columns is important. 
However, since the results obtained in all reported work are found by considering certain 
(deterministic) approaches, they cannot give a healthy information about the real buckling 
behavior of the columns as a result of fluctuations in material properties and dimensions. 
In the literature, other than columns, there are studies related to buckling analysis considering 
the material properties, dimensions and applied load of the shell and conical elements as 
uncertain [Zhang & Ellingwood, 1995; Papadopoulos & Papadrakakis, 2005; Gamez-Montero 
et al., 2009; Ifayefunmi and Błachut, 2011; Tomás and Tovar, 2012]. These studies, in general, 
reveal that the issue of uncertainty is very important for structures. Morgan et al. (1965), in the 
experimental study on elastic stability of cylindrical and conical shell structures, observed that 
there are differences between the theoretical results and experimental results. They have 
revealed that this was due to defects in the material. Therefore, the use of uncertainty methods 
in the analysis of buckling in structures is taking a crucial role to obtain more realistic results.  
Convex model, probabilistic and statistical approaches are used to examine the uncertainty for 
the structures. Probabilistic calculations and statistical approaches require probabilistic density 
function and large amounts of experimental data as well. The advantage of the convex model, 
which can give more accurate results to the users in the relevant field, is that it can be used in 
uncertainty studies without the need of experimentation [Ben-Haim ve Elishakoff, 1990; Qui, 
2005; Radebe ve Adali, 2014; Oktem ve Adali, 2018]. For this reason, the convex model is 
used in this study. 
Except for the convex model, some uncertainty applications are used based on probabilistic 
calculations. Likewise, studies on imperfect beams using convex model may also found in the 
literature [Verhaeghe et al., 2013]. Herein, cosinusoidal polynomials were used to obtain 
certain (deterministic) buckling loads. Then, probabilistic calculations and convex model were 
utilized for uncertainty analysis. A significant similarity was observed between probabilistic 
calculations and convex models. Qui et al. (2006) examined the nonlinear buckling of a column. 
In cases where the deflections in the center of the columns are different from zero, minimum 
buckling load is determined by using first and second order Taylor series expansions. While 
the random coefficients of the Fourier series were used in the model based on probabilistic 
estimation, the upper-lower limit coefficients were used in the convex model. Zhang et al. 
(2017) examined the geometry of a thin imperfect plate by the method of uncertainty. 
Trigonometric series were used to determine the defects and Monte Carlo simulation was used 
to determine the limit value of the largest lateral deflection. However, in all studies reported 
here, many tests and data need to be collected for the methods based on probabilistic 
calculations. This is a costly business time consuming procedure as well. Therefore, with the 
help of the convex model which does not require any experiment, the results obtained by 
obtaining the critical buckling load equations of the columns with uncertainty are advantageous 
compared to the approaches such as probabilistic calculations. 
The convex model is a model used to obtain the equation that gives the minimum and 
maximum critical buckling loads at different levels of uncertainty in non-deterministic 
applications. This model has been applied to exact solutions such as Least-Square Vector 
Machine (LSSVM) [Zhang et al., 2017], nonlocal plate theory [Radebe and Adali, 2014] and 
cosinusoidal polynomials [Verhaeghe et al., 2013]. Radebe and Adali reported a study based 
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on uncertainty on a nano-sized plate due to the possible defects that can be made since the 
material properties at the nano level can vary during production and at the same time it is 
difficult to measure the dimensions. They obtained a certain critical buckling load equation 
using nonlocal plate theory and then applied a convex model. Lagrange multipliers were used 
to calculate the uncertain parameters. Thus, a very useful equation is obtained which provides 
the minimum and maximum critical buckling loads at different levels of uncertainty. They 
determined the effect of small-scale changes on the critical buckling load at different levels of 
uncertainty [Radebe and Adali, 2014]. In another study, Oktem and Adali used the convex 
model to determine the minimum buckling load at different uncertainty levels in the 
nanocomposite columns where the material properties were defined as uncertain. The effects 
of various material parameters on buckling behavior at different levels of uncertainty were 
investigated. In this study, it has been observed that there are significant losses in critical 
buckling load as a result of slight changes in the parameters [Oktem and Adali, 2018]. Radebe 
and Adali determined the buckling behavior of a composite cylinder in which the material 
properties were defined as uncertain under externally applied pressure by using a convex 
model. For hybrid cross-ply cylinders with high rigidity skin and low rigidity core layers, the 
most cost-effective design problem was examined with material properties that differed around 
the nominal values, resulting in a very useful buckling equation for engineers in analytically 
expressed closed form [Radebe and Adali, 2014]. Bi et al. using the convex model and the 
LSSVM method, they examined whether the cylindrical shells with laminated and functionally 
graded properties were robust or not. They concluded that even minor changes in the level of 
uncertainty led to intense fluctuations in critical buckling load. Considering the studies 
conducted using convex model, it’s seen that it is inevitable that small differences in material 
properties and dimensions which cause changes in critical buckling load should be included in 
the calculations of buckling [Bi et al., 2013]. 
Literature review shows that buckling loads are important in columns with the subject of 
uncertainty. There is a preliminary study that Kaya and Oktem reported that the material 
properties and dimensions are considered as uncertain in the isotropic columns in the limited 
cross-sections of columns and that the critical buckling equations are used analytically by using 
the convex model [Kaya and Oktem, 2018] and also there is no study in which the critical 
buckling load is examined with the uncertainty of the material properties and dimensions by 
using convex model which is investigated in this study for the composite structures. 
In this work, analytical buckling equations in closed form are presented for the orthotropic 
composite I and L sections for different uncertainty levels. Thus, elastic buckling behavior can 
be estimated in early design stages before the production stage. By using the sensitivity 
analysis, it can also be revealed which parameters have the most important effects on the 
lowest critical buckling loads at different uncertainty levels. Knowing all critical buckling values 
closer to reality under the defined conditions will help to minimize human and material losses. 
Particularly this allow engineers and scientists to obtain the most appropriate design.  

