DISCUSSION OF ANGLES ONLY METHODS FOR THE CASE OF MULTI-OBSERVER

Mehmet Fatih Erturk* University of Turkish Aeronautical Association Ankara, Turkey

ABSTRACT

This work is a discussion about the application of angles only preliminary orbit determination methods for multi-observers. The methods discussed in this work are the Gauss and Gooding's methods. The application of Gauss method is easier, but it needs adjustments for the elevation and the angle between observations. On the other hand, using Gooding's method is a bit involved; however, this method works with various conditions and gives high accuracy results. Revealing these points and making a discussion about the results of these methods are the main targets of this paper. The study presents a nice perspective for angles only methods for multi-observer case.

INTRODUCTION

As the number of satellites are increased, determining and following them are getting more important. There are several way to determine the orbit of a satellite or space debris, which are based on optical, radar and lidar systems. Radar and lidar systems are costlier than optical systems. That makes optical systems more practicable. Also, any curious person can achieve a basic initial orbit determination with an optical system on a tight budget. Accuracy of calculations depends on both quality of optical system and application of initial orbit determination methods. In this paper, main discussion will be about these methods.

Below discussion is about two angles only methods, which are Gauss and Gooding's method. Application of these methods main references are Curtis H. D. [2013], Gooding R. H. [1993], and Gooding R. H. [1997]. Gauss method is applied and results are obtained clearly. On the other hand, Gooding's method algorithm is written but, it does not work good. So that, there will be a the theoretically discussion part about its solution algorithm.

METHOD

Optic measurements give just two angles data of target. They are form of declination (δ) and right ascension (α) . At least three observations needed to obtain initial orbit of a satellite. State vectors are findable with only angles data. To obtain them, a few methods can be applicable as Gauss and Gooding's methods.

Gauss Method

In this section, there will be a short recall for Gauss method.

^{*}Student in Astronautical Department, Email: mfatiherturk@outlook.com

Gauss method of preliminary orbit determination method requires at least three observations with their times and position vectors of observer. There are some rules for these observations. Basically, Gauss method tries to determine geocentric position vector of satellite with the help of (1).

 $\vec{r} = \vec{R} + \vec{o} = \vec{R} + o\hat{o}$

$$\vec{r} = p\hat{p}$$

Figure 1: Earth and Orbiting Satellite Representation

Firstly, position vector of observer should be calculated for observation site. Actually, calculation of ρ and $\hat{\rho}$ is the main part of Gauss method. (2), which comes from figure 1-a, and (1) are guides of solution. Also, $\vec{r_1}$ and $\vec{r_2}$ can be written in terms of $\vec{r_2}$, $\vec{v_2}$ and Lagrange coefficients with the help of figure 1-b.

$$\vec{r}_2 = c_1 \vec{r}_1 + c_3 \vec{r}_3$$
 (2) $\vec{r}_1 = f_1 \vec{r}_2 + g_1 \vec{v}_2$ (3) $\vec{r}_3 = f_3 \vec{r}_2 + g_3 \vec{v}_2$ (4)

Equalization of (1) and (2) writes ρ and $\hat{\rho}$ in terms of c_1 and c_3 . Then, solving these equations for c_1 and c_3 with the help of (2), (3) and (4) makes a relation between c, f, g and \vec{r} terms. Also Lagrangian terms are common known elements. In this paper, Gauss method has small time intervals to decrease complexity of these elements. $\tau_1 = t_1 - t_2$, $\tau_3 = t_3 - t_2$, and $\tau = \tau_3 - \tau_1$ are representations of time intervals. With these small time intervals, ignoring of high order terms in Lagrange coefficients is meaningful.

After the knowledge of f and g terms, writing c_1 and c_3 approximately is possible. End of the problem is getting closer. However, still there are some missing parts in (1). Equalization of (1) and (2) with (3) and (4) gives a nice chance to isolate ρ_2 and make a contact between ρ_2 and r_2 .

Expanding and rearranging all the equations leads to an eight-order polynomial. After solving this equation results come as slant ranges ρ_1 , ρ_2 , and ρ_3 . Replacing them and other values into (1) and solving this equation for \vec{v}_2 yields

$$\vec{r}_2 = \frac{1}{f_1}\vec{r}_1 - \frac{g_1}{f_1}\vec{v}_2$$
 (5) $\vec{v}_2 = \frac{1}{f_1g_3 - f_3g_1}(-f_3\vec{r}_1 + f_1\vec{r}_3)$ (6)

There are some iteration techniques for increasing accuracy of results. They can easily effect results. However, there will be no discussion about them in this paper.

Gooding's Method

In this section, there will be a discussion of Gooding's method with respect to its algorithm, which is written in Algorithm (1). This algorithm includes its main logic, not a detailed algorithm.

R. H. Gooding published his method about initial orbit determination in 1993. Gooding's method roots in estimations of two ranges. Also orbit type, retrograde or prograde, should be estimated. If all of these estimations are so far away from the correct situation, Gooding's method cannot converge Henderson, T. A., Mortari, D. and Davis, J. [2010]. Being applicable for several revolutions case, independent from observer's position and observation time makes the method a nice option for preliminary orbit determination.

(1)

Everything starts with an important estimation of ρ_1 and ρ_3 at times t_1 and t_3 . $\hat{\rho}_1$ and $\hat{\rho}_3$ have already known from observation data. Then, calculation of \vec{r}_1 and \vec{r}_3 with (1) is the key point for the method. Now, a Lambert solution is the way for computing the estimation of an initial orbit. As a guideline Lancaster, E. R., Blanchard, R. C. and Devaney, R. A. [1966] and Lancaster, E.R. and Blanchard, R.C. [1969] are chosen from Gooding R. H. [1990] point of view. However, as stated in Zuehlke D. [2019], any Lambert solution could be suitable to use, and Curtis H. D. [2013] is used as the Lambert solver of this paper. On the other hand, after gaining a true algorithm, Gooding's Lambert solution should be use to increase accuracy of results.

The Lambert's problem is a describing process for the velocity determination of an object from its known position vectors. So that, the Lambert's problem is important for finding velocity vector from distance vector. To attain velocity components of an object, Lambert uses known quantities as $\vec{r_1}$, $\vec{r_3}$, t_1 , t_3 and angles between two points. Equating these relations with a basic geometric logic, gives the key for velocity vector. However, reorganizing and solving these geometric relations is complicated. There are several different cases in the geometry and they directly affects results. So, the solution of the Lambert's problem contains various cases. Complexity of the cases causes different solution ways. As stated in Sangra, D. T. and Fantino, E. [2015], there are five main approach for the Lambert's problem. There are universal variables, semi-major axis, semi-latus rectum, eccentricity vector, Kustaanheimo-Stiefel regularized coordinates as a guide. In this paper, a universal variable approach is followed like Gooding, Lancaster and Curtis.

After having \vec{v}_1 from Lambert's problem, \vec{v}_1 and \vec{r}_1 give orbital elements with a Keplerian propagator. Rearranging orbital elements for $\tau_{12} = t_2 - t_1$ and using Keplerian propagator again, gives calculated $\vec{r_2}$ and \vec{v}_2 as \vec{r}_{2c} and \vec{v}_{2c} . Then, $\hat{\rho}_{2c}$ and ρ_{2c} can be written from (1).

Now on, we can start to find elements of Newton-Raphson process which is written in(7). ρ_1 and ρ_3 are represented as x and y. Also essential symbolization explained in (8), (9), and (10).

