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ABSTRACT 
In industry and lots of engineering applications, rotating components, turbines, helicopter 
blades, rotors belong to large usage area. Design, material properties and dynamic properties 
of these structures or components are so significant with respect to efficiency. Frequencies 
and mode shapes are used to identify the dynamic properties of structures. In this study, a 
theoretical investigation in free vibration of a functionally graded beam (FGB) is presented with 
using Finite Element Model. It is assumed that material properties vary along the beam 
thickness according to power law distributions. Timoshenko beam theory is studied and the 
FGB are modeled according to this theorem. Free vibration analysis of flap wise bending is 
studied at symmetrical functionally graded beam. The governing equations of motion and 
boundary conditions are derived on the basis of Hamilton principle. Analytical solutions of the 
natural frequencies are obtained with finite element method which the properties of FGB 
distribution shape functions are used for exponential FG beams with clamped-free end 
supports. MATLAB code is developed to analyze the free vibration of the functionally graded 
rotating Timoshenko beam. In the process, finite element formulation (FE) is used and the 
calculated results are validated with the ones in open literature. 
 

INTRODUCTION 

Functionally graded materials (FGMs) that are new materials are used to increasing functional 
performance which will have desired property gradient of the material properties which will 
have desired property gradient to improve design of important structures such as blades, 
turbines, rotor.  

Design, material properties and dynamic properties of these structures and their components 
have significant effects on system efficiency. Frequencies and mode shapes are used to 
determine dynamic properties of these structures. 

The aim of this study is to develop a computer code by using finite element method for vibration 
analyses of a functionally graded helicopter rotor blade whose material properties change in 
the thickness direction. Functionally graded materials (FGMs) that have gained widespread 

application are used to increase functional performance which will have desired gradient of the 
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material properties. This variation provides continuous stress distribution in the FG structures, 
whereas discontinuous stress distribution appears in another type of advanced materials, i.e. 
laminated composites. Material properties of the beam such as elastic modulus, shear 
modulus, Poisson’s ratio, material density which are assumed to change continuously through 
the thickness direction of the beam, as a function of volume fraction and properties of the 
materials according to a simple power law. 

The concept of Functionally Graded Materials (FGMs) was originated from a group of material 
scientists in Japan as means of preparing thermal barrier materials (Loy et al., 1999). 
Functionally graded material (FGM) technology has begun to take place in engineering 
applications at a near future. Functionally graded materials (FGM) resulting from the 
development of composite material technology is a new generation material that enables the 
advanced engineering applications by reflecting the mechanical, physical and chemical 
properties of the materials it contains. Nowadays, the material properties and material 
composition of functionally graded materials (FGM) whose production areas are increasing 
and application fields are increasing day by day with the development of additive 
manufacturing technology and powder metallurgy are changing throughout the structure. The 
material change takes place in the form of a gradient connected to a function. Due to these 
properties, the functional graded materials are used and applied in many different sectors such 
as aerospace, automotive and medical. 

Free vibration properties of a functionally graded beam by using finite element method are 
studied by Alshorbagy [Alshorbagy, 2007]. Birman research to damage of free and forced 
vibration on functionally graded cantilever beam [Birman and Byrd, 2011]. Chakraborty 
developed a new beam finite element for analysis of functionally graded beams [Chakraborty, 
2003]. 

Pure metal or a pure ceramic beams and functionally graded material beams are compared 
with respect to behavioral difference of static, free vibration and wave propagation problems. 
Also, exact stiffness matrices were developed earlier for Herman–Mindlin rod [Gopalakrishnan, 
2000]. In this approach, the shape functions are not only a function of length of the beam but 
also depend upon cross-sectional and material properties. 

Li presented a unified approach for analyzing the static and dynamic behaviors of functionally 
graded Timoshenko and Euler-Bernoulli beams [Li, 2008]. Sina studied an analytical method 
for the free vibration analysis of functionally graded beams [Sina, 2009]. They derived the 
governing equations of motion using Hamilton’s principle and investigated the effects of 
boundary conditions, volume fraction and shear deformation on the natural frequencies and 
mode shapes. 