METHOD 
For composite columns, instead of using classical lamination theory (CLT), buckling analysis 
is carried out by taking into account the effects of transverse shear deformations with the aid 
of first-order shear deformation theory (FSDT), which is especially important in buckling 
analysis of laminated composites [Berthelot, 1999].  
Buckling equations are derived for orthotropic columns and they are given as below: 

2 2
0 0

13 02 2 0x d ddhG N
dx dx dx

ω ωϕ 
 + − =
 
 

 (1)
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22 011 22 12
13222

0x
x

ddD D D hG
D dxdx

ωϕ
ϕ

   −
− + =       

(2) 

where h and N0 refers to the thickness of the rectangular cross-section and applied load, 
respectively. Multiplying the expressions (1) and (2) by width of the cross-section (b), equations 
become as follows: 

2 2
0 0

13 2 2 0x
cs

d ddA G P
dx dx dx

ω ωϕ 
 + − =
 
 

 (3) 

22 011 22 12
13222

0x
cs x

ddD D Db A G
D dxdx

ωϕ
ϕ

   −
− + =       

 (4) 

The expressions satisfying the boundary conditions for the edges of the column are written as: 

cosx
m xA

L
πϕ = (5) 

0 sin m xB
L
πω = (6) 

Substituting expressions (7) and (8) in equations (3) and (4), we obtain: 

( )
2 2

13 132 0cs cs
m mA A G B P A G
L L
π π  − + − =       

 (7) 

2 2
13 132 0cs cs

m mA bD A G B A G
LL

π π   − − + − =       
 (8) 

A nonzero solution exists in the case where the determinant of the matrix of coefficients A 
and B is zero, which leads to: 

2 2
13

2 2 2
13

cs
cr

cs

m A G b DP
m b D A G L

π

π
=

+
(9) 

Deterministic critical buckling load equation for composite columns [Berthelot, 1999] is shown 
in equation (9) where Acs, G13, b, L and m refers to the area of cross-section, in plane (1-3) 
shear modulus, width of the section, the length of column and the buckling mode shape (m=1 
for fundamental mode), respectively. D is one of the most important parameters that differ in 
each column type and therefore affects the buckling because it contains terms of the moment 
of inertia (Eq. 10). 
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D
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=  (10) 

 
The expressions D11, D12 and D22 are elements of the bending stiffness matrix linking bending 
moment components to plate curvature. Classical Lamination Theory, based on Kirchoff's 
hypothesis, gives close results when compared to experimental data in thin columns. However, 
when the ratio of the width to the thickness is less than 10, it gives results that are not accurate 
[Turvey, 1995; Berthelot, 1999; Jones, 1999; Reddy, 1999a, 2003b, 2006c; Altenbach and 
Becker, 2003]. Therefore, in this study, the first-order shear deformation theory is used for all 
the cross-sections where the critical buckling calculation is performed by using uncertainty for 
composite columns. 
 

