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ABSTRACT 

A fast method for determining the stability of a flapping wing Micro Air Vehicle (MAV) in hover is 
developed. The method is applied to determine the longitudinal stability of a flapping wing’s aerodynamic 
force and moment, due to the pitch angle and its rate, coupled with the flight dynamics. The flight 
dynamic parameters interacting with the state-space representation of the aerodynamic loadings 
creates a matrix system expressed in stability derivatives and associated displacements and rates. This 
matrix system takes care of the simultaneous interaction of the longitudinal motion of the body with the 
state variables related to the pitching motion.  The application here is made on the longitudinal stability 
of a fruit fly in hover. The results of the application shows that the trim with symmetric flapping is only 
possible with trivial solution. However, anti-symmetric flapping is suitable for trim. This result agrees 
with the findings in the related literature.  

INTRODUCTION 

The interest in the flapping wing MAVs has become quite intense because of less noise 
production and more efficient performances as opposed to the MAVs with fixed wings. The 
unsteady aerodynamic load predictions take considearbly long time using numeriacal and 
experimental techniques. On the other hand  fast methods are preffered for the flight dynamics 
and control applications. In unsteady aerodynamic applications the state-space 
representations of aerdynamic loadings result in very fast predictions compared to 
conventional methods. The state variable is either chosen formally or it is based on a change 
of a phsical enttity like the separation point location on an airfoil [Goman and Khrabrov, 1994],  
[Gulcat, 2011 and 2016] and [Uhlig and Selig, 2017]. The timewise change of the state variable 
is given as the numerical solution of a first order ordinary differential equation. There are more 
complex applications, like spanwise morphing of a wing [Reich et.al., 2011] and [Izraelevitz 
et.al., 2017]. The formal approach employs the Duhamel integral together with the Wagner 
function [Taha et.al, 2014] and [Gulcat, 2017] or employs the Laplace transform [Leishman, 
2000]. The Wagner function for a thin airfoil and for some elliptical wings with different aspect 
ratios are given in [Bisblinghoff, et.al, 1996].  

In this study the Wagner function is employed to pedict the stability of a body whose wing is 
sweeping back and forth with varying angle of attack while hovering. The time lag between the 
wing motion and its aerodynamic response is given with the Wagner function.   Here, because 
of sweeping motion the reduced speed changes periodically instead of being expressed with 
a constant free-stream speed. That is the reason for the exponents of the Wagner function 
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changes periodically with time. The aerodynamic loads due to wing flapping can be determined  
in a fast manner to interact with the equation of motion for the body.  

The system of coupled eqations assuring the balance of aerodynamic loads with the the body 
motion, involving the stability derivatives, are formed to represent the small perturbations from 
the equilibrium. The conditions to satisfy the vanishing of these small perturbations for the 
hover and trim are given in [Taha et.al, 2014] and [Mouy et.al., 2017].  The application of the 
method on the trim of a fruit fly in hover is made  satısfactorily with the pertinent data obatined 
from [Berman and Wang, 2007] and [Taha et.al, 2014], The resulting matrix system is 6x6 with 
time dependent quantities being the horizontal and vertical speeds,  the pitch angle and its rate 
for the body and the  pitch angle and its rate for the wing represented state-space. The resulting 
system for the flight dynamics coupled with the unsteady aerodynamic loads and its 
implementations will be provided in the method and the application section.  

METHOD and APPLICATIONS 
The lifting force and the moment for a thin airfoil undergoing arbitrary motion in a free stream 
U are given in [Bisblinghoff, et.al, 1996] with the Wagner function as follows   
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Here, b is the half chord, w(b/2,s) is the downwash at three quarter chord and 
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The equation of motion for the airfoil is  ))(()(),( axtthtxza   , and the associated 
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wherein, a  is the pitch point location.  Now, we can wtie the expression for the quasi-steady 

circulation as follows  
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                                       (4) 

Here, 2sinACls  , [Taha, et.al. 2014] is the sectional lift coefficient at high angles of attack 

including the effect of the leading edge vortex and it is the replacement for the convective term 
in (4).  Comparing Equations (4) and (5) gives us the relation between the downwash and the 
circulation as follows                                                                          