In this study, functionally graded blades whose material distribution chanhes in the thickness 
direction are modeled applying the Euler - Bernoulli and Timoshenko beam theories and 
vibration analyses are performed. In these studies, beam models with different boundary 
conditions and material properties are investigated. For developing the mathematical models 
and for the solution, finite element method (FEM) is used. The blade model formulations are 
derived for both Euler - Bernoulli and Timoshenko beam theories to inspect the effect of 
different parameters on the vibration characteristics of the beam. For each beam theory, 
energy expressions are derived by introducing several explanotary figures and tables. The 
solution method of the developed code is the finite element method (FEM). After the related 
displacement fields and shape functions are obtained, element stiffness and mass matrices 
are derived by considering these energy expressions. In the solution part, effects of several 
parameters, i.e. rotational speed, material properties, power law index parameter, different 
boundary conditions, rotary inertia, shear deformation and slenderness ratio are investigated. 
When the results are compared, it is noticed that the difference between the values and the 
error rates for each different state and beam theory is acceptable. 
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METHOD 

 

Beam Model 

 
In this study, functionally graded beam of constant thickness of h with cross-sectional 
dimensions L and b is shown in Fig.1. Free vibration analysis of a rotating functionally graded 
beam with clamped-free boundary condition based on the Timoshenko beam theory. Energy 
expressions are derived for a rotating beam model, which contains two different material 
properties in different compositions and whose material properties change through the blade 
thickness. 

 

 
Figure 1. Rotating FG Timoshenko Beam 

 

 

Functionally Graded Beam Material Properties 

 

The 𝑥𝑦𝑧 axes represent a global orthogonal coordinate system with its origin at the root of the 
beam. The beam is assumed to be rotating in the counter-clockwise direction at a constant 
angular velocity, Ω. In the right-handed Cartesian coordinate system, the 𝑥 -axis coincides with 

the neutral axis of the beam in the undeflected position, the 𝑧-axis is parallel to the axis of 

rotation, but not coincident and the 𝑦-axis lies in the plane of rotation. 

Material properties of the beam, i.e. modulus of elasticity E, shear modulus G, Poisson’s ratio, 
ʋ and material density, ρ are assumed to vary continuously in the thickness direction z as a 
function of the volume fraction, and the properties of the constituent materials according to a 

simple power law. According to the rule of mixture, the effective material property ( )P z  can 

be expressed as follows 

𝑃(𝑧) = 𝑃𝑡𝑉𝑡 + 𝑃𝑏𝑉𝑏                                    (1) 

where Pt and Pb are the material properties at the top and bottom surfaces of the beam while 

Vt and Vb are the corresponding volume fractions. The relation between the volume fractions 

is given by 

𝑉𝑡 + 𝑉𝑏 = 1                                                  (2) 

The volume fraction of the top constituent of the beam, Vt, is assumed to be given by  
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𝑉𝑡 =  (
𝑧

ℎ
+

1

2
)
𝑛

,     (𝑛 ≥ 0)                     (3) 

Here n is the non-negative power law index parameter that dictates the material variation 

profile through the beam thickness.  

Considering Eqns. (1)-(3), the effective material properties can be rewritten as follows 

𝑃(𝑧) = (𝑃𝑡 − 𝑃𝑏) (
𝑧

ℎ
+

1

2
)
𝑛

+ 𝑃𝑏                     (4) 

where 𝑃𝑡 and 𝑃𝑏 are the material properties at the top and bottom of the beam, respectively 
and n, is the material nonhomogenity parameter. 

It is evident from Eqn.(4) that when 𝑧 = ℎ 2⁄ , 𝐸 = 𝐸𝑡, 𝜈 = 𝜈𝑡, 𝐺 = 𝐺𝑡, 𝜌 = 𝜌𝑡 and when 𝑧 =

−ℎ 2⁄ , 𝐸 = 𝐸𝑏 , 𝜈 = 𝜈𝑏 , 𝐺 = 𝐺𝑏 and 𝜌 = 𝜌𝑏 . 

 

Energy Expressions for Timoshenko Beam Model 

 

In this section, derivation of the potential and kinetic energy expressions of a rotating 
Timoshenko Beam are carried out in great detail by using several explanatory figures and 
tables. 
The cross-sectional and the longitudinal views of a Timoshenko beam that undergoes 

elongation and flapwise bending deflection are given in Fig. 2(a) and Fig. 2(b), respectively. 

Here, the reference point is chosen and is represented by P0 before deformation and by P after 

deformation. 