Figure 2: Gooding's Method

$$\begin{pmatrix} \delta x \\ \delta y \end{pmatrix} = -\begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix}^{-1} \begin{pmatrix} f \\ g \end{pmatrix}$$
(7)

$$\delta x = -D^{-1}fg_y$$
 (8) $\delta y = D^{-1}fg_x$ (9) $D = f_xg_y - f_yg_x$ (10)

Firstly, we should determine our target functions as f and g. f lies on the plane, which is perpendicular both $\hat{\rho}_2$ and $\hat{\rho}_{2c}$. Taking cross product of $\vec{\rho}_{2c}$ and $\hat{\rho}_2$ gives us that plane. Then, taking another cross

product with $\hat{\rho}_2$ gives the direction of that f function. Similarly, taking cross product of \vec{P} and $\hat{\rho}_2$ gives g function. So, g lies on the plane and is perpendicular to the f. Now, finding their values is possible with equations (13) and (14). By definition, g comes 0 or so close to 0. So, equations (8), (9) and (10) are usable directly. If f comes 0 in (13), assumptions are true and process should be stop. However, it cannot be 0 in the beginning, if your assumptions are not true values. Actually, f may not be exactly 0. As an error 10^{-6} or 10^{-10} are acceptable. Lower errors give higher accuracy and more iteration. To gain computation time, 10^{-6} accepted as error margin for this paper. Henderson, T. A., Mortari, D. and Davis, J. [2010] reveals that situation clearly.

$$\vec{P} = (\hat{\rho}_2 \times \vec{\rho}_{2c}) \times \hat{\rho}_2$$
 (11) $\vec{N} = \hat{\rho}_2 \times \vec{\rho}_{2c}$ (12)

$$f(x,y) = \frac{\vec{P} \cdot \vec{\rho}_{2c}}{\left\| \left| \vec{P} \right| \right\|} \quad (13) \qquad g(x,y) = \frac{\vec{N} \cdot \vec{\rho}_{2c}}{\left\| \left| \vec{N} \right| \right\|} \quad (14)$$

Figure 3: Upper View for Triangles

Then, first range estimations can be changed to find derivatives. Estimations multiplied by 0.001 as stated in Gooding R. H. [1997]. That process should be followed for third assumption too, but following steps will be written for first range assumption.

After that, new range assumption is $\rho_{1n} = 1.001\rho_1$. Then calculate $\hat{\rho}_{2c1n}$. Now, there is a new unit vector, and new f and g should be calculated for it. Using equation (11) to (14) is enough. These new f and g values can be written as $f_{\rho_{1n}}$ and $g_{\rho_{1n}}$. Finally, taking derivative of f and g is possible.

$$f_x = \frac{f_{\rho_1 n} - f}{\rho_{1n} - \rho_1}, \quad g_x = \frac{g_{\rho_1 n} - g}{\rho_{1n} - \rho_1}, \quad f_y = \frac{f_{\rho_3 n} - f}{\rho_{3n} - \rho_3}, \quad g_y = \frac{g_{\rho_3 n} - g}{\rho_{3n} - \rho_3}$$
(15)

Finally, (7) gives rearrangement factor of range assumptions. Then, modified range assumptions come like (16). Later on all of these steps repeated until f comes in the error margin. Also, there might be a shooting algorithm of range estimation to reduce time of coincidence or just use a multiple of Earth's radius.

$$\rho_{1NR} = \rho_1 + \delta x, \quad \rho_{3NR} = \rho_3 + \delta y \tag{16}$$

RESULTS AND DISCUSSION

In this section, Gauss initial orbit determination method's results for multi-observer case is given. During application of Gauss process, Curtis H. D. [2013] is strongly followed. Gooding's method is basically application of ρ and $\hat{\rho}$ into the Lambert's problem as assumed $\vec{r_1}$, and $\vec{r_3}$. Then, recalculating of estimated ρ_1 , and ρ_3 with Newton-Raphson iterations for better results. In the applications MatLab is used for calculation software and all of the codes are written by the author. Also, detailed results are published in appendix. Discussion of this section will be through summary of the results.

The code for Gooding's method can easily be written with the help of algorithm (1). However, constricts of the iterations is missing. As a result of correction factors, method's accuracy is lower than expected. Also, Gooding's method takes its estimations from Gauss results to be sure that, it increases accuracy. However, Gauss sometimes have really bad answers and Gooding's method cannot correct them. So, Gauss's error make Gooding's results inaccurate too. As a nice example of that situation can be seen with the observations which have equal time separation. We know that, times would always be at uniform intervals Gooding R. H. [1993]. On the other hand, Gauss method needs less than 60° angular separation between observations Vallado D. A. [2001]. That condition is provided just for same angular separation observation cases. If the time intervals between observations are equal, angel between observations might be bigger than 60° as a result of geographical change on the observer. So, accuracy of result dramatically decreases and these bad results turn Gooding's inputs. Gooding cannot improve these really bad results and its results comes bad too. Finally, we can observe thar, Gooding should work better with equal time intervals, but bad inputs which come from Gauss method, decrease Gooding's results without any guilty.

At least 3 clear images needed as input data to make initial orbit determination. Any poor quality of these images can disturb results. So that, angles information obtained from Stellarium, which is a planetarium software that shows the celestial objects and satellites. Also, to check the results Keplerian elements are needed. Some other programs could be used for that. However, a TLE propagator is used like Erturk, M. F., Koprucu, S. U., Tugcular, U., Arda, I., Erkan, Y. B., Sisman, T. C. [2018]. A rearranged version of that propagator is used as a controller for this paper.

In total, there are 7 observers with 4 different conditions. These conditions are; all observers are the same, all of them have same longitude or latitude and each latitude and longitude elements are different. Table 1 gives their coordinates and altitudes. Figure 4 is a visualization of the observations.

	Observer-1	Observer-2	Observer-3	Observer-4	Observer-5	Observer-6	Observer-7
Latitude ($^{\circ}$)	39.9455	39.9455	39.9455	41.6337	38.2573	39.7806	36.8241
Longitude $(^{\circ})$	32.6871	38.3928	26.9814	32.6871	32.6871	41.2265	30.3355
Altitude (km)	0.811	2.185	0.210	0.475	0.985	3.170	2.500

Table 1: Observer's Locations

Figure 4: Observer Locations on The Map

Observations searched in mainly 2 different groups. They have same time difference or same angular

5

separation. First group has 15 seconds, 2 minutes or 3 minutes time differences. Second group has 20, 30 or 40 degree separation between each observation. To determine the angle, (17) is used for each observation. So, the angle between lines is obvious. Lastly, table 2 gives the order of observations with their observers.

^	^	^	^			
\vec{n} -	$-\cos\delta\cos\alpha I \perp \cos\delta\sin\alpha I$	$I \perp sin$	δK	(17)	١
p –	$-\cos \theta \cos \alpha \mathbf{I} + \cos \theta \sin \alpha \mathbf{J}$	/ SIII	011			1

	One Observer	Same Latitude	Same Longitude	3 Different Observer
1. Observation	OBS-1	OBS-2	OBS-4	OBS-6
2. Observation	OBS-1	OBS-1	OBS-1	OBS-1
3. Observation	OBS-1	OBS-3	OBS-5	OBS-7

Table 2: Observations with Observers

5 satellites selected to for their different eccentricity or inclination values. These satellites are ISS, Meteor M2-2, Glonass K-1, Molniya 1-86, Molniya 3-50. Their inclinations and eccentricities are in the table 3.

	ISS	Meteor M2-2	Glonass K-1	Molniya 1-86	Molniya 3-50
NORAD	255444	44387	37372	22671	25847
<i>i</i> (°)	51.6419	98.5713	65.7543	63.0930	62.1353
e	0.0007356	0.0002181	0.0007568	0.4843974	0.7238609

Table 3: Selected Satellites

There are some extraordinary situations for Gauss method. They become noticeable when eccentricity, inclination or both of them closing to zero. Main comparison points with these conditions should be respectively argument of latitude $(\omega + \theta)$, longitude of periapsis $(\Omega + \omega)$, and true longitude $(\Omega + \omega + \theta)$. Neglecting this information and comparing them one by one causes wrong judgments. Considering this situation provides an understanding about in which conditions Gauss method works properly. Also, there should be maximum 60° separation between observations, otherwise accuracy of results will be low as stated before. Some of the observations with equal time differences break the rule, because of multi-observer cases. As a natural result of geographical change on the observer, the angle between observations increases directly. That is another unforgettable criterion.

Gooding's method is weak for near polar inclinations. The method should be run twice, once assuming prograde and another assuming retrograde Schaeperkoetter A. V. [2011]. Then, picking the true results is a right way to have accurate results.

Results searched with three relative error tolerance such as 0.1, 0.01 and 0.001. Detailed results can be searched in Appendix. In general, one observer case has more accurate results. However, if you look more close for each satellite or method, having multi observers might be an advantage. Especially, Gooding's method has nearly same accuracy for same latitude and same observer cases. Gooding's results with the observers, which have same longitude, might be better as others, if inputs of it were nice. Results basically told us that, Gooding's method gives more accurate results for most of the cases, but Gauss method has a little bit more accurate results. That shows, if Gooding's method applied completely without Gauss' bad inputs, it would be perfect.

With the light of table results, having only one observer seems enough to make accurate orbit determination. However, orbit of satellite may affect that decision. Especially, one observer may not be enough, while satellite's inclination increasing. The best thing is considering both orbit and observation details. So, multi observers are better, when true satellite and true observation technique are selected.