 
Figure 1: Demonstration of laminated composite column with I-section which has 

symmetrical stacking sequence [0°/0°]s. 
 
In this study, composite columns columns with I and L cross-sections have the same stacking 
sequence and the derivations of equations are obtained by using the same stacking sequence. 
 
In uncertainty analysis, the parameters which defined as uncertain by the column types may 
vary. The modulus of elasticity acting in the axial direction (E1), the shear modulus (G13) in the 
plane (1-3), which is expressed in the equations due to the first order shear deformation theory. 
The parameters that may arise from the inability to obtain the desired thicknesses (h) in the 
laminates formed by overlapping and column length (L) are also defined as uncertain. 
 

 
Figure 2: Cross-sections of composite columns 



 
AIAC-2019-153                                                        Kaya, Oktem & Adali 

6 
Ankara International Aerospace Conference 

 

The critical buckling equations with uncertainty analysis are then expressed as follows: 
 

 
2 2

2cr
n E IP

L

π
=  (11) 

 

 
2

13
22

13

cs
cr

cs

A G b DP
b D A G L

π

π
=

+
 (12) 

 
Here, over-bar defines the parameters which are taken as uncertain for all the equations in this 
study. Convex analysis is used to obtain the minimum point of critical buckling load. The critical 
buckling load equation (Pcr), expressed by uncertain parameters, is minimized by the following 
inequality boundary equation according to the uncertain parameters (δi) for minimizing the 
critical buckling load by considering the worst-case scenario: 
 

 2 2

1

n

i
i

δ β
=

≤∑  (13) 

 
As the lowest critical buckling load at different levels of uncertainty is possible when the δi 
parameters are located on the surface of the ellipsoid, the constraint equation is expressed as 
follows: 
 

 2 2

1
0

n

i
i

δ β
=

− =∑  (14) 

 
The method of Lagrange multipliers is a very functional method that gives the minimum and 
maximum values of a multivariable function subject to restriction and is often used in 
optimization studies in mechanical fields [Stoecker, 1989; Haftka et al., 1990]. The critical 
buckling load and the constraint equation are expressed depending on the δi variables and the 
expression that gives the critical buckling load at the point where these points are tangent to 
the limiting curve is obtained. Thus, the minimum critical buckling load is obtained. In this 
context, the equation in which the Lagrange method is applied and it is expressed as follows: 
 

 2 2

1
( , )

n
cri i

i
L Pδ λ λ δ β

=

 
 = + −
 
 
∑  (15) 

 
Here, β refers to the level of uncertainty. When β is equal to zero, the equation becomes 
deterministic. Using the Lagrange multipliers method, the equality of all δ values in terms of β 
is expressed and thus the equation giving the critical buckling load is determined as a function 
dependent on the level of uncertainty (β). The analytical equation results in the variation of the 
minimum critical buckling load for different levels of uncertainty (β) are then obtained.  
 
Sensitivity analysis of uncertain parameters is examined using the following expression: 
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( )( )

(0)
icr

i
i cr

PS
P
δβ

δ
δ

∂
=

∂
 (16) 

 
Sensitivity analysis shows which uncertain parameter has the greatest unfavorable effect on 
critical buckling load. Knowing unfavorable effects of the parameters in the critical buckling 
provide that which parameter should be paid more attention especially in the preliminary 
design stages.  
 
The results obtained by the finite element method are compared to the data of the analytical 
critical buckling equations based on the different level of uncertainty. Critical buckling load 
values are consistent with each other and examined in detail in the results section. Analysis 
performed in ANSYS Workbench environment is carried out by defining the composite 
materials as a shell in ACP (ANSYS Composite PrepPost) module. The ‘Eigenvalue Buckling’ 
module is used for all buckling analyzes. 
 