 
Figure 2. (a) Cross-sectional View (b) Longitudinal View of the Timoshenko Beam 

 

Coordinates of the reference point, P0 before deformation are given as follows. 

0x R x   0y   0z        (5) 

Coordinates of the reference point, P1 after deformation are given as follows. 

1 0x R x u       1y   1z w          (6) 

The position vectors of the reference point are represented by r0 and r1 before and after 

deflection, respectively. Therefore, dr0 and dr1 can be written as follows 
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0dr dxi dyj dzk  
  1 0(1 ) ( )dr u i d j w dx d k          

           (7) 

where (·)′ denotes differentiation with respect to the spanwise coordinate x. 

Strain field has to be defined for the reference point to be able to derive the potential and 

kinetic energy expressions. Therefore, the strain tensor [εij] is obtained as follows (Eringen, 

1980). 

 1 1 0 0. . 2 ij

dx

dr dr dr dr dx d d d

d

   



 
 

     
 
 

                  (8) 

Here, the strain tensor is 

 
































x

x

xxxx

ij                   (9) 

Substituting Eqn. (7) into Eqn.(8), the components of the strain tensor are obtained as follows 

           

2 2 2 2

0
0 0

( ) ( )

2 2 2
xx

u w
u w u

  
       

 
    ,  0x  ,    0x w u           (10) 

In this work, only 𝜀𝑥𝑥, 𝛾𝑥𝜉  and 𝛾𝑥𝜂  are used in the calculations because for long slender beams, 

the axial strain 𝜀𝑥𝑥  is dominant over the transverse normal strains 𝜀𝜂𝜂  and 𝜀𝜉𝜉  Moreover, the 

shear strain 𝛾𝜉𝜂  is by two orders smaller than the other shear strains 𝛾𝑥𝜉  and 𝛾𝑥𝜂 .  Therefore, 

𝜀𝜂𝜂 , 𝜀𝜉𝜉   and 𝛾𝜉𝜂  are neglected (Hodges and Dowell, 1974). 

In order to obtain simpler expressions for the strain components given by Eqn. (10), higher 

order terms can be neglected, so an order of magnitude analysis is performed by using the 

ordering scheme given by (Ozgumus Ozdemir and Kaya, 2008) and introduced in Table 1.  

Table 1. Ordering Scheme for A Timoshenko Beam 

(1)
x

O
L
  ( )

w
O

L
  ( )O

L


  

( )O
L


  ( )θ O ε  

20 ( )
u

O
L

  

2( )φ w θ O ε    
2

0 ( )u O    
2( )O    

Applying the ordering scheme to Eqn. (10), the reduced equations are obtained as follows  

2

0
0

( )

2
xx

u
u w 


     0x   x w                 (11) 
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Derivation of The Potential Energy Expression 

 

The potential energy expression is given by 

0

1
( )

2

L

xx xx x x

A

U d d dx      
 

  
 
                                        (12) 

The axial force, N and the bending moment. M that act on a laminate at the midplane, Q that 

act on a laminate at the midplane are expressed as follows (Kollar and Springer, 2003) 

𝑁 = 𝑏∫ 𝜎𝑑𝑧
ℎ

2⁄

−ℎ
2⁄

, 𝑀 = 𝑏∫ 𝑧𝜎𝑑𝑧
ℎ

2⁄

−ℎ
2⁄

, 𝑄 = 𝑏∫ 𝜏𝑑𝑧
ℎ

2⁄

−ℎ
2⁄

                         (13) 

Substituting Eqns. (11) into Eqn. (12) and considering Eqn. (13), the following expression is 

obtained for the potential energy 

2

0

0

1 ( )
( )

2 2
x x xz

L
w

U N u M Q w dx 
  

        
  

               (14) 

where  

𝑁𝑥 = �̅�11𝑢0
′ + �̅�11𝜑

′,  𝑀𝑥 = �̅�11𝑢0
′ + �̅�11𝜑

′  55 xQ A   (15)             

Here the stiffness coefficients are obtained as follows 

[�̅�11 �̅�11 �̅�11] = ∫ 𝐸(𝑧) [1 𝑧 𝑧2]
𝐴

𝑑𝐴 55 ( )
A

A k G z dA               (16) 

Here, k is the shear correction factor and G is the shear modulus. 

