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ABSTRACT 

This paper presents techniques for the vibration analysis of passively isolated airborne 
electronics to investigate them under adverse effects of vibration exposure. Establishment of 
an accurate mathematical model precedes the normal modes and random response 
analysis. In the mathematical model, elastic properties of isolators, their installation locations 
and orientations are allowed for arbitrary definition. Viscous damper is considered in the 
formulation as the damping mechanism to represent realistic conditions in the case of 
random excitation. Though the employed techniques herein are general, they are 
demonstrated through the application on jet aircraft avionics. Mathematical model and 
vibration analysis are verified through FE model results with very well agreement. Entire 
process is implemented in the open software Python environment and brought into use via a 
GUI. 

INTRODUCTION 

Avionics are defined as the electronic systems used in the air and space vehicles. In the 
modern aerospace industry, it is inevitable to utilize electronic systems which ensure the 
control of the air vehicles. Airborne electronics are subjected to adverse effects of vibration 
exposure. It is important to ensure the sustainability of such equipment through vibration 
isolation. Otherwise, it might result in a disaster in the vehicle. According to the failure history 
of electronic equipment hardware, which is observed and investigated by United States Air 
Force for about two decades, failures due to the operating environments are graded by 
percentage weight. Thus, high temperature and cycling through extreme temperatures get a 
percentage of 55, humidity gets a percentage of 20, and vibration and shock get a 
percentage of 20 [Steinberg, 2000].  

Vibration isolation in order to reduce vibratory loads transmitted from the base structure, 
which acts as the vibration source, to the equipment through resilient mountings has been a 
much-discussed issue over years because of the fact that vibratory loads may eventually 
lead to fatigue failure on relevant parts of aircraft. Isolation relies on the separation of the 
equipment and excitation forces in phase by decoupling them through resilient supports. In 
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this way, transmitted forces are reduced by resisting the motion or opposing the input 
excitation by inertia. Passive isolation mechanism distinguishes as the simplest practice for 
this purpose. A properly designed isolation system is critical to maintain the operational 
performance of the equipment [Agnes, 1993]. 

The system consists of six degrees of freedom rigid body which is mounted on resilient 
supports fixed at the rigid base. The simple Voigt model is employed with three orthogonal 
pairs of spring and damper connected in parallel. In the system with the internal damping 
mechanism, viscous damper is employed. In this way, realistic conditions can be represented 
more closely as random excitation is applied to the system. In the mathematical model, it is 
allowed for describing the system by resilient element stiffness, damping, position and 
orientation of installation.  

Vibration analysis is implemented with the created mathematical model. It consists of two 
successive stages. They are free vibration and forced vibration analysis. A free vibration 
analysis ends up with modal properties or the eigenvalues and eigenvectors. Besides, 
response characteristics are obtained by implementing a forced vibration analysis. These 
stages of vibration analysis are achieved in three phases: 

 Setting up the spatial properties i.e., the values of mass, stiffness and damping 
elements. 

 Performing a free vibration analysis to obtain modal properties i.e., natural 
frequencies and mode shapes vectors as many as the number of degrees of 
freedom. 

 Performing a forced response analysis to obtain response characteristics. 

Mathematical model and vibration analysis techniques are verified through the FE model 
which is created in the MSC Patran/Nastran® developed by NASA and commonly employed 
in the aerospace industry. Begin with, literature is reviewed for studies which perform free 
vibration analysis of isolation systems. An isolation system from literature, whose natural 
frequencies are shared out explicitly, is modeled in an FE environment. Natural frequencies 
of the reference study and FE model are compared to be sure of that the finite element 
model is created properly. Once the FE model is made certain of, it is employed to verify the 
developed computer code. Natural frequencies and mode shapes are compared to ensure 
that the system model is defined correctly. Besides, random response analysis results for 
constant amplitude random excitation are compared to verify the employed techniques for 
the forced vibration analysis in the developed computer code. Results obtained from the FE 
model and developed computer code show well agreement. 

Programming language environment used during this study is Python. It is open software and 
has a large usage in scientific computation. Entire analysis process is implemented by the 
developed computer code and brought into use via GUI which is presented in Appendix A. 
Expanded description of the analysis process can be found in [Eker, 2019].  

METHOD 

Mathematical Model 

Coordinate frames 

Three axis systems are primarily defined to construct the mathematical model with reference 
to them. The first system is the global axis system with the set of axes x, y, z. It is the basic 
frame in the space and fixed arbitrarily. The second coordinate system is the inertial axis 
system with the set of axes 𝐗, 𝐘, �̅�. Its origin is placed at the mass center of the isolated rigid 
boy at rest, and it is aligned with the basic frame. The last axis system with the set of axes X, 
Y, Z is fixed at the mass center of the isolated rigid body and it is coincident with the inertial 
frame when there is no motion. Primary coordinate frames are shown in Figure 1. 