DERIVATIONS OF EQUATIONS 
In this section, minimum critical buckling load equations for I and L cross-sections are derived 
by using convex modeling with the aid of “Lagrange Multipliers Method” as mentioned in 
previous section. 
 
Laminated Orthotropic Composite I-Section Column 
 

 
Figure 3: Composite I-section column. 

 
For composite I-section column (Figure 3), the uncertain material properties and dimensions 
are defined as: 
 

 ( )1 1 11E E δ= +  (17) 

 

 ( )13 13 21G G δ= +  (18) 

 

 ( )31L L δ= +  (19) 

 

 ( )41h h δ= +  (20) 

 

 ( )42 1d f h δ= − +  (21) 
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 ( ) ( )4 41 2 2 1csA h b f hδ δ = + + − +     (22) 

 

 
1
2cy b=

 
(23) 

 

 
1
2cz f=

 
(24) 

 

 ( )
12 221

1 1
ν

1
E

E
ν

δ
=

+  
(25) 

 
Substituting expression (25) into transformed reduced stiffness matrix equations for [0/0]s 
stacking sequence, expressions (26) – (28) are obtained as: 
 

 ( )22
1 1

11, 2
2 12 1 1 1

1
u

E
Q

E E E

δ

ν δ

+
=
− + +  

(26) 

 

 
( )12 2 1 1

12, 2
2 12 1 1 1

1
u

E E
Q

E E E

ν δ

ν δ

+
=
− + +  

(27) 

 

 
( )2 1 1

22, 2
2 12 1 1 1

1
u

E E
Q

E E E

δ

ν δ

+
=
− + +  

(28) 

 
Equation (29) represents the area of moment of inertia of composite I-section column using 
parallel-axis theorem. 
 

 ( )
( ) ( )( )

( ) ( )

3 2 3
4

4 2

24 8 2 3 6 21 1 δ
12 6 4 3 2

yy
h h b f hf b f f

I h
b h f h f h

δ − + + − + +
 ≅ +   + − − −     

(29) 

 
The bending stiffness matrices are defined as: 
 

 11 11, yy
u

I
D Q

b
=

 
(30) 
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( )( )

( )

( )
( )

( ) ( )

22
1 4 1

2
2 1

3

2 1 1

3

4
1

1

2

1
2

1 δ 1 δ1

ν

224 8 3

6 2

6 3
δ12

4 2

h h b f
f

hf b fD
E h

b
b h f h f

E
h

E E

δ



+ +
  − + +
   +

  − +≅   
  + − − − 

+
 

−


+

 

(31) 

 

 12 12, yy
u

I
D Q

b
=

 
(32) 

 

 
( )( )

( )
( )

( )

( ) ( )

2 1 12 1 4
2

2 12 1 1 1

3 2
3

4
12

2

24 8 2 3

2
1 δ 1 δ1

ν δ
6 2

1
6 4 3 2

h h b f
f

hf b fD

b

E E

h f h h

h

E E E
f

b

ν δ
  − + +
   +

  − +=   
  + − − − 

+

 

−


+ +

+

 

(33) 

 

 22 22, yy
u

I
D Q

b
=

 
(34) 

 

 
( )( )

( )

( )
( )

( ) ( )

2 1 1 4
2

2 1

3 2
3

4

212 1
22

1

1 δ 1 δ1
2

ν

24 8 3

6 2
12

6 4 3 2
δ

h h b f
f

hf b fD
E E h

b
h

E
h

E
f

E
b f h

δ+



  − + +
   +

  − +=   
  + − − −  

+

− + +

 

(35) 

 

 
2
12

11
22

DD D
D

= −
 

(36) 

 

 
( )( )

( )
( )

( ) ( )

4

3 2
3

41 1

2

24 8 2 3

6 2
12

6 4 3

δ

2

1 1 δ1
h h b f

f
hf b fD

f

E h

b h f h h
b

δ
 



+ +
− + +

   +
  − +=   

  + − − −    

(37) 

 
By linearizing the critical buckling load equation based on FSDT with uncertain material 
properties and dimensions, equation (38) can be obtained as: 
 

 
( )0, 1, 1 2, 2 4, 4

,
0, 1, 1 2, 2 3, 3 4, 4

1

(1 )

c c c c
I I I Ic

cr I c c c c c
I I I I I

P
ϕ φ δ φ δ φ δ

ζ ψ δ ψ δ ψ δ ψ δ

+ + +
≅

+ + + +
 (38) 

