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ABSTRACT

Control of a hexacopter platform with input constraints is achieved by using Model Predictive
Control approach. Input constraints are directly introduced into on-line optimization instead
of indirectly limiting the actuators via sturation, command generators or other approaches that
is used in common PID or LQR controllers. A basic LQR controller with off-line calculated
gain is also designed to test the effectiveness of MPC controller. Dynamic model of hexacopter
and controller design is performed in MATLAB/Simulink environment. Results are analyzed
by applying constraints on actuator limits and it is seen that MPC controller has advantageous
characteristics compared to LQR for this specific control problem.

DEFINITIONS & ABBREVIATIONS

g : Gravitational acceleration
m : Mass of hexacopter
J : Inertia tensor of hexacopter
d : Motor centerline to cg. distance
kdh : Drag constant for horizontal motion
kdv : Drag constant for vertical motion
Fi : Force generated by ith propeller
Ti : Torque generated by ith propeller
ωi : Rotational speed of ith motor
kf : Electric motor force constant(Fi vs ωi)
kt : Electric motor torque constant(Ti vs Fi)∑
Fext,

∑
Mext : External net forces and moment action on hexacopter cg.

Fg, Fp, Fd : Gravity, Propulsion and Drag forces, respectively.
Mp : Propulsion moment acting on hexacopter cg.
V = [u, v, w]T : Hexacopter(body) translational velocity expressed in body frame
ω = [p, q, r]T : Hexacopter(body) angular velocity expressed in body frame
R = [x, y, z] : Position of hexacopter relative to Earth frame
η = [φ, θ, ψ] : Euler angles(Roll, Pitch, Yaw) of hexacopter
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LBE : Earth to body frame orthogonal transformation matrix
LR : Transformation matrix from Euler angle rates to Body angular rates
Uv : Virtual control input vector
Ur : Physically realizable control input vector
X0 : States at hover trim condition
U0 : Inputs at hover trim condition
PWM : Pulse Width Modulation
ESC : Electronic Speed Controller
MPC : Model Predictive Control
LQ−MPC : Linear Quadratic Model Predictive Control
LQR : Linear Quadratic Control
V TOL : Vertical Takeo� and Landing
c(·) : Cosine function
s(·) : Sine function

INTRODUCTION

Quadcopter is the most popular VTOL con�guration if payload is not a prior concern. Increasing the
number of motors will provide more payload capacity; however, it also adds additional weight due to
increased need for electric batteries and other components. Therefore; there is a trade-o� between
battery weight, total number of motors and complexity for a VTOL con�guration. Hexacopter with
six �xed pitch blade propellers is a very useful VTOL con�guration considering this trade-o� [Alamio
A., Artale V. et al. , 2013]. Inherent fault tolerance is another advantage of hexacopter con�guration.
For these reasons, control study for a hexacopter platform is focused in this study.

In literature, several methods are used to control hexacopter con�guration such as LQR, PID, adaptive
control, faults tolerant control approaches, etc. In most of these approaches saturation of control
inputs (motor rpm) is not embedded into controller design process and handled by using command
limiters or other indirect methods.

In this study, it is aimed to design a controller that directly handles input constraints. Model Pre-
dictive Control (MPC) can solve this problem by performing on-line optimization. Due to signi�cant
computational e�ort of on-line optimization, it is hard to apply MPC controller in real-time for air
platforms [Eren U., Prach A. et al. , 2017]. However, with increased computational power, there are
some promising newly emergent works about real-time implementation of MPC controllers [Kamel M.,
Alonso-Mora J. et al. , 2017], [Lighart J.A.J., Poksawat P. , 2017]. Hexacopter or quadcopter VTOL
platforms are very suitable to test these type of unconventional and risky control approaches due to
low experimental costs.

To see the e�ects of MPC on input constraints and controller performance, a classical LQR controller
is also designed for the same problem. Simulations are performed to compare the classical LQR
controller with o�-line calculated control gain and MPC approach with direct consideration of input
constraints via on-line optimization.