Each resilient element in the isolation system has its own coordinate frame. An isolator 
coordinate frame is defined such that its x-axis is coincident with the axial direction of the 
isolator. Therefore, the axes y and z refer to the transverse directions of the isolator. 
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Attachment point matches with the elastic center of the isolator, which also corresponds to 
the origin of the related set of axes. These coordinate systems will be called the secondary 
frames. Each set of axes is named according to the corresponding resilient element e.g. First 
resilient element will have the set of axes X1, Y1, Z1, second resilient element will have the 
set of axes X2, Y2, Z2 and so on. Secondary coordinate frames are exemplified in Figure 2.  

 
 

 

Figure 1: Primary Coordinate Frames 

 

 

Figure 2: Secondary Coordinate Frames 

 

The isolated body is considered as a six degrees-of-freedom rigid body. Degrees of freedom 
comprise three translational and three rotational displacements. It rests on rigidly connected 
resilient elements which are fixed on the rigid base structure. Thereby, a six degrees-of 
freedom mathematical model is created. For this purpose, system equations of motion are 
defined for the mass m and mass moment of inertia I of the isolated body, stiffness k and 
viscous damping c of resilient element and distance of the elastic center of the resilient 
element to the mass center a.  

Resilient support is represented as having linear spring and viscous damping elements. The 
elastic center of the support is indicated as the intersection point of the principal elastic axes. 
This parameter is important because of that it determines the magnitude of the stiffness by 
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being used in the equations of motion. The torsional elements are neglected since the 
torsional stiffness is much smaller than the translational stiffness in general case. Therefore, 
there are no torsional springs and dampers to apply coupling to the isolated body. 

Resilient element is represented by three mutually perpendicular members of Voigt model as 
shown in Figure 3. These members are oriented in axial and radial directions of principal 
axes of the resilient support. 

 

 

Figure 3: Resilient Element of Three Mutually Perpendicular Members 

 

The displacements of the center of gravity of the rigid body are indicated by xg, yg and zg in �̅�, 

𝐘, and �̅� directions of the inertial frame, respectively. Besides, the rotations of the rigid body 
about these axes are denoted by α, β and γ, respectively. In the same manner, the 
displacements of the center of gravity of the foundation are indicated by u, v and w in 𝐗, 𝐘, 

and �̅� directions of the inertial frame, respectively. Besides, the rotations of the rigid body 
about these axes are denoted by 𝜶, 𝜷 and 𝜸, respectively. System diagram is shown in 

Figure 4. 

 

 

Figure 4: Basic System Diagram 
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System equation of motion for damped system in compact form is given by 

 [𝑴]{�̈� } + [𝑪]{�̇�} + [𝑲]{𝑿} = {𝑳} (1) 

Equations of motion for six degree-of freedom system are given explicitly in [Piersol, 2010]. 
Damping forces applied on the rigid body by resilient members are not involved in these 
equations for convenience. They are to be included in each equation by appropriately adding 
damping terms analogous to corresponding stiffness terms. 

 

𝒎�̈�𝒈 + ∑𝒌𝒙𝒙(𝒙𝒈 − 𝒖) +∑𝒌𝒙𝒚(𝒚𝒈 − 𝒗)

+ ∑𝒌𝒙𝒛(𝒛𝒈 − 𝒘) + ∑(𝒌𝒙𝒛𝒂𝒚 − 𝒌𝒙𝒚𝒂𝒛)(𝜶 − 𝜶)

+ ∑(𝒌𝒙𝒙𝒂𝒛 − 𝒌𝒙𝒛𝒂𝒙) (𝜷 − 𝜷)

+ ∑(𝒌𝒙𝒚𝒂𝒙 − 𝒌𝒙𝒙𝒂𝒚) (𝜸 − 𝜸) = 𝑭𝒙

 
  

 

(2) 

 
𝑰𝒙𝒙�̈� − 𝑰𝒙𝒚�̈� − 𝑰𝒙𝒛�̈� + ∑(𝒌𝒙𝒛𝒂𝒚 − 𝒌𝒙𝒚𝒂𝒛)(𝒙𝒈 − 𝒖)

+ ∑(𝒌𝒚𝒛𝒂𝒚 − 𝒌𝒚𝒚𝒂𝒛)(𝒚𝒈 − 𝒗)

+ ∑(𝒌𝒛𝒛𝒂𝒚 − 𝒌𝒚𝒛𝒂𝒛)(𝒛𝒈 − 𝒘)

+ ∑(𝒌𝒚𝒚𝒂𝒛
𝟐 + 𝒌𝒛𝒛𝒂𝒚

𝟐 − 𝟐𝒌𝒚𝒛𝒂𝒚𝒂𝒛)(𝜶 − 𝜶)

+ ∑(𝒌𝒙𝒛𝒂𝒚𝒂𝒛 + 𝒌𝒚𝒛𝒂𝒙𝒂𝒛 − 𝒌𝒛𝒛𝒂𝒙𝒂𝒚 − 𝒌𝒙𝒚𝒂𝒛
𝟐) (𝜷 − 𝜷)