Substituting Eqns. (15) into Eqn. (14) and considering Eqn.(16) give  

 2 2

11 0 11 0 11 55

0

1
( ) 2 ( ) ( )

2

L

U A u B u D A w dx                        (17) 

The uniform strain 𝜀0 and the associated axial displacement u0 due to the centrifugal force 

FCF(x) is 

0 0

11

( ) ( )
( ) ( ) MK MKF x F x

u x x
EA A

                   (18) 

where EA is the axial stiffness. 

The expression for the centrifugal force is  

𝐹𝐶𝐹(𝑥) = ∫ 𝜌𝐴Ω2(𝑅 + 𝑥)𝑑𝑥
𝐿

𝑥
               (19) 

Substituting Eqn. (19) into Eqn. (17) gives the final form of the potential energy as follows 

 2 2

11 55

0

1
( ) ( ) ( )( )

2

L

MKU D A w F x w dx                     (20) 
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Derivation of The Kinetic Energy Expression 

 

The general expression for the kinetic energy is given by  

𝑇 =
1

2
∫ ∫ 𝜌(𝑧)(𝑉𝑥

2 + 𝑉𝑦
2 + 𝑉𝑧

2)𝑑𝐴 𝑑𝑥 =
𝑏

2
∫ ∫ 𝜌(𝑧)(𝑉𝑥

2 + 𝑉𝑦
2 + 𝑉𝑧

2)𝑑𝜉 𝑑𝑥
ℎ

2⁄

−ℎ
2⁄

𝐿

0𝐴

𝐿

0
 (21) 

where 𝜌(𝑧) is the effective material density. 

For a rotating system, the velocity field is defined as follows (Ozgumus Ozdemir and Kaya, 

2008).  

1
1

r
V k x r

t


  
 


                (22) 

The location vector 𝑟1⃗⃗⃗   , i.e. Eqn.(6), is substituted into Eqn.(22) and the velocity components 

are obtained as follows (Ozgumus Ozdemir and Kaya, 2008) 

0xV u     , 0( )yV R x u     , zV w              (23) 

Substituting the velocity components into Eqn.(21) gives 

2 2 2

1 0 1 2 0 3

0

1
( ( ) ( ) 2 ( ) )

2

L

T I u I w I u I dx                   (24) 

where 𝐼1, 𝐼2  and 𝐼3 are the inertial characteristics of the beam given as follows 

[𝐼1 𝐼2 𝐼3] = ∫ 𝜌(𝑧) [1 𝑧 𝑧2] 
𝐴

𝑑𝐴               (25) 

Additionally, the centrifugal force equation, i.e. Eqn.(19) can be rewritten after considering the 

definition given in Eqn.(25) 

   2 2

1

0 0

L L

CFF A R x dx I R x dx                      (26) 

 

Finite Element Formulation of Rotating FG Timoshenko Beam 

 

Finite element formulation of a rotating, functionally graded beam that undergoes elongation 

and flapwise bending deflection is carried out in this section.  

The global finite element model of the beam used for the formulation is illustrated in Fig. 3. 
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Figure 3: Finite Element Model of A Rotating Functionally Graded Beam 

 

In the case of a rotating beam, additional terms appear in the element matrices due to the 

centrifugal force. These terms are considered by using finite element formulation for the 

centrifugal force. Thus, finite element representation of a rotating beam that is given in Fig.4 

can be used. 

 

Figure 4: Finite Element Representation of a Rotating Beam 

 

Here Li is the offset of each element from the rotational axis, XYZ is the global coordinate 

system while 𝑥′𝑦′𝑧′ is the local coordinate system.  

Referring Fig.4, the centrifugal force given by Eqn.(26) can be expressed in finite element form 

as follows 

2

1

1
( ) ( ) ( )( )

2
CF i i iF x I R L L x L L x L L x

 
           

 
              (27) 

where the offset of each element from the rotational axis is given below.  

𝐿𝑖 = (𝑖 − 1)
𝐿

𝑁𝑒
                (28) 

Here, L is the length of the whole beam and Ne is the nuber of elements, the beam is divided 

for the finite element formulation.  
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The finite element model of a rotating Timoshenko beam element that undergoes elongation 
and flapwise bending deformation  is given in Fig.5. Here, it is seen that a two noded beam 

element that has eight degrees of freedom is preferred to model the beam. Here, w is the 

flapwise bending, θ is the angle due to flapwise bending and  is shear angle which is the 

result of Timoshenko beam formulation. 