 
In order to eliminate the higher order δi terms, equation (38) is linearized again and defined as: 
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 ( ) ( ) ( ), 1 2 3 41, 1, 2, 2, 3, 4, 4,1c c c c c c c c ccr I I I I I I I I IP κ φ ψ δ φ ψ δ ψ δ φ ψ δ ≅ + − + − − + −  
 (39) 

 
where 
 

 0,

0,

c
Ic

I c
I

ϕ
κ

ζ
=

 
(40) 

 

 1, 2, 4,
1, 2, 4,

0, 0, 0,
, ,

c c c
I I Ic c c

I I Ic c c
I I I

ϕ ϕ ϕ
φ φ φ

ϕ ϕ ϕ
= = =

 
(41) 

 

 1, 2, 3, 4,
1, 2, 3, 4,

0, 0, 0, 0,
, , ,

c c c c
I I I Ic c c c

I I I Ic c c c
I I I I

ζ ζ ζ ζ
ψ ψ ψ ψ

ζ ζ ζ ζ
= = = =

 
(42) 

 
where φi and ζi are given in Appendix A. The expression (39) subjected to constraint equation 
(14) is minimized by using equations (43) - (45). 
 

 
4

2 2
,

1
( , ) c c

cr Ii I i
i

L Pδ λ λ δ β
=

 
 = + −
 
 
∑  (43) 

 

  0 ( 1,2,3,4)
 i

L i
δ
∂

= =
∂  

(44) 

 

  0
 c

I
L

λ
∂

=
∂

 (45) 

 

 1λ =
2

c
c I
I

c
Iω
β

κ
±  (46) 

 
where 
 

 ( ) ( ) ( ) ( )

( ) ( ) ( )

1, 1, 2, 2, 4, 4,

2 2 2 2
1, 2, 3, 4,

2 2 2
1, 2, 4,

2 2 2c c c c c c c c c
I I I I I I I I I

c c c c c
I I I I I

c c c c
I I I I

A B

A

B

ω ψ φ ψ φ ψ φ

ψ ψ ψ ψ

φ φ φ

= + − − −

= + + +

= + +
 

(47) 
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By substituting the expression (46) which leads to minimize or maximize the critical buckling 
load into equations (44), expressions of δi are obtained as below: 
 

 ( )1, 1,
1

c c
I I

c
I

ψ φ β
δ

ω

−
=  (48) 

 

 ( )2, 2,
2

c c
I I

c
I

ψ φ β
δ

ω

−
=  (49) 

 

 3,
3 c

c
I

I

ψ β
δ

ω
=  (50) 

 

 ( )4, 4,
4

c c
I I

c
I

ψ φ β
δ

ω

−
=  (51) 

 
Laminated Orthotropic Composite L-Section Column  
 

 
Figure 4: Composite L-section column. 

 
For composite L-section column (Figure 4), the uncertain material properties and dimensions 
are defined as: 
 

 ( )1 1 11E E δ= +  
(52) 

 

 ( )13 13 21G G δ= +  
(53) 

 

 ( )31L L δ= +  
(54) 

 

 ( )41h h δ= +  
(55) 
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 ( )41d f h δ= − +  
(56) 

 

 ( ) ( )4 41 δ 1 δcs hA h b f + + − +  =   
(57) 

 

 
2 2 2 2 2

4 4 4

4

1 δ δ 2 δ
2 δc

h fh h b fh h
h b f h

y − + − + + −
− +

=
+ −  

(58) 

 

 
2 2 2 2 2

4 4 4

4

1 δ δ 2 δ
2 δ

c
h bh h bh f h

h b f h
z − + − + + −

− +
=

+ −  
(59) 

 

 ( )2 2 2 2 2
4 4 4

4
δ δ 2 δ1  1  δ

2cy
hh fh h b f h h

b f h b f h

− + − + + −  
+ + − + −

≅
   

(60) 

 

 ( )2 2 2 2 2
4 4 4

4
δ δ 2 δ1  1  δ

2
cz

h bh h bh f h h
b f h b f h

− + − + + −  
+ + − + −

≅
   

(61) 

 