Throughout the paper, �rst, dynamic model of hexacopter is generated in MATLAB/Simulink envi-
ronment and details are given in the next section. Then, MPC and LQR controller design is given
in "Controller Design" section. Finally, results are analyzed and MPC & LQR controllers are
compared with each other.

HEXACOPTER DYNAMICS

Before diving into equations of motion, control inputs and strategy for a typical hexacopter is intro-
duced.
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Figure 1: Reference frames, force & torque directions.

Control Inputs & Strategy

Hexacopter con�guration has symmetrically distributed six propulsion units(ESC-motor-propeller) as
can be seen in Figure 1.

In literature, force and torque generated by small diameter propulsion units are generally estimated
as a function of rpm only. In this work, data of AscTech Hummingbird quadcopter [Achtelik M. ,
2010] is used as propulsion units and force & torque generated by each propeller system is given as
following:

Fi = kfω
2
i , Ti = ktFi , i = 1 : 6, kf = 5.7 · 10−8 N/rpm2, kt = 0.016 m (1)

In reality, control of hexacopter is achieved by adjusting the rotational speed (rpm) of each motor via
ESCs (PWM signals). If there exist a di�erence in rpm for opposite motors, hexacopter tilts in that
direction(θ or φ) and moves in horizontal plane(x or y) due to direction change in net thrust vector.
To gain/lose altitude(z), rpm of each motor is increased/decreased by the same amount. To rotate
hexacopter in its own zb axes (yaw motion), nonzero net torque is required which can be obtained by
small changes in rpm.

To summarize, by controlling Euler angles and altitude, it is possible to guide hexacopter on the
surface of the Earth. To simplify the system, a virtual control input vector is de�ned to use in the
design of optimal controllers and also a physically realizable control input is de�ned to simulate real
actuator dynamics.

Uv = [Fzc,Mxc,Myc,Mzc]
T , Ur = [F1, F2, F3, F4, F5, F6]T (2)

Since the physically realizable control inputs are angular velocity of each motor (ωi), a mapping is
required between physically realizable and virtual control inputs. Following Equations are used to
perform this mapping:

Uv = TUr =


1 1 1 1 1 1
0 −0.87d −0.87d 0 0.87d 0.87d
−d −0.5d 0.5d d 0.5d −0.5d
−kt kt −kt kt −kt kt

Ur , Ur = T̄Uv =


0.167 0 −0.333d −0.167kt
0.167 −1.443 −0.167d 0.167kt
0.167 −1.443 0.167d −0.167kt
0.167 0 0.333d 0.167kt
0.167 1.443 0.167d −0.167kt
0.167 1.443 −0.167d 0.167kt

Uv

(3)
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Since transformation matrix T is not square, pseudo-inverse is used to find T̄ [Omari S. Hua
M.D. et al. , 2013].

6-DOF Equations of Motion

Once control inputs are defined, dynamics of the hexacopter can be generated by considering the
external forces and moments acting on the hexacopter cg. Equations of motion in six degrees of
freedom is expressed in body fixed frame as following [Suicmez E.C. and Kutay A.T. , 2017]:

∑
Fext = Fg + Fp + Fd = mV̇ + ω × (mV )∑

Mext = Mp = Jω̇ + ω × (Jω)

Fg = −LBE

 0
0
mg

 , Fp =

 0
0
Fzc

 , Fd = −diag(kdh, kdh, kdv)V , Mp =

Mxc
Myc
Mzc

 ,


(4)

Following kinematic relations are used to obtaion position and orientation of hexacopter wrt
Earth surface. Transformation matrices can be obtained from [Suicmez E.C. and Kutay A.T. ,
2017].

