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ABSTRACT 

A feedback matrix is calculated to assign closed loop eigenvalues of the lateral-directional 
stability augmentation system of the aircraft with low closed loop eigenvalue sensitivity at 
minimum cost which guarantees +inf and -6 dB gain margins and +60 and -60 degrees phase 
margins by combining modal and optimal control theory. The method based on combination of 
modal and optimal control reduces effort to satisfy gain and phase margins criteria while allowing 
eigenvalue assignment to achieve desired performance characteristics of the aircraft. 
 

INTRODUCTION 
Stability augmentation systems (SAS) are widely used in highly maneuverable jet aircrafts. 
Although SAS have similar architectures or block diagram representations, different methods 
have been used in control feedback matrix design to satisfy minimum requirements for the 
aircrafts. 

In the design of a flight control law, one of the most significant requirements is to satisfy the 
minimum stability margins of the aerodynamic closed loops of the aircrafts. Consider the military 
specifications, flight control systems (FCS) of the aircraft must have certain gain margins to be 
acceptable. The stability margins are required for the FCS to tolerate gain and phase variations 
in its feedback loops. In the limit of minimum and maximum operational speeds of the aircraft, 
required minimum gain and phase margins are defined as (+6 dB, -6 dB) and (+45 deg, -45 deg) 
respectively for the mode frequency lower than the first aeroelastic mode.  

In order to achieve required minimum gain margins and phase margins criteria, especially, 
optimal control design methods have been widely used in flight control problems [Gangsaas, 
Bruce, Blight and Ly, 1986] [Thompson, Coleman and Blight, 1987] [Amato, Mattei, Scala and 
Verde, 2000] [Boughari and Botez, 2012]. One of the optimal control solutions to such flight 
control problems is the linear quadratic regulator (LQR) which describes the cost as a quadratic 
function. A single input single output (SISO) LQR guarantees infinite upward gain margin with 
minimum 50 percent gain reduction corresponds to +infinite and -6 dB and minimum phase 
margin of +60 degree and -60 degree [Anderson and Moore, 1971]. For multi input multi output 
(MIMO) systems, the choosing of weighting matrix R diagonal provides same guaranteed 
margins [Lehtomaki, Sandell and Athans, 1981]. 
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Classical approach in LQR algorithm is to choose proper weighting matrices, Q and R, to find a 
symmetric positive definite matrix, P that is solution to the algebraic Riccati equation (ARE). 
When ARE solution matrix P is found, the feedback gain matrix, K can be calculated according 
to it. The resultant feedback gain matrix, K, determines the closed loop eigenvalues, which 
characterize the response and the performance parameters of the aircraft such as damping ratio 
and natural frequency. 

There is a very crucial disadvantage of the classical LQR method when the performance 
requirements of the jet aircraft are concerned because the closed loop eigenvalues cannot be 
assigned arbitrarily to achieve desired damping ratio and natural frequency. On the other hand, 
modal control theory allows to assignment of closed loop eigenvalues. 

Modal control theory not only assigns eigenvalues but also concerns about eigenvector 
assignment of the closed loop systems [Porter, Crossley, Tzafestas and Higgins, 1973]. For 
desired closed loop eigenvalues of the multi input systems, there is more than one set of 
corresponding closed loop eigenvectors of the solution [Moore, 1975]. Therefore, for each 
corresponding set of closed loop eigenvectors results different feedback matrices [Andry, 
Shapiro and Chung, 1983]. Since there are two inputs as aileron and rudder for conventional jet 
aircrafts, this method can be used for controller design on the lateral-directional axes [Sobel and 
Lallman, 1989]. 

In aerospace applications of the modal control theory, eigenstructure assignment is widely used 
to provide decoupling of lateral-directional dynamics of the aircraft [Faleiro and Pratt, 1996] 
[Sobel and Shapiro, 1985] [Harris and Black, 1996]. The method is based on the selection of the 
closed loop eigenvector structure for desired closed loop eigenvalues of the aircraft. There are 
some suggested eigenvector structures, which focus on decoupling of roll, and spiral mode but 
the selection of the eigenvector structures can be many [Albostan, 2018]. 

Therefore, LQR problem solutions have lack of achievement of the desired performance 
parameters such as natural frequency and damping ratio while guaranteeing gain and phase 
margin criteria for the aircrafts. On the other hand, modal control design methods such as 
eigenstructure assignment does not guarantee the gain and stability margins. These problems 
lead to trade-off between stability and performance of the aircrafts. In both modal and optimal 
control theory, there must be extra effort to meet with minimum requirements. 