CONCLUSIONS

This study aims to compare angles only methods. For this comparison, both Gauss and Gooding's method are chosen and results for 5 different satellites presented. These satellites selected because of their various inclination and eccentricity values. These results can be extended with different satellites for a better generalization.

Gauss method is applied for many years, but just works well with suitable conditions. Results show that obviously, multi observer case affects accuracy of initial orbit determination. Orbital characteristics and observation technique, such as having same time or angle separation, directly affect accuracy too.

On the other hand, Gooding's method is relatively new method. It claims to work with nearly any conditions. Exact method could not applied but, preliminary results support that claim. If the inputs are good enough, it can work with any observer.

Having a knowledge of satellites, which are orbiting around us, is an important data especially for ground segment of any mission. Suchlike, the accuracy of this data is another important feature. As discussed above, this accuracy can be achieved by true methods and true applications.

ACKNOWLEDGEMENTS

I wish to acknowledge and thanks the helpful discussion sections with Assoc. Prof. Dr. Tahsin Cagri Sisman about Gooding's method.

APPENDIX

There are some notes about appendixes to make them clear. Firstly, Appendix A is the general algorithm for Gooding's method. There are more steps in real application. However, in this work, main purpose is giving an idea about application of Gooding's method. Secondly, for the Appendix B and C, given times are 2. observation's time. All of listed results valid for OBS-1 location. Also given TLE is the closest one to the calculation time. Thirdly, the errors in Appendix B and C are compared with respect to 7 orbital elements. As a result of special orbit cases, which are stated in results and discussion part, sometimes argument of latitude chosen as a comparison element apart from just ω and θ .

Appendix A

Algorithm 1 Gooding's Method Algorithm
1. Define observation values as δ_{1-2-3} , α_{1-2-3} , t_{1-2-3}
2. Specify orbit type "retrograde" or "prograde"
3. Find observer position vectors ($ec{R}$) with respect to t_{1-2-3}
4. Calculate $\hat{\rho}_1$, $\hat{\rho}_2$ and $\hat{\rho}_3$
5. Find $\Delta t_{13} = t_3 - t_1, t_3 > t_1$
6. Make range assumptions as $ ho_1$ and $ ho_3$
7. Calculate $ec{r}_{1-3}$ vectors with $ec{r}=ec{R}-\hat{ ho} ho$
8. Go to a Lambert Solver.
(a) Inputs: $\vec{r_1}$, $\vec{r_3}$, Δt_{13} , "retrograde" or "prograde"
(b) Outputs: \vec{v}_1 , \vec{v}_3
9. Use Keplerian function
(a) Find E and M .
(b) Rearrange them for $(t_1 + \Delta t_{12})$.
(c) Find orbital elements for $(t_1 + \Delta t_{12})$.
(d) Go to $ec{r}_{2c}$ and $ec{v}_{2c}$ from these elements .
10. Find \vec{P} , \vec{N} , f and g .
11. $\rho_{1n} = 1.01\rho_1$ or $\rho_{1n} = 1.001\rho_1$. Find $\hat{\rho}_{2c1n}$ and $\vec{\rho}_{2c1n}$.
12. Find $\vec{P}_{\rho 1n}, \vec{N}_{\rho 1n}, f_{\rho 1n}$ and $g_{\rho 1n}$.
13. Calculate $g_x = \frac{g_{\rho_1 n} - g_1}{\rho_{1 n} - \rho_1}$, $f_x = \frac{f_{\rho_1 n} - f_1}{\rho_{1 n} - \rho_1}$.
14. Repeat step 12, and 13 for $\rho_{3n} = 1.01\rho_3$ or $\rho_{1n} = 1.001\rho_1$. Find $\hat{\rho}_{2c3n}$ and $\vec{\rho}_{2c3n}$.
15. Calculate $g_y = \frac{g_{\rho_{3n}} - g}{\rho_{3n} - \rho_3}$, $f_y = \frac{f_{\rho_{3n}} - f}{\rho_{3n} - \rho_3}$.
17. Find determinant of $\begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix}$ as $D = (f_x g_y - f_y g_x)$.
18. Find $\delta x = -\frac{1}{D}fg_y$ and $\delta y = \frac{1}{D}fg_x$.
19. Calculate new range assumptions $\rho_{1NR} = \rho_1 + \delta x$ and $\rho_{3NR} = \rho_3 + \delta y$.
20. Repeat the process until $f = 0$ or close enough to zero.

21. Calculate orbital elements from \vec{r}_{2True} and \vec{v}_{2True} .

					ISS				
Closest TLE				1 25544U 98067 2 25544 51.6437	7A 19238.13982639.00004 14.2544 0007486 327.199	4845 00000-0 91557- 9 9.5168 15.5039440	4 0 9996 02 186101		
Time					26.8.2019 - 06:57:	10 (UTC0)			
20Degree	α (°)	330.32076 25	96.24621 256.93171	332.81258 29	06.24621 256.33339	332.04311 29	6.24621 258.47092	330.07904 29	06.24621 258.85055
Separation	$\delta (^{\circ})$	52.9433ϵ	61.6224 57.3969	54.9767 6	31.6224 57.8444	54.5148 6	1.6224 56.3198	52.7367 6	51.6224 55.7474
		õ	One bserver	TC	Same	Loi	Same ıgitude	ē ð	Different bservers
	Real	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method
$h\left(\frac{km^2}{s}\right)$	52038.16	51743.84	51752.82	55588.39	44313.79	51590.71	51601.45	475.50	81928.83
υ	0.000749	0.010660	0.010371	0.170408	0.291223	0.015967	0.015643	0.992822	1.6728083
(°)Ω	13.51	13.05	13.054	9.17	11.81	12.77	12.81	109.54	289.54
<i>i</i> (°)	51.64	51.58	51.59	51.99	51.67	51.57	51.57	88.78	91.22
$(\circ) \theta + w$	93.84	89.91	94.60	96.99	95.38	90.97	94.76	227.36	133.65
<i>a</i> (km)	6793.7	6717.8	6720.1	7984.1	5383.1	6679.1	6681.8	39.65	-9364.3
30Degree	α (°)	340.66464 25	96.24621 236.82812	343.90338 29	06.24621 242.04374	342.60624 29	6.24621 244.76029	340.50223 29	06.24621 245.26901
Separation	(₀) γ	45.6776 6	61.6224 46.6748	47.7178 6	31.6224 52.1765	49.9140 6	1.6224 50.2336	45.4306 6	01.6224 50.0111
$h\left(\frac{km^2}{s}\right)$	52038.16	51726.04	49449.90	58424.93	58358.51	51678.85	51612.33	40154.63	40148.79
e	0.000749	0.011643	0.098302	0.256507	0.253678	0.013243	0.041226	0.404575	0.405014
(₀) ប	13.51	13.21	2.40	12.56	12.60	13.09	18.67	306.95	306.96
<i>i</i> (°)	51.64	51.58	50.98	52.19	52.19	51.57	51.90	75.65	75.67
$(\circ) \theta + w$	93.84	86.87	101.68	101.58	94.09	93.02	91.06	91.99	130.45
a (km)	6793.7	6713.4	6194.6	9166.8	9131.8	6701.4	6694.3	4836.8	4837.5
40Degree	α (°)	348.01461 2	96.24621 233.5195	351.49110 29	06.24621 231.78941	349.86460 29	6.24621 235.12557	347.77102 29	06.24621 235.34077
Separation	$\delta (^{\circ})$	37.1090ϵ	61.6224 43.6517	39.2087 6	31.6224 44.9085	38.1995 6	1.6224 42.7698	36.9860 6	31.6224 42.6170
$h\left(\frac{km^2}{s}\right)$	52038.16	51478.30	51462.29	50518.34	50547.02	51468.46	51466.95	34318.74	34306.45
е	0.000749	0.020559	0.020935	0.056191	0.055143	0.020912	0.020783	0.558697	0.558924
$\Omega (\circ)$	13.51	13.24	13.25	13.14	13.15	13.13	13.12	335.01	335.00
<i>i</i> (°)	51.64	51.52	51.52	51.46	51.47	51.52	51.53	58.62	58.62
$(\circ) \theta + w$	93.84	83.27	94.49	88.55	94.56	84.84	94.57	110.91	118.03