                                                           bttbw qs /)(),2/(                                                  (5) 

If we substitute  Equation (5) in  (1) and (2) then the lift and the moment becomes                              
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For the variable free stream the derivative of the Wagner function reads as 



 
 
AIAC-2019-090                                                                                                       Gülçat 

 

3 
 Ankara International Aerospace Conference  

                                      







t

i dU
b

b

i
i eU

b

b
a

d

td







 )(

)(
)(

,  i=1,2                                         (8) 

 
Then Equation (8) gives the time dependent circulation with  
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Using the Leibnitz’s rule for the derivation with respect to time makes Equation (8) to read                     
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Here, xi=xi(t) time dependent state variable which is responsible for the unsteady lift, and it is 
obtained as the solution of a first order ODE, Eqaution (10), with  the initial condition of xi(0)=0. 
Now, the circulatory unsteady lift becomes  
 

                               )()()()1()()( 2121 txtxtaaUtl qsc                                                     (11) 

 
The non-circulatory lift on the other hand reads as  
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Wherein , )(taz  is the vertical acceleration and )(t  is the pitch angle. The acceleration is 

creared by: i) free stream speed change  sinr  , and ii) angle of attack change  cosr   

make the total acceleration to become. From Equations (11) and (12) the total lift coefficient 
reads  
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Here, mU  is the midspan maximum free stream speed, and  bm is half-chord at the midspan. 

The solution for a rectangular wing with certain aspect ratio is given in [Gulcat, 2017]. Here, 
the unsteady aerodynamic loads are going to be calcualted for a flappig elliptical wing of aspect 
ratio 3 as depicted in (Figure 1).  

                                      
 

Figure  1: Wing of a fruit fly. (Dimensions: body to root: 0.20mm, span: 2.02mm, mid-chord: 
0.86mm, S=1.36mm2) 

( www.google.com.tr/search?q=shape+of+the+fruit+fly+wing) 
 

Finite Wing: 
  
The Wagner function for the elliptical wing of aspect ratio 3 is given as  

so

W es 54.17.06.0)(  [Bisplinghoff, et al, 1996]. The sectional lift coefficients given with (11) 

 

 

http://www.google.com.tr/search?q=shape+of+the+fruit+fly+wing
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and (12) if integrated wirh respect to span give these values for the wing as  follows 
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There are 3 resulting terms at the right hand side of (14) if we take rU  )( . These are: i) 
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And randb  are the averaged half chord and half span and the static lift coefficient is 

2sinACl  , with A=1.833 [Taha et.al, 2014]. (Figure 2) shows the angle of attack change 

while the profile makes the sweeping motion.  
   

 
Figure 2:   Angle of attack change during forward and backward sweep, 90o-40o-90o 

 
Shown in (Figure 3) is the simplified wing-body cofiguration to represent the fruit fly.  The 
coordinate axis shown are suitable for calculating the aerodynamic forces and moments.  
 

 
Figure 3: Wing-body configuration, top and side views  

Appendix 1 provides the necessary information about the numerical values of  I1 , I2  and b  to 

be used in the following equation  
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The variation of the total lift coefficient for one period is shown in (Figure 4) for the thin airfoil 
and for the wing.  

 
Figure 4: Variation of the total lift coefficient for a period.  

 
Using (Figure 4) and Equation (15) for a period of the motion we get the result of the following 
integration as 

                                   .0)(
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Accordingly, the lifting force generated for both wings reads as  
 

                                          NSUCF mL  11.72/2 2  , 

 
Here, the flapping frequency for the wing is f=240 Hz which is sufficient to lift the fruit fly which 

weighs about NW 06.7  [Berman and Wang, 2007].   

The wing sweep here given by to  cos75 , and the change of the pitch angle is provided 

with the arctangent and sine functions as shown in (Figure 5). The free stream velocity span -

wise variation is given by trr  sin   .  

 

  Figure 5: Sweep angle: 
oo 7575   , and the pitch angle, 

oo 14040  , variations. 