 ( )
12 221

1 1
ν

1
E

E
ν

δ
=

+  
(62) 

 
Substituting expression (62) into transformed reduced stiffness matrix equations for [0/0]s 
stacking sequence, expressions (63) – (65) are obtained as: 
 

 ( )22
1 1

11, 2
2 12 1 1 1

1
u

E
Q

E E E

δ

ν δ

+
=
− + +  

(63) 

 

 
( )12 2 1 1

12, 2
2 12 1 1 1

1
u

E E
Q

E E E

ν δ

ν δ

+
=
− + +  

(64) 

 

 
( )2 1 1

22, 2
2 12 1 1 1

1
u

E E
Q

E E E

δ

ν δ

+
=
− + +  

(65) 

 
Equation (66) represents the area of moment of inertia of composite L-section column using 
parallel-axis theorem. 
 

 
3 2 23

      
12 2 12 2

c cyy
h h hI b d db z d zh h h

         + − + + + −              
=


 

(66) 
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The bending stiffness matrices are defined as: 
 

 11 11, yy
u

I
D Q

b
=

 
(67) 

 

 12 12, yy
u

I
D Q

b
=

 
(68) 

 

 22 22, yy
u

I
D Q

b
=

 
(69) 

 

 
2
12

11
22

DD D
D

= −
 

(70) 

 

 
( )

( ) ( )

( )

( )
( )

( )

( )

( )
( )
( ) ( )

4 3

2 2 2

1
2

3

1 5 42

3 2 2

2 3 2 2 34

2

2 2

4 6
1

2 3 2

4
1

4 11 1712

2 5 16 14

3 15 36 22

14 3 2
4

h h b f

h b bf f
b f h

hf b f

f b f
E hD h h b fb b f h

h b bf f

h b b f bf f

f b f h b f f b f

δ

δ

  − +
  
  + + +  + + − +  

− +  
  

+ +    
≅  − + ++ − 

− + +

+ + + +

   − + + − +     

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
   

(71) 

 
By linearizing the critical buckling load equation based on FSDT with uncertain material 
properties and dimensions, equation (72) can be obtained as: 
  

 
( )0, 1, 1 2, 2 4, 4

,
0, 1, 1 2, 2 3, 3 4, 4

1

(1 )

c c c c
L L L Lc

cr L c c c c c
L L L L L

P
ϕ φ δ φ δ φ δ

ζ ψ δ ψ δ ψ δ ψ δ

+ + +
≅

+ + + +  

(72) 

 
In order to eliminate the higher order δi terms, equation (72) is linearized again and defined as: 
 

 ( ) ( ) ( )1 2 3 4, 1, 1, 2, 2, 3, 4, 4,1c c c c c c c c c
cr L L L L L L L L LP κ φ ψ δ φ ψ δ ψ δ φ ψ δ ≅ + − + − − + −    

(73) 
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where 
 

 0,

0,

c
Lc

L c
L

ϕ
κ

ζ
=

 
(74) 

 

 1, 2, 4,
1, 2, 4,

0, 0, 0,
, ,

c c c
L L Lc c c

L L Lc c c
L L L

ϕ ϕ ϕ
φ φ φ

ϕ ϕ ϕ
= = =

 
(75) 

 

 1, 2, 3, 4,
1, 2, 3, 4,

0, 0, 0, 0,
, , ,

c c c c
L L L Lc c c c

L L L Lc c c c
L L L L

ζ ζ ζ ζ
ψ ψ ψ ψ

ζ ζ ζ ζ
= = = =

 
(76) 

 
where φi and ζi are given in Appendix A. The expression (73) subjected to constraint equation 
(14) is minimized by using equations (77) - (79). 
 