Separations
Angular
Equal
with
ISS
4
Table

9 Ankara International Aerospace Conference

Appendix B

4294.1

4295.6

6648.2

6648.7

6429.5

6422.9

6647.1

6651.1

6793.7

 $a~({\rm km})$

					MeteorM2 2				
Closest TLE				1 44387U 19038 2 44387 98.573	3A 19233.467465960000 4 195.3015 0001194 353.7	0044 00000-0 -72411 973 6.3191 14.23333	-6 0 9993 501 6719		
Time					21.8.2019 - 13:05:	10 (UTC0)			
20 Degree	α (°)	154.66174 1	43.37805 129.20397	145.41041 1	43.37805 157.83410	154.41026 14	3.37805 130.16763	154.56609 14	13.37805 138.53426
Separation	δ (°)	-0.4476	16.3085 31.7964	-3.5660	16.3085 31.2986	-0.3622	6.3085 32.2813	-0.4484	16.3085 35.9316
		0	One Ibserver	T	Same atitude	Γο	Same ngitude	е О	Different bservers
	Real	Gooding's Method	Gauss Method	Gooding's Method	Gauss Metho	d Method	Gooding's Method	Gooding's Method	Gauss Method
$h\left(\frac{km^2}{s}\right)$	53542.74	53631.42	53559.73	52794.40	52750.96	54160.10	53474.36	175671.67	280379.19
e	0.000119	0.004154	0.002133	0.028599	0.030243	0.087554	0.432699	12.013580	33.543346
Ω (°)	195.38	195.41	195.29	195.92	195.96	198.36	14.59	302.64	318.82
<i>i</i> (°)	98.57	98.67	98.52	99.23	99.28	102.12	94.79	139.46	134.99
$(\circ) \theta + m$	38.49	34.92	38.48	34.13	38.59	34.82	139.99	106.64	117.86
a (km)	7192.2	7216.2	7196.8	6998.3	6987.5	7415.9	4497.5	-540.2	-175.4
30 Degree	α (°)	159.85144 1.	43.37805 120.27730	151.34072 1.	43.37805 143.69952	159.87651 14	3.37805 121.05878	159.77377 14	13.37805 128.84109
Separation	φ (°)	-8.9983	16.3085 38.4723	-12.7214	16.3085 46.5221	-9.0183 1	6.3085 39.3282	-9.0463	16.3085 43.8650
$h\left(\frac{km^2}{s}\right)$	53542.74	53456.05	53467.35	54719.55	55437.55	53281.83	18031.41	140755.69	140674.62
Э	0.000119	0.003479	0.003108	0.046275	0.070322	0.008900	0.872718	5.652608	7.641073
$\Omega (\circ)$	195.38	195.27	195.27	195.34	194.26	195.26	17.43	343.29	343.291
$i \left(^{\circ} \right)$	98.57	98.46	98.75	98.76	94.50	98.43	91.14	128.34	128.34
$(\circ) \theta + w$	38.49	309.55	38.48	31.53	38.32	14.45	140.27	111.44	124.16
a (km)	7192.2	7169.0	7172.1	7528.0	7748.6	7122.9	3422.0	-1605.8	-865.1
40 Degree	α (°)	164.96541 1	43.37805 109.22409	156.89509 1	43.37805 129.57315	165.16827 14	3.37805 110.07288	164.91077 14	13.37805 116.81724
Separation	(°) δ	-17.5382	16.3085 44.1969	-21.4728	16.3085 59.9004	-17.5368	16.3085 45.1601	-17.6380	16.3085 50.2803
$h\left(\frac{km^2}{s}\right)$	53542.74	53303.88	53149.51	53488.05	53580.92	53277.15	12040.71	159260.58	159724.45
e	0.000119	0.008180	0.012831	0.001557	0.002077	0.009230	0.943183	9.299980	11.353621
ω (°)	195.38	195.28	195.41	195.27	195.23	195.25	26.47	19.76	19.74
$i (^{\circ})$	98.57	98.45	98.56	98.49	98.46	98.41	81.12	122.51	122.51
$(\circ) \theta + w$	38.49	10.84	38.51	13.38	38.47	8.89	139.52	140.33	131.24
a (km)	7192.2	7128.7	7088.1	7177.6	7202.5	7121.7	3294.4	-744.3	-500.4

Separations
Angular
n Equal
12-2 with
Meteor N
Table 5:

AIAC-2019-144

10 Ankara International Aerospace Conference

				9	ilonass K 1				
Closest TLE				1 37372U 11009A 1 37372 65.7635 37.	9232.68367858000000 8716 0007902 219.0910	23 00000-0 00000+0 100.0289 2.1310750	0 9996 0 65974		
Time				0	1.8.2019 - 06:41:17	7 (UTC0)			
20Degree	α (°)	45.65467 56	3.39346 78.02362	45.01616 56	.39346 78.83101	46.09970 56.	39346 77.27910	45.60219 56.3	9346 76.96491
Separation	δ (°)	30.8924 4	9.1721 65.6979	31.0969 4	9.1721 65.3800	30.74150 49	.1721 66.0031	30.8964 49.1	721 66.1322
		0 P	One server		Jame titude	Lon	ame gitude	3 Diff Obse	erent rvers
	Real	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method	$Gooding's \\ Method$	Gauss Method	Gooding's Method	Gauss Method
$h\left(\frac{km^2}{s}\right)$	100833.10	99243.39	99106.92	99415.16	99302.95	99265.01	42335.55	161867.57	40837.74
e	0.000790	0.024963	0.0261920.024173	0.022481	0.023501	0.024649	0.841166	1	0.773952
$\Omega(^{\circ})$	37.85	37.67	37	37.67	37.67	37.66	310.19	37.87	314.72
i (°)	65.76	65.74	65.74	65.75	65.75	65.73	38.63	67.83	41.00
$w + \theta (^{\circ})$	55.57	38.88	55.5	39.55	55.51	39.18	12.92	62.19	138.43
a (km)	25507.6	24725.0	24658.6	24807.8	24752.9	24735.4	15375.7	76495538200.5	10433.8
30 Degree	α (°)	41.65685 56.	.39346 100.49210	41.00029 56.	39346 101.04527	42.06326 56.	39346 99.84048	41.61375 56.3	9346 99.57468
Separation	δ (°)	21.5341 4	9.1721 71.6956	21.7464 46	9.1721 71.3478	21.4140 49	.1721 72.0790	21.5459 49.1	721 72.2767
$h\left(\frac{km^2}{s}\right)$	100833.10	97374.23	96776.96	97751.60	97227.23	97441.80	68926.32	135713.03	141313.26
в	062000.0	0.054819	0.059724	0.049075	0.053451	0.053787	0.471287	0.595421	2.544314
Ω(°)	37.85	37.69	37.69	37.70	37.70	37.67	200.07	38.14	201.28
<i>i</i> (°)	65.76	65.65	65.65	65.68	65.68	65.64	130.80	67.10	122.59
$w + \theta (^{\circ})$	55.57	30.3	55.56	30.84	55.55	30.62	23.78	79.51	69.49
a (km)	25507.6	23859.3	23580.8	24031.7	23783.8	23889.7	15322.0	71585.9	-9152.9
40Degree	α (°)	38.05404 56.	.39346 133.88594	37.37911 56.	39346 133.69173	38.42245 56.3	9346 134.06806	38.0213 56.39	346 134.09424
Separation	δ (°)	12.1402 4	9.1721 73.5696	12.3837 49	9.1721 73.2566	12.0222 49	.1721 74.0014	12.1683 49.1	721 74.2463
$h\left(\frac{km^2}{s}\right)$	100833.10	95450.9	93938.42	95948.55	94571.00	99505.16	29160.40	119572.92	123494.7
е	062000.0	0.087241	0.097634	0.079470	0.089008	0.086386	0.876848	0.317094	2.367713
$O(\circ)$	37.85	37.73	37.73	37.75	37.75	37.71	199.77	38.29	237.86
$i (^{\circ})$	65.76	65.52	65.52	65.56	65.56	65.51	127.38	66.66	73.52
$w + \theta (^{\circ})$	55.57	21.24	55.62	21.72	55.60	21.57	87.66	68.64	253.88
a (km)	25507.6	23032.5	22351.6	23242.9	22616.9	23055.2	9229.5	39879.6	-8306.7