 
Figure 5. FEM of Timoshenko Beam 

 
 
A Timoshenko beam element with two nodes per element and three degrees of freedom per 
node is considered. 
Displacement fields of Timoshenko beam that undergoes flapwise bending deflection and 
extension are given by [Ozgumus, 2012] ; 
 

0 1u a a x                (29) 

2 3

2 3 4 5w a a x a x a x        (30) 

6 7a a x         (31) 

2

3 6 4 7 5(2 ) 3w a a a a x a x          (32) 

Considering the displacement field polinomials given by Eqn. (29) – (32), the nodal 

displacements are determined as the displacement values at the first node of the element,  

x=0, and at the second node, x=Le, respectively. These are given in matrix form as follows  

1

1

1

1

2

2 3

2

2

2

2

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 1 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0

0 0 1 0 0

0 0 0 1 2 3 1

0 0 0 0 0 0 1

e

e e e

e e e

e

u

w

Lu

L L Lw

L L L

L









  
  
  
   
  
   
  
  
  
    
  

      

    (33) 

 

Here, ( )1 are the displacement values of the 1st node while ( )2 are the displacements on 

the 2nd node.  

Relation between the displacement field and the nodal displacements is  
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    eq N q      (34) 

where for the present beam model, expressions of the displacements, {q}, the nodal 

displacements, {qe}. 

 

   
T

q u w        (35) 

 
T

u wN N N N N 
         (36) 

   1 1 1 1 2 2 2 2

T

eq u w u w        (37) 

where the matrix of the shape functions, [N] are given by  

  1 0 0 0 0 0 0u

x x
N

L L

 
  
 

    (38) 

 
2 3 2 3 2 3

2 3 2 2

2 3 2 3 2 3

2 3 2 2

3 2 2 2
0 1

3 2
0

w

e e e e e e

e e e e e e

x x x x x x
N x x

L L L L L L

x x x x x x

L L L L L L


      



     



   (39) 

 

 
2 2 2

2 3 2 2

2 2 2

2 3 2 2

6 6 4 3 3 3
0 1 0

6 6 2 3 3 3

e e e e e e

e e e e e e

x x x x x x
N

L L L L L L

x x x x x x

L L L L L L




      



     



  (40) 

0 0 0 1 0 0 0
x x

N
L L



 
     

 
    (41) 

Here [𝑁𝑢], [𝑁𝑤], [𝑁𝜃] and [𝑁𝜑] are the shape functions associated with elongation, u, flapwise 

bending, w, angle due to flapwise bending, θ and shear angle, φ, respectively. 

Considering the effect of centrifugal force and substituting the shape functions,i.e. Eqn. (38)-

(41) into the potential and kinetic energy expressions, i.e. Eqn. (20) and Eqn.(24), the element 

stiffness matrice, [𝐾𝑒], and element mass matrice, [𝑀𝑒], are obtained as follows 

11 11

0

11 55

( 2
1

2
)

T T T

u u u u

e

TT

w w

eL

dN dN dN dN dN dN
A B

dx dx dx dx dx dx
K

dN dN dN dN
D A N N dx

dx dx dx dx

 

 
 

           
           

           
   

          
             

          

              (42) 

              

   

1 1 2

0 3

( 21

2 )

T T T T

u u w w u ue

T

eL I N N I N N I N N N N
M

I N N dx

 

 

 
   


              (43) 

Here, the element stiffness matrix is derived from the potential energy expression and the 

element mass matrice is derived from the kinetic energy expression.  
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Depending on the number of elements used in the finite element modeling code, all the element 

matrices are assembled by considering the finite element rules to obtain the global matrices. 

The boundary conditions are applied to the global matrices to get the reduced matrices and 

the following matrix system of equations are obtained  

[𝑀]{�̈�} + [𝐾]{𝑞} = {0}                (44) 

where [𝑀] and [𝐾] are the reduced global mass and reduced global stiffness matrices, 

respectively. 

Modal analysis is applied to Eqn.(34) to calculate the natural frequencies. Firstly, the modal 

matrix, [Φ], is calculated by using the eigenvectors obtained by solving the following 

determinant 

   2det 0K M                    (45) 

Solving Eqn.(43), natural frequencies are calculated for the Euler Bernoulli and Timoshenko 

beam models. 