In order to overcome this trade-off problem and to eliminate the extra effort on the design of a 
stability augmentation system for the aircraft, many researches have been developed. Generally, 
inverse LQ methods and direct search on the feedback matrix have been used. Wilson and 
Cloutier have developed a procedure which fix the eigenvalues and attain the constraints to the 
set of possible eigenstructure to minimize a cost function [Wilson and Cloutier, 1990]. Broussard 
has presented an algorithm which determines the weighting matrices by attempting to place 
closed-loop eigenvalues near desired locations [Broussard, 1982]. These methods guarantee 
the gain and phase margins, but exact pole assignment is impossible. Choi and Seo have 
proposed an algorithm which find weighting matrices according to the desired pole locations 
[Choi and Seo, 1999]. Although their method achieves exact eigenvalue assignment, gain and 
phase margins are not guaranteed.  

In this paper, combination of modal and optimal control theory is introduced to design a stability 
augmentation system for the jet aircraft. This algorithm is more efficient than direct search 
methods on the elements of the feedback matrix which satisfy both closed loop eigenvalues and 
minimum cost [Moore and Klein, 1976].  Also, pole placement method has been evaluated to 
compare the stability margins. To prove that stability margins are guaranteed by combining 



modal and optimal control, SAS design based on the algorithm has been performed for trim 
points on flight envelope of the aircraft. 

METHOD 

The block diagram of the lateral-directional stability augmentation system is given in Figure 1. 

 
Figure 1: Stability augmentation system on lateral-directional axes 

 

Modal optimal control is based on linear time invariant system model. The linear model of the 
aircraft is derived by the small perturbations in the body axis reference frame for each trim point. 
The inputs and outputs of the linear system are given in Figure 1.  

The feedback matrix is found from the minimization of the quadratic cost function, 

𝐽 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡
∞

0

 

where Q and R are positive semidefinite weighting matrices. In order to assign the desired 
eigenvalues to desired position, closed loop eigenvectors should be used. Sensitivity robustness 
of the eigenvalues also considered.  

CALCULATIONS 

The state-space representation of aircraft linear model is 

�̇� = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 

where 

𝑥 = [

𝛽
𝜙
𝑝
𝑟

], 𝑢 = [
𝛿𝑎𝑖𝑙

𝛿𝑟𝑢𝑑
] and 𝐶 = 𝐼4∗4 

Let 𝐾Λ is the set of feedback gain matrices that closed loop system has set of eigenvalues, 

Σ = {𝜆1, 𝜆2, 𝜆3, 𝜆4} 

Also, class of all possible sets of closed loop eigenvectors corresponding to the eigenvalues in Λ 

is Ε such as 

Ε = {Ε1, Ε2 , … , 𝐸𝑖 ,… } where 𝑖 = 1,2,3, … 

The aim is to find an eigenvector set Ε𝑖, which minimize the quadratic cost function. Hence, let 

Λ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, 𝜆3, 𝜆4) 

If following conditions are met then, there is a 𝐾𝜖(𝐴 − 𝐵𝐾)𝑉 = 𝑉𝜆 [Moore, 1976]. 

1) 𝑉 is nonsingular 

2) 𝑣𝑖 and 𝑣𝑗, the 𝑖𝑡ℎ and 𝑗𝑡ℎ columns of 𝑉 respectively are conjugate pairs of 𝜆𝑖 = 𝜆𝑗
∗ 



3) A vector 𝑤𝑖 exist such that (𝜆𝑖𝐼 − 𝐴)𝑣𝑖 = 𝐵𝑤𝑖 for 𝑖 = 1,2,3,4 

Therefore, 

𝐾 = −𝑊𝑉−1 

where 

𝑊 = [𝑤1 𝑤2 𝑤3 𝑤4] 

In addition, eigenvalue sensitivity can be defined with inverse of the sensitivity parameter 𝑠𝑖 for 

each closed loop eigenvalue 𝜆𝑖 [Wilkinson, 1965]. 

𝑠𝑖 = 𝑒𝑖
𝑇𝑣𝑖 

where 𝑒𝑖  and 𝑣𝑖  are unit left and right eigenvectors corresponding 𝜆𝑖 . In order to minimize 
sensitivity, general approach is minimization of 

∑(𝑠𝑖
∗𝑠𝑖)

−1 = ∑‖𝑠𝑖‖2
−1 

In LQR problems minimum cost solution is [Kirk, 2004] 

𝐽 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡
∞

0

= 𝑥0
𝑇𝑃𝑥0 

where 𝑃 is the symmetric solution of Algebraic Ricatti Equation (ARE). 

𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 

Also, 

𝑢 = −𝐾𝑥 = −𝑅−1𝐵𝑇𝑃𝑥 

and 

𝐾 = 𝑅−1𝐵𝑇𝑃 

If we substitute 𝐾 with the solution comes from eigenvector solution then, 

−𝑊𝑉−1 = 𝑅−1𝐵𝑇𝑃 

Hence, 

𝐵𝑇𝑃 = −𝑅𝑊𝑉−1 

And 

𝑃𝐵 = −𝑉∗−1𝑊∗𝑅𝑇 

Substitute into ARE, 

𝑃𝐴 + 𝐴𝑇𝑃 + 𝑉∗−1𝑊∗𝑅𝑊𝑉−1 + 𝑄 = 0 

Multiply the ARE by 𝑉∗ from left and by 𝑉 from right. 

𝑉∗𝑃𝐴𝑉 + 𝑉∗𝐴𝑇𝑃𝑉 + 𝑊∗𝑅𝑊 + 𝑉∗𝑄𝑉 = 0 

It can be also written as 

Λ𝑉∗𝑃𝑉 + Λ𝑉∗𝑃𝑉 + 𝑊∗𝑅𝑊 + 𝑉∗𝑄𝑉 = 0 

Let 𝑃 = 𝐸𝑃0𝐸
∗ where 𝑃0 is symmetric also and 𝐸 = [𝑒1, 𝑒2, 𝑒3, 𝑒4]. Then, 

Λ𝑉∗𝐸𝑃0𝐸
∗𝑉 + Λ𝑉∗𝐸𝑃0𝐸

∗𝑉 + 𝑊∗𝑅𝑊 + 𝑉∗𝑄𝑉 = 0 

Multiply the equation by 𝑆∗−1
 from left and by 𝑆−1 from right where 𝑆 = 𝑑𝑖𝑎𝑔(𝑠1, 𝑠2, 𝑠3, 𝑠4) = 𝐸∗𝑉. 

Λ𝑃0 + Λ𝑃0 + 𝑆∗−1(𝑊∗𝑅𝑊 + 𝑉∗𝑄𝑉)𝑆−1 = 0 

Then minimization of 𝑃0, also minimize the quadratic cost. Therefore, 

𝑃0 = −
1

2Λ
𝑆∗−1(𝑊∗𝑅𝑊 + 𝑉∗𝑄𝑉)𝑆−1 

For simplification, minimize the trace of 𝑃0 [Moore and Klein, 1976], 



𝐽 ≜ 𝑡𝑟𝑃𝑉 = −∑(
1

2 ∗ 𝑠𝑖
∗𝑠𝑖𝑅𝑒(𝜆𝑖)

)(𝑣𝑖
∗𝑄𝑣𝑖 + 𝑤𝑖

∗𝑅𝑤İ)

𝑛

𝑖=1

 

Where 𝑠𝑖 is the sensitivity parameter, 𝑣𝑖 is the right eigenvector of the closed loop system and 𝑤İ 

is a vector determined by 𝑣𝑖. Interior-Point Algorithm [Byrd, Gilbert and Nocedal, 2000] has been 
used to evaluate the cost. The purpose is to find the closed loop eigenvectors corresponding 
desired eigenvalues from orthonormal null space of the closed loop system to minimize the cost. 
Once the eigenvectors were found, the feedback matrix can be easily calculated. 

 

RESULTS 

The highly maneuverable jet aircraft has been trimmed at [400, 600, 800] ft/sec, [10000, 30000] 
ft altitude and center of gravity position at 0.35 cruise condition. The weighting matrices Q and R 
are chosen as identity matrices. 

The closed loop eigenvalues of the aircraft have been chosen as follows: 

i. Dutch-roll mode natural frequency is same with open loop dutch-roll mode natural 
frequency. 

ii. Dutch-roll damping ratio is increased 100%. 
iii. Roll mode root remains same with airframe root. 
iv. Spiral mode root remains same with airframe root. 

In form, 

eig(Acl)  =

[
 
 
 
 −𝜔𝑜𝑙(2𝜁𝑜𝑙) + 𝜔𝑜𝑙√1 − (2𝜁)2𝑖

−𝜔𝑜𝑙(2𝜁𝑜𝑙) − 𝜔𝑜𝑙√1 − (2𝜁)2𝑖

𝜆𝑟𝑜𝑙𝑙

𝜆𝑠𝑝𝑖𝑟𝑎𝑙 ]
 
 
 
 

 

In order to make comparison between gain and phase margins, MATLAB place() command is 
used to assign the closed loop eigenvalues based on [Kautsky, Nichols and Van Dooren, 1985]. 