 
4

2 2
,

1
( , ) c c

cr Li L i
i

L Pδ λ λ δ β
=

 
 = + −
 
 
∑  (77) 

 

  0 ( 1,2,3,4)
 i

L i
δ
∂

= =
∂  

(78) 

 

  0
 

L
λ
∂

=
∂  

(79) 

 

 1λ =
2

c
c L
L

c
Lω
β

κ
±  (80) 

 
where 
 

 ( ) ( ) ( ) ( )

( ) ( ) ( )

1, 1, 2, 2, 4, 4,

2 2 2 2
1, 2, 3, 4,

2 2 2
1, 2, 4,

2 2 2c c c c c c c c c
L L L L L L L L L

c c c c c
L L L L L

c c c c
L L L L

A B

A

B

ω ψ φ ψ φ ψ φ

ψ ψ ψ ψ

φ φ φ

= + − − −

= + + +

= + +
 

(81) 

 
By substituting the expression (80) which leads to minimize or maximize the critical buckling 
load into equations (78), expressions of δi are obtained as below: 
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 ( )1, 1,
1

c c
L L

c
L

ψ φ β
δ

ω

−
=

 

(82) 

 

 ( )2, 2,
2

c c
L L

c
L

ψ φ β
δ

ω

−
=

 

(83) 

 

 3,
3 c

c
L

L

ψ β
δ

ω
=

 
(84) 

 

 ( )4, 4,
4

c c
L L

c
L

ψ φ β
δ

ω

−
=

 

(85) 

 
RESULTS AND DISCUSSIONS 

Table 1 represents the values of material properties and the dimensions used in this study for 
the composite columns. The mechanical properties of carbon/epoxy are used in order to obtain 
the uncertain critical buckling load values at defined level of uncertainty. 
 

Table 1: Nominal dimensions and material properties for composite columns. 

Column Type Material Properties (GPa) Dimensions (mm) 
E1 G13 b f h L 

I 121 4.7 30 30 4 1000 
L 121 4.7 30 30 4 1000 

 
In the graph (Figure 5), the sections with the losses in normalized critical buckling load 
according to different levels of uncertainty of composite columns are represented. It’s seen 
that even minor fluctuations on the uncertainty level result in considerable loss of normalized 
critical buckling load values.  
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Figure 5: Normalized critical buckling load variations for composite columns. 

 
Figure 6 and Figure 7 represent which parameter has the most unfavorable effect on the critical 
buckling load. For all composite columns, the parameter G13 which refers to shear modulus in 
1-3 plane has almost no effect on critical buckling load with the increasing level of uncertainty 
for defined uncertain parameters. 
 

 
Figure 6: Sensitivity analysis of I-section composite column. 
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The graphs (Figure 6 - Figure 7) also indicate that the column length (L), by far, is the most 
negatively affected parameter regarding the critical buckling load. The results clearly show that 
the E1 and thickness of cross-section (h) also play a significant role considering the variability 
on the longitudinal Young’s modulus and thickness during manufacturing stages.  
 

 
Figure 7: Sensitivity analysis of L-section composite column. 

 

 
Figure 8: Comparison of analytical and FEM results for I-section composite column. 
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Figure 8 shows the comparison of the results obtained with analytical and finite element 
method (FEM). Results provide closer values which validate the derived equations showed in 
previous chapter. 
 

 
Figure 9: Contour plots of composite I-section column. 

 
Figure 9 and Figure 10 show contour plot of the variation of the critical buckling load at different 
level of uncertainty with the ratio of L/b. Although the increment of L/b values are low for the 
range between 5 and 10, the decrement values on critical buckling loads are remarkable for 
all composite sections as it’s represented in contour plots (Figure 9 and Figure 10).  
 

 
Figure 10: Contour plots of composite L-section column. 
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CONCLUSIONS 
In this study, changes in critical buckling load of composite columns with uncertain material 
properties and dimensions are obtained. It can be concluded that even cases for the values 
smaller than 10 of L/b, especially the dimensional uncertainties should be taken into account 
during production stage although the deviations of uncertain parameters are small. Also, it’s 
clear that the uncertainty unfavorably effects the critical buckling load for all L/b values. 
Therefore, instead of calculating critical buckling loads using certain values of material 
properties and its dimensions, the buckling calculations should be made considering the 
uncertainty which provides to obtain realistic critical buckling loads at defined level of 
uncertainty. As a result, critical buckling load equations are obtained analytically for I and L 
cross sections of the composite columns with uncertain material properties and dimensions. It 
is stated that even small changes in the uncertainty level create significant deviations in critical 
buckling load. It is also important to state that performing sensitivity analysis is also very 
important to calculate which parameter has more effect on the losses in critical buckling load. 
It’s observed that the issue of uncertainty has to be included in the calculations particularly at 
the preliminary design stages. 
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