 

RESULTS AND DISCUSSIONS 
 

In this section, effects of several parameters, i.e. material distribution, rotational speed, 

slenderness ratio and the power law index, n on the vibration characteristics are examined for 

Timoshenko beams having different boundary conditions and material distribution properties.  

The results are given in several tables and figures which is expected to be a very good source 

for the researchers who study in the field of functionally graded, rotating beams. When the 

results are compared with the ones in open literature, it is noticed that there is a very good 

agreement between the results which proves the correctness and accuracy of the studies in 

this paper.  

To be able to make comparisons with the studies in open literature, the following dimensionless 

parameters given in Table 2 (Ozdemir O.,2016). 

Table 2: Dimensionless Parameters 

x
x

L
  

w
w

L
  0

0

u
u

L
  

4 2
2 1

11

I L

D


   

2L

h E

 
   

2 3

2

1

I
r

I L
  

Here λ is the dimesionless frequency parameter, Ω̅ is the dimensionless angular speed 

parameter and r is the inverse of the slenderness ratio parameter.  

Vibration characterics of rotating/nonrotating, functionally graded Timoshenko beams is 

examined for two different cases. In the first case, the beams have fixed-free end conditions 

while in the second case, the beam has simply-simply supported end conditions  
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The FG beam is made of Aluminum (Al) at the top and Alumina (Al2O3) at the bottom. The 

effective beam properties change through the beam thickness according to the power law. The 
material properties of the FG beam are displayed in Table 3. 
 

Table 3: Material Properties of Functionally Graded Beam Model  

Material Property Aluminum ( Al ) Alumina ( 2 3Al O ) 

Modulus of Elasticity, 

E  
70 GPa 380 GPa 

Density,   2702 kg/m³ 3960 kg/m³ 

Poisson’s Ratio,   0.3 0.3 

 

Variation of the fundamental frequencies of a functionally graded, nonrotating Timoshenko 
beam with respect to the boundary conditions and power law index parameter is given in Table 
4 for the slenderness ratio value of L/h=5. As mentioned in previous sections, the power law 
index parameter has a decreasing effect on the natural frequencies while the frequencies of 
Clamped-Free beams are higher than the frequencies of Simply-Simply Supported beams. 

Table 4: Effect of Boundary Conditions and Power Law Index on The Natural Frequencies of 
A Nonrotating FG Timoshenko Beam (L/h=5) 

Boundary 
Conditions 

2

m

m

L

h E


    n=0 n=0.5 n=1 n=2 n=5 n=10 

SS 

Present 10.015 8.68448 7.91205 7.19908 6.65413 6.32658 

Şimşek (2010) 10.0705 8.74674 7.95034 7.17674 6.49349 6.16515 

Nguyen et al. 
(2015) 

10.0726 8.7463 7.9518 7.1776 6.4929 6.1658 

CF 

Present 1.89482 1.61724 1.46304 1.33380 1.26449 1.2240 

Şimşek (2010) 1.89523 1.61817 1.46328 1.33254 1.25916 1.21834 

Nguyen et al. 
(2015) 

1.8957 1.6182 1.4636 1.3328 1.2594 1.2187 

Variation of the fundamental frequencies of a functionally graded, rotating Timoshenko beam 
with respect to power law index parameter and slenderness ratio is given in Table 5 for the 

dimensionless rotational speed of Ω̅=5.  

Table 5: Effect of Slenderness Ratio and Power Law Index on The Natural Frequencies of A 

Rotating FG Timoshenko Beam with Clamped Free Boundary Conditions (Ω̅=5) 

L/h 

n =0 n =0.2 n =0.5 n =1 

Özdemir 
(2019)  

Present 
Özdemir 
(2019) 

Present 
Özdemir 
(2019) 

Present 
Özdemir 

(2019) 
Present 

3 3.3483 3.3843 2.7451 2.8394 2.5883 2.7131 2.4172 2.5259 
4 3.4358 3.4580 2.8159 2.9013 2.6592 2.7753 2.4888 2.5877 
5 3.4834 3.4984 2.8536 2.9351 2.6968 2.8099 2.5273 2.6227 
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