Table 6: Glonass K-1 with Equal Angular Separations

					Volniya 1-86				
Closest TLE				1 22671U 93035A 1 2 22671 63.1020 11	19233.451222250000(2.4662 4841687 352.70	0030 00000-0 10326 72 2.2904 5.6258711	-4 0 9999 10 294241		
Time					21.8.2019 - 11:05:	12 (UTC0)			
20 Degree	α (°)	86.31635 88	36616 90.57380	85.73913 88.	.36616 98.48477	89.50012 88.	36616 82.76617	85.95806 8.	8.36616 78.72076
Separation	(₀) γ	36.3333 56	5.2373 76.1438	36.2362 56.	.2373 76.00500	36.3113 56	.2373 76.1108	36.2422 5	56.2373 75.9422
	-	0 ^p	One server		ame titude	Lon	ame gitude	0 0	Different bservers
	Real	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method
$h\left(\frac{km^2}{s}\right)$	63836.40	4246.76	64034.98	50480.87	50638.85	64336.32	64318.09	74239.81	80280.18
e	0.484169	0.846099	0.49	0.405710	0.404995	0.497747	0.499763	0.517268	0.815111
$\sigma(\circ)$	112.46	199.76	112.28	116.27	116.20	122.31	112.31	97.77	91.98
<i>i</i> (°)	63.10	57.49	63.13	63.55	63.53	63.19	63.18	59.13	57.26
w (°)	352.71	59.90	353.32	293.76	294.48	354.35	354.17	67.98	89.12
θ (°)	67.37	177.74	66.71	110.08	124.05	55.45	65.84	22.13	340
a (km)	13353.9	159.2	13589.5	7652.8	7695.5	13804.3	13833.4	18878.5	48179.9
30 Degree	α (°)	82.20205 88	.36616 92.22337	84.80871 88.	36616 118.39830	88.05659 88.	36616 67.90563	84.89788 8	8.36616 58.49726
Separation	(₀) γ	26.25540 5	6.2373 86.3161	26.3047 56	3.2373 85.6165	26.2063 56	.2373 85.9639	26.3261	6.2373 85.6417
$h\left(\frac{km^2}{s}\right)$	63836.40	64010.44	64018.55	62837.15	62854.20	66434.80	64451.00	68957.8	68958.29
e	0.484169	0.493406	0.501368	0.464727	0.469228	0.499453	0.506710	0.430905	0.433206
Ω(°)	112.46	112.41	112.42	112.42	112.41	112.26	112.26	105.09	105.09
<i>i</i> (°)	63.10	63.17	63.17	63.04	63.04	63.18	63.18	61.16	61.16
<i>w</i> (°)	352.71	353.21	352.87	349.43	349.33	354.70	354.38	25.27	24.91
(°) θ	67.37	53.28	67.10	56.36	70.67	53.06	65.64	34.76	38.13
a (km)	13353.9	13587.1	13734.3	12634.7	12709.7	13878.0	14021.3	14649.9	14685.94
40Degree	α (°)	83.98285 88.	36616 272.75831	83.68281 88.	36616 255.15063	86.57203 88.5	36616 285.56273	83.69089 85	3.36616 289.97361
Separation	$\delta (^{\circ})$	16.3911 56	3.2373 83.76740	16.3794 56	3.2373 83.5868	16.1981 56	.2373 83.4796	16.3329 5	56.2373 83.3147
$h\left(\frac{km^2}{s}\right)$	63836.40	64081.42	64165.79	63183.27	63175.35	64398.21	64502.48	65478.69	64779.18
е	0.484169	0.489133	0.507309	0.470380	0.480915	0.499853	0.5182245684	0.449843	0.436535
$(\circ) \Omega$	112.46	112.208614	112.20	112.33	112.33	112.30	112.29	109.65	109.56
$i (^{\circ})$	63.10	63.10	63.10	63.03	63.02	53.18	63.18	62.52	62.31
$w (^{\circ})$	352.71	353.74	353.23	350.73	350.27	354.57	354.09	1.87	359.73
θ (°)	67.37	50.50	66.83	52.68	69.76	50.81	65.93	45.57	61.44
a (km)	13353.9	13542.1	13908.9	12860.9	13025.3	13869.6	-515.7	13485.1	13006.2

12 Ankara International Aerospace Conference

					Molniya 3-50				
Closest TLE				2 25847 062.1495 1	19233.76210190000001 36.6226 7244562 272.620	os +0000-0 -02300 2 014.1955 02.00619	7-2 0 9998 3306147433		
Time					21.8.2019 - 06:55:0	0 (UTC0)			
20 Degree	α (°)	162.8847 10	69.49017 39.9455	161.77970 16	9.49017 181.80450	162.60967 169	9.49017 180.94822	162.92396 10	39.49017 181.36461
Separation	δ (°)	6.2136 2	5.2018 42.8668	6.6172 25	5.2018 42.4349	6.3125 25	.2018 42.8572	6.2107 2	5.2018 42.6672
		10	One bserver	To	Same ttitude	Tor	Same agitude	m Ο	Different bservers
	Real	Gooding's Method	Gauss Method	Gooding' s Method	Gauss Method	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method
$h\left(\frac{km^2}{s}\right)$	70919.66	71224.24	72008.76	71691.09	72577.42	71453.70	72198.26	45642.16	46522.26
e	0.724456	0.711774	0.756869	0.712951	0.760627	0.713392	0.756140	0.773743	0.790739
Ω (°)	136.55	136.71	136.71	136.79	136.79	136.71	136.71	134.02	133.91
<i>i</i> (°)	62.15	62.51	62.51	62.53	62.53	62.50	62.50	63.50	63.18
w (°)	272.63	271.96	275.38	272.59	276.19	272.37	275.57	240.23	244.71
(°) θ	124.18	91.05	121.21	90.60	120.37	91.16	121.02	128.62	152.82
a (km)	26555.4	25795.2	30454.6	26223.6	31356.2	26083.6	30536.2	13022.7	14489.8
30Degree	α (°)	160.51178 16	39.49017 190.13322	159.32243 16	9.49017 191.00769	160.16037 169	9.49017 190.10380	160.55613 10	39.49017 190.47373
Separation	(₀) φ	-3.5090	25.2018 50.6667	-3.1217 2	5.2018 50.1794	-3.4027 2	5.2018 50.6859	-3.5276	25.2018 50.4954
$h\left(\frac{km^2}{s}\right)$	70919.66	69902.91	74365.63	70649.58	75409.08	70223.24	74516.95	54307.02	57876.98
e	0.724456	0.695012	0.856782	0.695486	0.866249	0.696345	0.852118	0.734368	0.818987
Ω (°)	136.55	137.02	137.02	137.15	137.15	137.03	137.03	135.87	135.87
<i>i</i> (°)	62.15	62.76	62.76	62.81	62.81	62.74	62.74	63.43	63.43
<i>w</i> (°)	272.63	268.26	281.97	269.27	283.27	268.84	281.94	247.84	262.18
(°) θ	124.18	88.18	114.49	87.57	113.13	88.14	114.51	109.70	134.64
a (km)	26555.4	23713.62	52173.5	24253.8	57153.5	24017.6	50861.5	16060.3	25523.1
40 Degree	α (°)	158.51319 16	39.49017 203.16695	157.20377 16	9.49017 203.97230	158.07646 169	9.49017 203.09448	158.56361 10	39.49017 203.40853
Separation	(°) δ	-13.3430	25.2018 57.1672	-12.9757	25.2018 56.6251	-13.2295	25.2018 57.2240	-13.3819	25.2018 57.0445
$h\left(\frac{km^2}{s}\right)$	70919.66	66358.49	91730.58	67292.05	93003.95	66628.29	90458.21	56153.66	82725.13
в	0.724456	0.689069	1.710733	0.687049	1.719906	0.689093	1.626383	0.735021	1.764494
$\Omega (^{\circ})$	136.55	137.11	137.10	137.32	137.32	137.12	137.12	136.46	136.46
$i \left(\circ \right)$	62.15	62.85	62.85	62.95	62.95	62.82	62.82	63.22	63.22
$w\left(\circ\right)$	272.63	260.36	305.76	261.57	306.36	260.88	304.71	248.14	301.30
θ (°)	124.18	88.87	90.66	88.22	89.97	88.87	91.71	101.73	95.33
a (km)	26555.4	21035.1	-10957.1	21517.2	-11082.5	21207.8	-12478.4	17206.9	-8123.6