Flight Stability  

Study of the longitudinal stability of a body with a flapping wing requires the coupled treatment 
of unsteady aerodynamics with the parameters of the flight mechanics. Shown in (Figure 6) 
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are the necessary parameters to prescribe the hovering body under the gravity where the 
longitudinal and vertical velocity perturbation velocities are u and v respectively with also are 

the pitch rate of q and the pitch angle  . The dynamic equilibrium equation using the notation 

of   [Nelson,1998] reads as follows 
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                    Figure 6: Reference frame and the parameters used for the flight stability. 

Here, X, Z and M are the horizontal and the vertical forces and the pitching moment 
respectively, and m is the mass, Iy is the rotational moment of inertia and finally g is the 
gravitational acceleration.  

Unsteady aerodynamics of a flapping wing gives the lift, moment in terms of the pitch and the 
pitch rate.  Here, we implement the state varibles concept, x1 and x2 , with two ordinary 
differential equations in time involving the pitch and its rate:   
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If we let the sate variables interact with the equation of motion, (17), the perturbation equations 

for the system involves the rate of 6 variables ,  Txxqwu 21
   , and their stability 

derivative matrix  as follows          
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In Equation (18), the column vector expressed with subscript o  shows the effect of pitch rate 
and the subscript for the coefficient matrix indicates the derivatives (Appendix 2).  The 
horizontal sectional force is shown by, X’ , and the vertical sectional force by, Z’. The sectional 
lift l and the drag d are employed to give these horizontal and vertical forces as follows  

           attackofangleinduceddlZandldX iii  ,)())(sgn(                (19a,b) 

Here, two differen contributions to the sectional forces are possible: i) from pitching lP , ii) from 
pitch rate  lPr, which are determined with x1 and x2 . On the other hand the induced angle of 
attack is small and can be approximated as 
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The perturbation velocities u, w  and the pitch rate q, all contribute to the sectional lift coefficient 
in terms of pitch and the pitch rate. Considering the effective free stream velocities, the 
sectional lift forces read as    
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Similarly, the sectional drag becomes  
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Since the induced angle of attack is small the second order terms are neglected, and this gives 
the induced lift and the drag as follows 

               )0(sin2,)0(2sin 2    brAwdbrAwl effiPeffiP                       (21a,b) 

Averaging  

Equation (18) is now utilized for the stability analysis of the time dependent periodic system. 
For this purpose, we take the time average  of the quantities for a period of time T as  
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Here,  
10 111111 /

x
XXxandxxx eqeq  . The algebraic Equations (22) are solved for 

 0,0,0,0  qwu  in hover.   

Trim in hover 

The time averaged equation of motion is now implemented for the trimming of the hovering 
body while flapping its wings. For the wing flapping, thereare two different types; İ) symmetric 
flapping, and ii) anti-symmetric flapping.   
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i) Trim with symmetric flapping 
  
For the sake of smplicity, we choose the time dependent sweeping motion as a 
saw-tooth shaped which is expressed as (Mouy, 2017)  

                        









TtTTtT

TtTtT
t

2/),4/3(/4

2/0),4/(/4
)(




  

During the sweeping motion of the wing,  a piecewise constant angle of attack is considered 
as follows 

                          









TtT

Tt
t

2/,

2/0,
)(




  

During the symmetric sweeping, the full unsteady treatment  gives a non-zero value for the X 
force component, whereas the quasi-steday approach yields 0 result (Mouy, et.al., 2017). The 
full unsteady treatment results in Equation (22) for the x direction, in terms of averaged values, 
as follows (Appendix3): 

                          


2sinsin28 12

10
11

Aabr
mT

I
xX eqx                                                                           (23) 

The right hand side of Equation (23) is 0 only for the  average sweep or the angle of attack,  

00   or . This means trimming is possible only for the no sweep or no lift! For this 

reason we have to resort to antisymmetric sweep.  

ii) Trim with anti-symmetric flapping 
In order to achieve trim during hover the sweeping motion is modified as follows : 
                              










TtTTtT

TtTtT
t

2/),4/3(/4

2/0),4/(/4
)(

0

0




  

The angle of attack: 

                                     









TtT

Tt
t

u

d

2/,

2/0,
)(




  

The trim equations then read: 

                            

0

0

110

110

110







eqx

eqx

eqx

XMM

gXZZ

XXX

                                                                                                     (24a,b,c) 

In Equation (24), there are 3 equations and 3 unknowns; 0,  andud . We use the time 

averaged values for the stability dervatives to obtain following non-linear expressions 
(Appendix 3).   