Frequency response of the aileron loop gain based on combination of modal and optimal control 
is shown on the Nichols plot for frequency range [0.01:0.01:100] rad/s (Figure 2).  

 
Figure 2: Nichols plot for the loop gain from aileron input 



The comparison table of minimum gain and phase margins are given in Table 1. 

 Modal – Optimal Control Poles Placement 

Trim Point 
Gain Margin 

[dB] 
Phase Margin 

[degree] 
Gain Margin 

[dB] 
Phase margin 

[degree] 

V = 400 ft/sec 
h = 10000 ft 

[-inf, +inf] [-inf, 94.9] [-inf, 12.9] [-inf, 44.9] 

V = 600 ft/sec 
h = 10000 ft 

[-inf, +inf] [-inf, 101.0] [-inf, 7.6] [-inf, 26.0] 

V = 800 ft/sec 
h = 10000 ft 

[-inf, +inf] [-inf, +inf] [-inf, 1.6] [-inf, 12.6] 

V = 400 ft/sec 
h = 30000 ft 

[-inf, +inf] [-inf, 96.3] [-inf, 18.4] [-120, 72.1] 

V = 600 ft/sec 
h = 30000 ft 

[-inf, +inf] [-inf, 93.7] [-inf, +inf] [-inf, 68.5] 

V = 800 ft/sec 
h = 10000 ft 

[-inf, +38.7] [-inf, 99.4] [-inf, 1.49] [-inf, 8.07] 

Table 1: Gain and phase margins for aileron loop gain 

The design based on modal and optimal control at only one point had not guaranteed that 

positive gain margin is infinite. The reason of that, at low stability or at unstable points, it is hard 

to find a set of closed loop eigenvectors corresponding closed loop eigenvalues. The low 

stability can be seen by inspecting gain and phase margins comes from pole placement method. 

Depend on search algorithm used to minimize the cost, performance of the algorithm can be 

increased.  

Frequency response of the rudder loop gain based on combination of modal and optimal control 

is shown on the Nichols plot for frequency range [0.01:0.01:100] rad/s (Figure 3). 

 
Figure 3: Nichols plot for the loop gain from rudder input 



The comparison table of minimum gain and phase margins are given in Table 2. 

 Modal – Optimal Control Poles Placement 

Trim Point 
Gain Margin 

[dB] 
Phase Margin 

[degree] 
Gain Margin 

[dB] 
Phase margin 

[degree] 

V = 400 ft/sec 
h = 10000 ft 

[-inf, +inf] [-81.0, +inf] [-inf, +inf] [-25.2, 163.0] 

V = 600 ft/sec 
h = 10000 ft 

[-inf, +inf] [-77.0, +inf] [-inf, +inf] [-9.7, 145.0] 

V = 800 ft/sec 
h = 10000 ft 

[-inf, 35.3] [-90, +inf] [-inf, 0.1] [-4.2, 141] 

V = 400 ft/sec 
h = 30000 ft 

[-inf, +inf] [-84.2, +inf] [-19.4, +inf] [-90.1, +inf] 

V = 600 ft/sec 
h = 30000 ft 

[-inf, +inf] [-85.3, +inf] [-12.3, +inf] [-113.0, +inf] 

V = 800 ft/sec 
h = 10000 ft 

[-inf, +inf] [-82.3, 164.0] [-inf, +inf] [-inf, 138] 

Table 2: Gain and phase margins for rudder loop gain 

The design based on modal and optimal control at only one point had not guaranteed that 

positive gain margin is infinite. The reason of that is same with discussion at aileron loop gain. 

In order to observe dutch roll behavior of the augmented aircraft, the initial time response of the 

aircraft to 5 degrees sideslip angle is given as shown in Figure 4. 

 
Figure 4: Initial time response of augmented aircraft 

The oscillations on sideslip and yaw rate are applicable because dutch-roll mode has not been 

damped too much. The time response difference between augmented and unaugmented is 

given in Figure 5. 



 

Figure 5: Initial time response of augmented aircraft 

CONCLUSION 

In conclusion, combination of modal and optimal control has two advantages in aerospace 
applications. First of all is that performance requirements can be easily met by assigning closed 
loop eigenvalues of the flight control system while satisfying stability margins as a result of 
optimal control theory. It provides minimization of the effort in trade-off between performance 
and stability. Second advantage of the method is that the cost function can be manipulated 
according to needs of the designer by using eigenvalues, left and right eigenvectors as used in 
this paper to minimize sensitivity parameter. 
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