Table 8: Molniya 3-50 with Equal Angular Separations

13 Ankara International Aerospace Conference

					ISS				
Closest TLE				1 25544U 98067, 2 25544 51.6419 2	A 19235.9058694700000 5.3268 0007356 318.4296	0030 00000-0 74576- 141.4573 15.503910	5 0 9996 36185763		
Time					24.8.2019 - 03:42:0	00 (UTC0)			
15Seconds	α (°)	43.88388 52	0.52196 63.20203	10.99760 5.	2.52196 214.13694	36.98771 52.5	52196 214.14559	33.03665 52.52	2196 63.18270
Separation	$\delta (^{\circ})$	1.4167 9.	2638 18.1069	-13.1807	9.2638 42.8394	-23.9627	0.2638 42.8411	-17.5740 9.2	638 18.0921
		- 40	One server		Same atitude	S Ton	ame gitude	3 Diffe Obser	erent vers
	Real	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method
$h\left(\frac{km^2}{s}\right)$	52038.20	54336.27	54322.62	136.54	207765.50	77009.30	77659.29	1241392.254093	1252186.52
е	0.000736	0.098642	0.106520	0.986176	16.050865	0.665972	1.375568	966.82	982.597251
$\Omega (^{\circ})$	24.10	23.68	23.38	44.67	152.77	242.05	241.76	68.36	68.22
$i (^{\circ})$	51.64	52.78	52.57	77.28	140.12	87.79	88.28	64.01	64.01
$(\circ) \theta + w$	46.74	50.17	50.34	202.69	91.85	141.78	140.22	103.34	127.96
a (km)	6793.7	7479.8	7488.2	1.7	-422.0	26736.1	-16958.8	-4.1	-4.1
2Minutes	α (°)	18.84364 52.	52196 141.13795	3.70393 52	2.52196 129.67540	18.38704 52.5	52196 124.37464	14.43201 52.52	196 141.14175
Separation	$\delta (^{\circ})$	-24.0779	9.2638 41.0163	-23.0954	9.2638 15.5783	-31.7037 9	0.2638 42.7982	-28.6585 9.2	638 41.0159
$h\left(\frac{km^2}{s}\right)$	52038.20	53907.12	53900.90	363.66	15814.4	9571.92	9570.31	7328.62	196934.49
e	0.000736	0.095254	0.095462	0.999013	0.903101	0.964696	0.964704	0.624117	19.530497
$\Omega (\circ)$	24.10	23.30	23.30	308.59	128.59	300.23	300.22	17.50	197.50
$i (^{\circ})$	51.64	52.54	52.54	41.27	138.73	43.10	43.10	58.31	121.69
$(\circ) \theta + w$	46.74	42.49	50.41	286.55	73.47	113.02	112.75	241.25	116.08
a (km)	6793.7	7357.2	7355.8	168.1	3402.4	3314.0	3313.5	220.7	-255.8
3Minutes	α (°)	7.68064 52.5	52196 157.45115	233.79930 5	52.52196 144.83445	12.15945 52.5	52196 151.99017	8.58791 52.521	157.44580
Separation	$\delta (^{\circ})$	-29.3472	9.2638 37.8201	0.9967	9.2638 20.7490	-34.2447 9	0.2638 39.8306	-31.9100 9.2	638 37.8217
$h\left(\frac{km^2}{s}\right)$	52038.20	53524.81	53519.64	839.73	17288.40	46942.29	14880.02	8800.93	148158.64
е	0.000736	0.083977	0.084927	0.997875	0.891492	0.552613	0.915931	0.730234	8.751337
$O(\circ)$	24.10	23.28	23.28	289.49	109.48	5.01	359.15	20.97	200.97
<i>i</i> (°)	51.64	52.55	52.55	45.50	134.50	47.04	42.43	55.52	124.48
$w + \theta (^{\circ})$	46.74	38.34	50.45	300.53	59.36	48.37	67.56	232.95	123.29
a (km)	6793.7	7238.5	7238.2	416.6	3653.5	7958.7	3448.7	416.3	-728.6

Table 9: ISS with Equal Time Separations

Appendix C

14 Ankara International Aerospace Conference

					MeteorM2-2				
Closest TLE				1 44387U 19038. 2 44387 98.5713	A 19214.9089290000000 177.2208 0002181 34.431	044 00000-0 -48019- 3 325.7002 14.23333	-6 0 9999 281 4073		
Time					03.8.2019 - 01:48:0	00 (UTC0)			
15Seconds	α (°)	241.61163 25	55.66209 269.65243	265.70568 25	5.66209 119.72696	259.95626 255	5.66209 252.84943	239.93663 25	5.66209 217.83760
Separation	(₀) γ	75.3429 7	75.0867 73.8486	60.1425 7	5.0867 83.5220	76.4092 75	5.0867 73.9301	75.1199 7	5.0867 78.2015
		ō	One bserver	Γ	Same atitude	Lor	Same ngitude	ē õ	Different Diervers
	Real	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method
$h\left(\frac{km^2}{s}\right)$	53542.74	53671.49	53595.92	54192.16	54317.34	53526.77	53629.26	624.55	2875860.32
e	0.000218	0.005126	0.002711	0.024559	0.028901	0.003653	0.003014	1.12308	3637.779973
$\Omega (^{\circ})$	177.38	177.23	177.24	181.15	181.18	177.25	177.22	12.57	192.57
<i>i</i> (°)	98.57	98.70	98.71	95.24	95.21	98.60	98.62	95.08	84.92
$(\circ) \theta + w$	130.65	165.8	130.67	130.22	131.00	36.38	130.53	243.34	129.74
a (km)	7192.2	7227.1	7206.6	7322.2	7408.0	7188.0	7215.6	-3.7	-1.6
2Minutes	α (°)	192.77617 25	55.66209 317.64007	223.50040 25	5.66209 357.13396	193.20399 255	5.66209 309.70497	192.73306 25	5.66209 311.84403
Separation	$\delta (^{\circ})$	66.0478 7	75.0867 42.9468	62.6967 7	5.0867 55.3021	67.7185 75	5.0867 50.8421	65.8261 7	5.0867 64.6666
$h\left(\frac{km^2}{s}\right)$	53542.74	53441.23	53433.23	53721.92	53719.25	53368.34	53361.74	2169.54	146818.88
e	0.000218	0.003394	0.003609	0.006944	0.006912	0.005768	0.005943	0.946183	8.110550
$\Omega(^{\circ})$	177.38	177.25	177.25	177.30	177.30	177.29	177.29	350.83	170.83
$i (^{\circ})$	98.57	98.71	98.71	98.64	98.64	98.68	98.68	133.15	46.84
$(\circ) \theta + w$	130.65	104.25	130.68	123.69	130.66	123.74	130.70	126.51	229.72
a (km)	7192.2	7165.1	7162.9	7240.8	7240.1	7145.7	7143.9	112.7	-834.8
3Minutes	α (°)	185.15300 25	55.66209 324.99597	208.43927 25	5.66209 351.85291	184.59332 255	5.66209 312.85310	185.21264 25	5.66209 324.24663
Separation	δ (°)	60.3150 7	75.0867 19.1749	59.5686 7	5.06867 24.9701	61.2320 78	5.0867 28.0368	60.1725 7	5.0867 40.7896
$h\left(\frac{km^2}{s}\right)$	53542.74	52836.39	52834.14	53135.15	53133.81	34872.51	34860.96	459.89	32861595.70
е	0.000218	0.024381	0.024259	0.013987	0.013835	0.557979	0.558101	0.766226	31402.008242
$O(\circ)$	177.38	177.33	177.32	177.17	177.17	179.48	179.47	338.41	158.41
$i \left(\circ \right)$	98.57	98.71	98.71	98.82	98.81	98.66	98.66	102.56	77.44
$(\circ) \theta + \theta$	130.65	120.69	130.78	120.27	130.72	130.40	133.41	260.45	94.35
<i>a</i> (km)	7192.2	7007.9	7007.2	7084.5	7084.1	4430.2	4428.2	1.3	-2.7