Ṙ = LEBV , V = LBEṘ , LBE = L−1
EB = LT

EB

η̇ = L−1
R ω , ω = LRη̇

}
(5)

By combining Equations (4) and (5), translational and rotational dynamics of hexacopter is
obtained as following:

u̇v̇
ẇ

 =

 −qw + vr + gs(θ)− kdhu/m
pw − ur − gc(θ)s(φ)− kdhv/m

−pv + uq − gc(θ)c(φ)− kdvw/m+ Fzc/m

 ,

ṗq̇
ṙ

 =

(qr(Iy − Iz) +Mxc)/Ix
(pr(Iz − Ix) +Myc)/Iy
(pq(Ix− Iy) +Mzc)/Iz

 (6)

CONTROLLER DESIGN

LQR and MPC controllers are designed by using the same linearized hexacopter model. Before
going into controller designs, a simplified linearized model of hexacopter is obtained in the
following section.

Since the aim of the study is comparison between LQR and MPC controllers, the details of LQR
controller and linearized hexacopter dynamics are not given and reader can refer to [Suicmez
E.C. and Kutay A.T. , 2017] for details.

Linearized Hexacopter Model

Our aim is controlling altitude(z) and Euler angles(φ, θ, ψ). To reduce control tuning effort,
derivative and integral of states are also added to the system dynamics. Linearization is per-
formed at hover condition. By using the nonlinear dynamic model obtained in Equations (5)
and (6), following linearized model is obtained:

X = [φ, φ̇, θ, θ̇, ψ, ψ̇, z, ż, ∫ φ, ∫ θ, ∫ ψ, ∫ z]T , X0 = zeros(12, 1), U0 = [mg, 0, 0, 0]T

∆Ẋ = A∆X +B∆U, Y = C∆X

∆Ẋ = Ẋ − Ẋ0 = Ẋ, ∆X = X −X0 = X, ∆U = U − U0

 (7)

Linearization is performed by using ”linearize” command of MATLAB and time-invariantA,B,C
matrices are found as following:
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A =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −0.375 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0



, B =



0 0 0 0
0 555.56 0 0
0 0 0 0
0 0 555.56 0
0 0 0 0
0 0 0 312.5
0 0 0 0

1.25 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



, C = I12×12 (8)

LQR Controller

First, conventional LQR controller is designed by using the linearized model obtained in Equa-
tions (7) and (8). LQR gain is calculated off-line by solving Algebraic Riccati Equation which
does not include input constraints. It is possible to use a low gain to avoid actuator saturation
but this will degrade the performance of the controller for specific cases.

To achieve desired transient characteristics a systematic iterative approach is used to tune LQR
weights (Q and R matrices). Details of the tuning process are given in [Suicmez E.C. and
Kutay A.T. , 2017]. The same strategy is used and following LQR gain (Klqr) is found by using
MATLAB ”lqr” command.

Q = diag[5, 0.12, 5, 0.12, 10, 0.384, 4000, 100, 0.5, 0.5, 1, 500], R = diag[100, 1000, 1000, 1000]

Klqr =


0 0 0 0 0 0 7.4950 3.3169 0 0 0 2.2361

0.0767 0.0199 0 0 0 0 0 0 0.0224 0 0 0
0 0 0.0767 0.0199 0 0 0 0 0 0.0224 0 0
0 0 0 0 0.1099 0.0330 0 0 0 0 0.0316 0


with ∆U = −Klqr(X −Xd), Xd : Desired state vector


(9)

LQR controller is designed off-line and does not handle actuator constraints directly. Instead, it
is common to use command generators to smooth reference inputs to avoid actuator limits and
testing the controller in nonlinear simulations with actuator dynamics. A similar approach is
used and details of simulation environment is given in Section ”Comparison between LQR
and MPC”.

At this point, MPC controller is expected to produce actuator outputs that are in predefined
limits by introducing input constraints and minimizing the cost function on-line with predicted
states and inputs. Design of MPC controller is given in the following section.

MPC Controller

In MPC, finite time optimization problem is solved for a predetermined horizon by using pre-
dicted states and inputs for each time step. Once the optimal control input vector is found
for entire horizon, only the first input is applied at that time step[Wang L. , 2009]. In MPC,
state and input constraints are introduced into the cost function directly and optimization is
performed considering the constraints over the prediction horizon. Since MPC is an on-line
optimization approach, convexity is very important to obtain solution easily [Eren U., Prach A.
et al. , 2017].