    Force balance in X:      11

22

10

21 /)6.0)(sin(sin2sin2sin aa
brI

I
udud                  (25) 

    Force balance in Z:       
2

1021

2

)217.043.0(4
2sin2sin




brIIA

mgT
ud


                                (26)   

    Moment balance in M:            
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 

0)2sin2)(sinsin417.0cos43.0(sin

)22)(2sin2(sin43.0)sincossin(cos

)2sin2(sin217.0)sin(sin43.0cossin

020031

1021

1122







ud

udcguudd

udud

brII

brIIx

xbrIIa







                     (27) 

Here, a  is distance between the pitch point and the quarter chord. 

We solve for X and Z force balances (25) and (26) , to obtain ud and   in terms of the sweep 

angle and the period, Tand , respectively. Hence, we can calculate the angle of attack for 

the forward and backward sweeps. Afterwards, by the aid of (27) the initial sweep angle 0  is 

determined to complete the solution for the trim in hover.  

Trimming of fruit-fly in hover:  

The pertinent parameters for a fruit-fly is provided as follows [Berman and Wang, 2007) : 

           m=0.72mg,     f=254Hz,    
075 ,  a=0,   xcg=0.5,   I10=4.89, I11=3.30, I21=4.69, I20=7.29,  

           I22=3.32, I31=7.36 

From the simultaneous solution of (25), (26) and (27), the anti-symmetric trim results are 
obtained as follows  

                      d = 34.30,          u = 55.60       and    0 = 40  

For this case the angle of attack differs for the forward and the backward sweeps. The angle 
of attack becomes 34.30 for the forward sweep and 55.60 in backward sweep. During sweeping 

the forward sweep angle changes -710< )(t <790  and in backward sweep 790> )(t > -710 . 

The time change of sweep and angles of attack are given for both symmetric and antisymmetric 
cases in (Figure 7). The deviation from the symmetric case is about 50 for the angle of attack 
and 40 for the sweep, which can be applied easily for the control purposes.  

               
Figure 7: Trimmed antisymmetric sweep and angle of attack____, un-trimmable symmetric 

sweep -----. 

 
CONCLUSION 

The state space approach is satisfactorily implemented for the hovering body whose wings are 
flapping with forward and backward sweep for generation of unsteady aerodynamic forces and 
moments.  
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In order to maintain hover the necesary conditions are expressed in terms of the small 
perturbation values related to the stability derivatives. These quantities  are timewise periodic 
therefore, time averaged values are used for determining the stability of hovering.    
 
Utilizing the time averaged full unsteady values trimmig of the hover was possible for the 
antisymmetric flapping. Via symmetric flapping full unsteady treatment does not allow triim 
conditions to apply. On the other hand, the symmetric flapping with quasi steady treatment 
allows trimming while neglecting the full unsteadiness of the flow.  

Appendices 
App1: The properties of the eliptical wing shape of the fruit fly is given in Figure A. Accordingly, 
the first and the second moment of inertia for the wing read as  
 






Rr

r

drrrbI
1

1

)(2/ 2

1 =eval(int((-(x-1.01-.20)^2/1.01^2+1)*0.43^2*x,.20,2.22))= 0.3013 mm4 

 






Rr

r

drrbrI
1

1

)(2/ 2

2 =eval(int(sqrt(-(x-1.01-.20)^2/1.01^2+1)*0.43^2*x^2,.20,2.22)=0.5043 mm4 

  
 

 

 

Figure A. Pertinent dimensions, in mm, of the elliptical wing of a fruit fly.  

The equation of the ellipse is          1
)43.0()01.1(

)20.001.1(
2

2

2

2


 br

 

 

App2: Aerodynamic forces and moments at a constant AoA.         

bodytheofinertiaofMomentIdrrcrIAIK y

R

r

nm

mnmnmn   ,)(2,2/

1

                      

)0(sincos2 221
0   

m

K
X P        )0(2sin21

0   
m

K
ZP  

               )0()cossincoscos(sin2 312221
0  

yy

cg

y

P
I

K
a

I

K
x

I

K
M  . 