Table 10: Meteor M2-2 with Equal Time Separations

15

Г Т

					Glonass K-1				
Closest TLE				1 37372U 11009A 2 37372 065.7543 0:	19214.73481554000000 38.4734 0007568 221.6056	28 +00000-0 +00000) 007.4938 02.13107)-0 0 9998 584065591		
Time					3.8.2019 - 12:40:00) (UTC0)			
15Seconds	α (°)	182.20258 1.	82.39991 182.59630	179.42153 18	32.39991 185.27948	182.10563 18:	2.39991 182.69417	182.21334	182.39991 183.97101
Separation	δ (°)	58.8691	58.7418 58.6140	58.9525 5	8.7418 58.3492	58.3446 56	8.7418 59.1309	58.9230	58.7418 59.4703
		0	One bserver	Γ¢	Same utitude	Tou	Same ngitude		3 Different Observers
	Real	Gooding's Method	Gauss Method	Gooding's Method	Gauss $Method$	$Gooding's \\ Method$	Gauss Method	Gooding's Method	Gauss Method
$h\left(\frac{km^2}{s}\right)$	100833.09	55046.65	55047.04	109968.98	111109.20	112024.34	112468.27	406.50	16686046.21
е	0.000757	0.618845	0.618522	0.185867	0.221313	0.717342	0.735675	6.40	259478.73
ω (°)	38.45	37.40	37.39	39.63	40.12	21.71	21.48	162.20	342.20
i (°)	65.75	64.72	64.72	65.20	64.98	74.38	74.51	78.02	101.99
$(\circ) \theta + w$	117.36	81.39	118.42	120.66	116.52	210.83	123.49	240.67	120.59
a (km)	25507.6	12320.2	12312.4	31424.7	32566.6	64858.8	69169.8	-0.01	-0.1
2Minutes	α (°)	180.78189 1.	82.39991 183.93052	177.92922 18	2.39991 186.53956	180.69492 18:	2.39991 184.03625	180.79185	182.39991 185.28681
Separation	δ (°)	58.7505	58.7418 57.7123	59.8125 5	8.7418 57.4325	59.2284 $5i$	8.7418 58.2323	59.8041	58.7418 58.5669
$h\left(\frac{km^2}{s}\right)$	100833.09	26370.76	26182.41	104148.24	104162.2	117781.55	117785.68	7713.83	282272.10
e	0.000757	0.923246	0.942936	0.057320	0.057579	0.258727	0.258840	0.479352	80.585869
υ (°)	38.45	157.41	157.41	38.53	38.53	39.82	39.82	162.05	342.05
$i (^{\circ})$	65.75	80.71	80.71	65.72	65.72	65.45	65.45	76.79	103.21
$(\circ) \theta + w$	117.36	108.11	271.38	117.53	117.17	123.82	116.48	170.80	130.17
a (km)	25507.6	11818.7	15511.8	27302.1	27310.2	37299.9	37304.8	193.8	-30.8
3Minutes	α (°)	179.93794 1.	82.39991 184.66451	177.04385 18	(2.39991 187.23269	179.85768 18:	2.39991 184.77424	179.94773	182.39991 186.00997
Separation	δ (°)	60.2467	58.7418 57.1913	60.2952 5	8.7418 56.9032	59.7257 5	8.7418 57.7124	60.2998	58.7418 58.0446
$h\left(\frac{km^2}{s}\right)$	100833.09	99560.37	99541.04	104330.35	104298.18	92820.94	92814.94	9146.56	130215.99
е	0.000757	0.019694	0.020052	0.058714	0.058119	0.116656	0.116807	0.446507	16.891524
O(O(O(O(O(O(O(O(O(O(O(O(O(O(O(O(O(O(O(38.45	38.26	38.26	38.48	38.48	37.75	37.76	161.69	341.69
$i (^{\circ})$	65.75	65.77	65.77	65.75	65.75	65.84	65.84	76.03	103.97
$(\circ) \theta + w$	117.36	116.1	117.32	117.26	117.19	111.2	117.62	190.15	133.17
a (km)	25507.6	24877.3	24868.0	27402.1	27383.3	21913.2	21911.1	262.1	-149.6

arations
Sep
Time
Equal
with
- Y
Glonass I
÷
Table [.]

TLE				1 22671U 930354 2 22671 63.0930 1	A 19215.498475840000 122.8629 4843974 352.45	023 0000-0 -2137 23 2.3367 5.625870	5-4 0 9994 08 293235		
					3.8.2019 - 12:11:5	0 (UTC0)			
	α (°)	105.90415 10	06.73804 107.63104	99.57652 106	3.73804 123.39928	109.83052 10	6.73804 103.12812	105.43373 10	6.73804 103.50846
2	$(\circ) \delta$	50.5810	53.3314 55.9977	43.1198 5.	3.3314 63.8697	47.1362 5	3.3314 58.9050	50.8919 5	3.3314 64.8584
		0	One bserver		Same Atitude	Loi	Same ngitude	õ	Different Servers
L	Real	Gooding's Method	Gauss Method	$Gooding's \\ Method$	Gauss Method	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method
-	63827.17	64121.54	63840.09	66648.13	66087.57	71050.40	98778.90	2582986.10	2578775.79
	0.484397	0.494325	0.544198	0.662972	0.57773	0.637226	2.028928	3767.204206	3756.472090
	122.86	122.73	124.31	122.75	121.33	122.40	130.73	38.32	38.38
	63.09	63.14	64.19	63.24	62.31	63.33	70.99	52.68	52.69
	352.45	353.36	348.45	354.78	358.02	17.30	23.20	166.58	166.56
	61.63	55.71	64.96	60.25	56.72	49.96	27.64	18.72	284.47
	13353.9	13650.7	14526.8	19883.2	16447.9	21323.1	-7854.5	-1.2	-1.2
8	α (°)	101.22820 10	06.73804 117.30378	97.00264 106	3.73804 152.43567	104.31118 10	6.73804 110.39400	100.86462 10	6.73804 114.10634
ų į	φ (°)	30.2787	53.3314 72.3781	25.4178 5.	3.3314 77.5914	26.5780 5	3.3314 74.6051	30.6066 5	3.3314 79.5360
	63827.17	63828.93	63847.04	61242.35	60945.13	71050.40	63733.78	173534.76	173561.53
	0.484397	0.485513	0.487911	0.427492	0.423434	0.637226	0.484644	4.17	6.176360
	122.86	122.74	122.73	123.26	123.33	122.40	122.72	111.34	111.34
	63.09	63.10	63.10	63.18	63.2	63.33	63.08	64.67	64.68
	352.45	352.57	352.51	343.10	341.81	17.30	352.21	64.22	64.40
	61.63	52.49	61.61	58.25	72.08	49.96	61.91	0.51	353.02
	13353.9	13373.6	13422.1	11513.6	11354.1	21323.1	13319.0	-4600.02	-2034.4
8	α (°)	99.06225 10	06.73804 130.04876	95.59229 106	3.73804 187.13477	101.82093 10	6.73804 120.76367	98.73976 10	3.73804 138.41261
u u	$\delta (^{\circ})$	18.8371	53.3314 79.5836	15.8338 5.	3.3314 80.7530	15.3099 5	3.3314 91.6624	19.1534	53.314 85.6417
	63827.17	63563.70	63568.93	62714.28	62746.01	34891.13	34870.13	128428.85	128426.86
	0.484397	0.478197	0.482662	0.458655	0.463773	0.584885	0.585284	1.66	3.321602
	122.86	122.76	122.75	122.89	122.88	114.31	114.31	117.55	117.55
	63.09	63.08	63.08	63.08	63.08	53.09	53.09	65.81	65.81
	352.45	351.79	351.55	348.81	348.69	242.77	242.82	15.90	43.30
	61.63	50.73	62.56	52.29	65.38	173.42	177.04	50.01	12.09
	13353.9	13141.4	13217.1	12495.9	12583.8	4642.2	1630 0	- 03601 0	0 1011