In this study, to compare results of LQR reasonably, a linear MPC structure is used. Linear
Quadratic-MPC(LQ-MPC) formulation defined in [Suzuki Y., Dunham W. et al. , 2019] is used
by using only Q and R matrices in the cost function. MPC predicts the future states by using
the linearized system dynamics given in Equation (7). In nonlinear simulations, current state
measurements are used to estimate the future states by using linear dynamics. It is also noted
that cost function of both LQR and MPC have the same Q and R matrices.
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Figure 2: LQR vs MPC controller step input responses for states φ, θ, ψ and z.

Figure 3: LQR vs MPC controller rpm outputs and actuator rpm limits.
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MATLAB has ”MPC Designer” toolbox (”mpcDesigner” command) for linear constraint MPC
design problems. One can obtain the MPC controller in script or simulink model form by
supplying the linearized system dynamics, weights of the LQ cost function (Q and R matrices),
input and output constraints, prediction & control horizons and sample time. To have fast MPC
solution, sample time is selected as 0.1, prediction horizon is chosen as 12 and control horizon is
used as 3. State estimation and LQR controller works at 100 hz for our simulation, so that MPC
controller has slower sampling rate for faster on-line optimization. Although MPC algorithm
runs slower than the main simulation, results show that MPC could control the hexacopter
successfully.

Actuator dynamics are limited at maximum of 5500 rpm and there is also a minimum limit
of 2000 rpm that is desirable not to go below. Since our control variables are net force and
moments defined in Equation (2), rpm limits are expressed as a net force (Fzc) by using the
relations given in Equation (1). These maximum and minimum net force limits are defined as
input constraints in optimization.

Comparison between LQR and MPC

To test and compare LQR and linear MPC controllers, a nonlinear simulation model built in
Simulink is used. The details of the simulation model are given in [Suicmez E.C. and Kutay
A.T. , 2017]. In simulations, aim is tracking 30 degree commands for roll and pitch angles, 50
degree for yaw angle and 5 m. altitude command. Figure 2 shows the results of LQR and MPC
controllers. For the same scenario, rpm values generated by LQR and MPC controllers are also
given in Figure 3. It is seen that LQR controller generates commands that are out of actuator
limits, whereas MPC controller outputs are within the limits. It is noted that in nonlinear
simulations LQR outputs are saturated to actuator limits;however, due to the predictive nature
of MPC, MPC controller has a more smooth behaviour according to Figure 2. The advantage of
handling the actuator constraints on-line can be seen while analyzing roll and pitch dynamics.
In Figure 2, the overshoot for roll and pitch dynamics are not symmetric for LQR controller
since actuator limits are not symmetric according to trim values. On the other hand, MPC
controller handles actuator constraints on-line in a predictive manner so that the control inputs
are generated to avoid these type of undesired behaviours.

It can be concluded that LQ-MPC approach could provide feasible solution around linear region
if the optimization problem is convex. Apart from input constraints, output constrains such as
maximum angle deviations could be also included into MPC design for specific problems.

CONCLUSION

In this paper, LQR and a linear MPC approach are compared with each other. To have reason-
able comparisons, cost functions are defined the same with identical Q and R matrices. LQR and
MPC controllers are generated by using MATLAB environment. Both controllers are tested by
using the same nonlinear simulation environment also built in MATLAB/Simulink. In MPC de-
sign, actuator constraints are defined as total maximum force and added to on-line optimization
problem. Results show that, as expected, MPC controller has better characteristics compared
to LQR due to predictive nature of handling actuator constraints. Since MPC have different
tuning parameters compared to LQR such as prediction or control horizon, comparisons are
not exactly reasonable. However, it can be seen that MPC have advantages compared to LQR
for convex optimization problems that can be solved on-line easily with increased technology in
computer speed and algorithms.
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