Partial derivatives of forces and moments: 

      x-dir: 

      )0(sincos4 2211  
m

K
X Pu ,        )0(2sincos11  

m

K
X Pw ,        

)0()2sincos2sinsincos( 1121   
m

K
x

m

K
X cgPq ,  cos10

1


m

I
X Px  , 0

2
PxX . 

     z-dir; 

x 

y 

2.02 

0.86 
0.20 

 r1=0.20 

 R=2.02 

=1.21 

 b=0.43 

 S=1.36mm2 

 AR=3 
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         )0(cos4 211  
m

K
ZPu

,    2/PuPw ZZ  ,  
wPcgPq Zx

m

K
Z  )0(sinsin 221  ,              

        
m

I
ZPx

10

1
 ,     0

2
PxZ . 

      Moments: 

  Pq

yy

Pu X
I

m
a

I

K
M 2)0(sincos4 212   ,      

    Pwcg

yyy

Pw Zx
I

m
a

I

K
a

I

K
M  )0()coscoscoscos(2 22112    

 
Pqcg

yy

cg

yy

cg

y

Pq Zx
I

m

I

K
x

I

K

I

K
x

I

K
aM  )0())sin)(cossin)sin(coscos(2 312122212   

    
11

22011 cossin)sin(coscos Pxcg

yyy

Px Zx
I

m

I

I
a

I

I
M    ,    0

2
PM  

Partial derivatives of aerodynamic forces and moments wrt pitch rate i:  

     x-dir: 0 contribution to the derivatives of X. 

     z-dir: 

     cos)0(cos 12Pr

Pr
12 

m

I

m

K
Z q          

m

I
Z

x

21
Pr 2

  ,     mnIaK
mn

)2/1(Pr   

Rest of the derivatives of Z is 0. 

Moment:   

04

21322Pr13Pr
Pr

16
,coscos)0()sincoscos(cos IKf

I

K

I

I

I

K
a

I

K
M v

y

v

yyy

q 


  

 

       
22 Pr

2011
Pr sin)sin(coscos xcg

yyy

x Zx
I

m

I

I
a

I

I
M     

Pitch derivatives: 

                   cos2sin2 111 AarbX
u

 ,         2cos2 111 AarbX
w

 ,    

                  )sin(2 111  rxAarbX cgq   ,     brbX
x

/11 1
  

 
Last 2 derivatives realted to pitch:          

                coscos)2/(2 11112 arbaabrbX
q

  ,   brbX
x

/12 2
  

App3: Trim Parameters: 
              

i) Symmetric: 

      







  dtTt

T
dtTt

TTTm

I
dt

m

I

T
X

T

T

TT

x )4/3(
4

cos)4/(
4

cos
41

cos
1

2/

2/

0

10

0

10
1


       

       

)sinsinsin(sin
1

)4/3(
4

sin)4/(
4

sin
1 10

2/

2/

0

10 


 













Tm

I
Tt

T
Tt

TTm

I
T

T

T

       sin4 10

mT

I
  
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        







T

T

T

i

T

i

x

eq dtdt
T

Aa

crb

dtAarb
T

X

X
X

2/

2/

0

10

2

1

1

10
1 ))(2sin2sin(

2/2

2sin
1

1











 

                  





2sin
2

))2sin(
4

2sin
4

(
2

12/

2/

0

1 Aa
T

t
T

t
TT

Aa T

T

T
  

After summing up we obtain (23).  

                    2sinsin28 12

10
11 Aa

mT

I
brXX eqx   

 
ii)  Antisymmetric: Integrating for a period:  

Equation (24a)  

                             2/)0()sin(sinsincos16 22

2

21
0  udP

mT

AI
X 


 

and 

                             )2sin2(sincossin28 12

10
11 udeqx Aa

mT

I
brXX    

                            0110  eqxP XXX       gives (24a), and (24b,c) are obtained similarly. 
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