Table 12: Molniya 1-86 with Equal Time Separations

					Molniya 3-50				
Closest TLE				1 25847U 99036A 2 25847 062.1353 1	. 19214.82186374 - 00000 39.3201 7238609 272.461	166 +00000-0 -72333 1 014.2757 02.00632	3-2 0 9994 2547147068		
Time					3.8.2019 - 08:47:0	0 (UTC0)			
15Seconds	α (°)	179.06708 17	79.13349 179.19963	178.24044 17	9.13349 179.84569	178.69941 17	9.13349 179.55614	179.10922 179	13349 180.15033
Separation	δ (°)	37.4799 5	37.5716 37.6626	38.1746 3	7.5716 36.9486	37.0874 3	7.5716 38.0547	37.5157 37	5716 38.0758
		õ	One bserver	Tro	Same utitude	Ton	Same ngitude	3 Di Obs	iferent ervers
	Real	Gooding's Method	Gauss Method	$Gooding's \\ Method$	Gauss Method	Gooding's Method	Gauss Method	Gooding's Method	Gauss Method
$h\left(\frac{km^2}{s}\right)$	70982.41	86078.12	92610.45	67793.95	66813.93	77452.85	81166.98	134566517.84	134547392.79
e	0.723861	0.622980	1.356886	0.656870	0.627657	0.680411	0.812302	8673134.630452	8664979.991399
Ω (°)	139.24	143.06	134.93	140.15	143.75	140.16	138.23	63.42	63.48
<i>i</i> (°)	62.14	64.30	57.96	63.01	66.15	62.95	61.35	40.41	40.39
<i>w</i> (°)	272.47	281.80	309.66	258.62	250.05	278.24	290.63	20.04	19.99
(°) θ	135.50	108.22	100.73	139.56	155.81	111.90	117.73	10.36	270.74
a (km)	26554.2	30378.8	-25580.9	20281.4	18479.5	28089.2	48588.2	0.00	-0.1
2Minutes	α (°)	178.60121 17	79.13349 179.66321	177.76979 17	9.13349 180.30571	178.23194 17	9.13349 180.01815	178.64366 179	.13349 180.60939
Separation	δ (°)	36.8259 5	37.5716 38.2902	37.5197 3	7.5716 37.5752	36.4268 3	7.5716 38.6756	36.8624 37	5716 38.6910
$h\left(\frac{km^2}{s}\right)$	70982.41	71288.71	71411.42	67902.10	55463.39	70861.57	89197.44	1929784.82	1929338.89
e	0.723861	0.721370	0.728925	0.689878	0.702412	0.469471	0.775205	1399.33	1397.985045
Ω (°)	139.24	139.11	138.92	141.01	200.63	183.17	140.94	92.47	92.51
<i>i</i> (°)	62.14	62.24	62.09	64.03	131.44	62.27	62.72	36.01	36.02
<i>w</i> (°)	272.47	272.57	273.44	264.05	178.44	107.82	294.91	355.51	355.47
(°) θ	135.50	117.52	134.53	129.06	247.66	88.54	112.43	41.5	275.24
a (km)	26554.2	26582.9	27298.1	22072.0	15233.4	16159.0	50018.8	-4.8	-4.8
3Minutes	α (°)	178.33421 17	79.13349 179.92766	177.50004 17	9.13349 180.56821	177.96408 17	9.13349 180.28173	178.37694 179	13349 180.87137
Separation	δ (°)	36.4425	37.5716 38.6405	37.1357 3	7.5716 37.9251	36.0397 3	7.5716 39.0222	36.4796 37	5716 39.0344
$h\left(\frac{km^2}{s}\right)$	70982.41	71165.43	71163.70	63916.28	63906.06	67735.96	67744.88	234767.54	237403.34
е	0.723861	0.723383	0.723517	0.701743	0.701870	0.725780	0.725885	28.718049	29.336421
$(\circ) \Omega$	139.24	139.03	139.03	141.17	141.16	138.55	138.55	53.59	53.58
<i>i</i> (°)	62.14	62.20	62.20	64.58	64.58	62.06	62.06	43.07	43.06
$w(^{\circ})$	272.47	272.63	272.64	259.61	259.61	268.61	268.63	25.23	24.80
θ (°)	135.50	116.93	135.27	134.36	147.17	122.46	139.43	27.57	28.45
a (km)	26554.2	26652.7	26662.1	20193.0	20193.7	24323.0	24337.2	-167.9	-164.5

18 Ankara International Aerospace Conference

(ב
•	×
	σ
	2
	õ
	Ō.
	9

Total	$egin{array}{c c c c c c c c c c c c c c c c c c c $	238 228 384	178 181 384	416 409 768
erent vers	Gauss Method	23	11	34
3 Diffe Observ	Gooding's Method	30	8	38
ne tude	Gauss Method	60	46	106
San Longi	Gooding' s Method	73	40	113
ne ude	Gauss Method	68	55	123
San Latit:	Gooding's Method	67	63	130
le rver	Gauss Method	77	69	146
0n Obser	Gooding's Method	68	67	135
$Relative \ Error$	< 0.1	ANGLE	TIME	TOTAL

Observer Latit	Goodin, Metho							\vdash
ver Latit	g's od	88	38	76	0n Obser	Gooding's Method	9	
San Latit	Gauss Method	48	43	91	re ver	Gauss Method	16	
7	Gooding's Method	29	24	53	Sar Latit	Gooding's Method	7	
re ude	Gauss Method	35	21	56	ne ude	Gauss Method	ი	d
Longi	Gooding's Method	36	22	58	San Longi	Gooding's Method	4	
ne tude	Gauss Method	23	27	50	ne tude	Gauss Method	0	d
3 Uiffe Obser	Gooding's Method	9	0	9	3 Diffe Obser	Gooding's Method	N	
srent vers	Gauss Method	N	-	r	rent vers	Gauss Method	-	d
Tota	Gooding's Method	109	84	193	Tota	Gooding's Method	19	0
le	Gauss Method	108	92	200	I	Gauss Method	26	10
	Total Number of Elements	384	384	768		Total Number of Elements	384	Foc

	Total Number of Elements	384	384	768
_	Gauss Method	26	37	63
Tota	Gooding' s Method	19	30	49
rent /ers	Gauss Method	Ļ	0	-
3 Diffe Observ	Gooding's Method	2	0	2
le tude	Gauss Method	0	6	6
Sam Longi	Gooding' s Method	4	9	10
ne ude	Gauss Method	6	ω	17
Sam Latitı	Gooding' s Method	2	8	15
e ver	Gauss Method	16	20	36
0n Obser	Gooding's Method	9	16	22
Relative Error	< 0.001	ANGLE	TIME	TOTAL

Table 14: Number of Accurate Results

AIAC-2019-144

References

- Aydin Duru, S. (2015) Uydu ve Uzay Coplerinin Yorungelerinin Yerdeki Optik Sistemlerle Tespiti ve Dogrulanmasi, Ankara Universitesi, 2015
- Curtis, H. D. (2013) Orbital Mechanics for Engineering Students, 3. Edition, Elsevier, 2013
- Erturk, M. F., Koprucu, S. U., Tugcular, U., Arda, I., Erkan, Y. B., Sisman, T. C. (2018) Uyduların Belirli Bir Bolgeden Gorunur Gecislerinin Saptanmass, VI. Ulusal Havacilik ve Uzay Konferansi, Sept 2018
- Gooding, R. H. and Odell, A. W. (1988) *The Hyperbolic Kepler Equation (and The Elliptic Equation Revisited)*, Royal Aerospace Establishment, Oct 1988
- Gooding, R. H. (1988) On Universal Elements, and Conversion Procedures to and from Position and Velocity, Royal Aerospace Establishment, Oct 1988
- Gooding, R. H. (1990) A Procedure for the Solution of Lambert's Orbital Boundary-Value Problem, Celestial Mechanics and Dynamical Astronomy, 1990
- Gooding, R. H. (1993) A New Procedure for Orbit Determination Based on Three Lines of Sight (Angles Only), Defence Research Agency, Apr 1993
- Gooding, R. H. (1997) A Procedure for the Solution for the Classical Problem of Minimal Orbit Determination from Three Lines of Sight, Celestial Mechanics and Dynamical Astronomy, 1997
- Henderson, T. A., Mortari, D. and Davis, J. (2010) *Modifications to the Gooding Algorithm for Angles-Only Initial Orbit Determination,* Research Gate, Jan 2010
- Izzo, D. (2014) Revisiting Lambert's Problem, Celestial Mechanics and Dynamical Astronomy, Mar 2014
- Lancaster, E. R., Blanchard, R. C. and Devaney, R. A. (1966) *A Note on Lambert's Theorem*, Goddard Space Flight Center, Feb 1966
- Lancaster, E. R. and Blanchard, R. C. (1969) A Unified Form of Lambert's Theorem, Goddard Space Flight Center, Sept 1969
- Pantalone, B. A. (2018) *Passive Snapshot Remote Sensing of Orbital Velocity*, North Carolina State University, 2018
- Sangra, D. T. and Fantino, R (2015) *Review of Lambert's Problem*, 25. International Symposium on Space Flight Dynamics, Oct 2015
- Sarnecki, A. J. (1989) "Minimal" Orbital Dynamics, Royal Aerospace Establishment, July 1989
- Schaeperkoetter, A. V. (2011) A Comprehensive Comparison Between Angles-Only Initial Orbit Determination Techniques, Texas A&M University, Dec 2011
- Vallado, D. A. (2001) Fundamentals of Astrodynamics & Applications, 2. Edition, The Space Technology Library, 2001
- Zuehlke, D. (2019), Space Image Processing and Orbit Estimation Using Small Aperture Optical Systems, Embry-Riddle Aeronautical University, May 2019