+ ∑(𝒌𝒙𝒚𝒂𝒚𝒂𝒛 + 𝒌𝒚𝒛𝒂𝒙𝒂𝒚 − 𝒌𝒚𝒚𝒂𝒙𝒂𝒛 − 𝒌𝒙𝒛𝒂𝒚
𝟐) (𝜸 − 𝜸)

= 𝑴𝒙 

 
 

𝒎�̈�𝒈 + ∑𝒌𝒙𝒚(𝒙𝒈 − 𝒖) +∑𝒌𝒚𝒚(𝒚𝒈 − 𝒗)

+ ∑𝒌𝒚𝒛(𝒛𝒈 − 𝒘) + ∑(𝒌𝒚𝒛𝒂𝒚 − 𝒌𝒚𝒚𝒂𝒛)(𝜶 − 𝜶)

+ ∑(𝒌𝒙𝒚𝒂𝒛 − 𝒌𝒚𝒛𝒂𝒙) (𝜷 − 𝜷)

+ ∑(𝒌𝒚𝒚𝒂𝒙 − 𝒌𝒙𝒚𝒂𝒚) (𝜸 − 𝜸) = 𝑭𝒚

 
  

 
 

𝑰𝒚𝒚�̈� − 𝑰𝒙𝒚�̈� − 𝑰𝒚𝒛�̈� + ∑(𝒌𝒙𝒙𝒂𝒛 − 𝒌𝒙𝒛𝒂𝒙)(𝒙𝒈 − 𝒖)

+ ∑(𝒌𝒙𝒚𝒂𝒛 − 𝒌𝒚𝒛𝒂𝒙)(𝒚𝒈 − 𝒗)

+ ∑(𝒌𝒙𝒛𝒂𝒛 − 𝒌𝒛𝒛𝒂𝒙)(𝒛𝒈 − 𝒘)

+ ∑(𝒌𝒙𝒛𝒂𝒚𝒂𝒛 + 𝒌𝒚𝒛𝒂𝒙𝒂𝒛 − 𝒌𝒛𝒛𝒂𝒙𝒂𝒚 − 𝒌𝒙𝒚𝒂𝒛
𝟐)(𝜶 − 𝜶)

+ ∑(𝒌𝒙𝒙𝒂𝒛
𝟐 + 𝒌𝒛𝒛𝒂𝒙

𝟐 − 𝟐𝒌𝒙𝒛𝒂𝒙𝒂𝒛) (𝜷 − 𝜷)

+ ∑(𝒌𝒙𝒚𝒂𝒙𝒂𝒛 + 𝒌𝒙𝒛𝒂𝒙𝒂𝒚 − 𝒌𝒙𝒙𝒂𝒚𝒂𝒛 − 𝒌𝒚𝒛𝒂𝒙
𝟐) (𝜸 − 𝜸)

= 𝑴𝒚 
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𝒎�̈�𝒈 + ∑𝒌𝒙𝒛(𝒙𝒈 − 𝒖) +∑𝒌𝒚𝒛(𝒚𝒈 − 𝒗)

+ ∑𝒌𝒛𝒛(𝒛𝒈 − 𝒘) + ∑(𝒌𝒛𝒛𝒂𝒚 − 𝒌𝒚𝒛𝒂𝒛)(𝜶 − 𝜶)

+ ∑(𝒌𝒙𝒛𝒂𝒛 − 𝒌𝒛𝒛𝒂𝒙) (𝜷 − 𝜷)

+ ∑(𝒌𝒚𝒛𝒂𝒙 − 𝒌𝒙𝒛𝒂𝒚) (𝜸 − 𝜸) = 𝑭𝒛

 
  

 
 

𝑰𝒛𝒛�̈� − 𝑰𝒙𝒛�̈� − 𝑰𝒚𝒛�̈� + ∑(𝒌𝒙𝒚𝒂𝒙 − 𝒌𝒙𝒙𝒂𝒚)(𝒙𝒈 − 𝒖)

+ ∑(𝒌𝒚𝒚𝒂𝒙 − 𝒌𝒙𝒛𝒂𝒚)(𝒚𝒈 − 𝒗)

+ ∑(𝒌𝒚𝒛𝒂𝒙 − 𝒌𝒙𝒛𝒂𝒚)(𝒛𝒈 − 𝒘)

+ ∑(𝒌𝒙𝒚𝒂𝒙𝒂𝒛 + 𝒌𝒚𝒛𝒂𝒙𝒂𝒚 − 𝒌𝒚𝒚𝒂𝒙𝒂𝒛 − 𝒌𝒙𝒛𝒂𝒚
𝟐)(𝜶 − 𝜶)

+ ∑(𝒌𝒙𝒚𝒂𝒙𝒂𝒛 + 𝒌𝒙𝒛𝒂𝒙𝒂𝒚 − 𝒌𝒙𝒙𝒂𝒚𝒂𝒛 − 𝒌𝒚𝒛𝒂𝒙
𝟐) (𝜷 − 𝜷)

+ ∑(𝒌𝒙𝒙𝒂𝒚
𝟐 + 𝒌𝒚𝒚𝒂𝒙

𝟐 − 𝟐𝒌𝒙𝒚𝒂𝒙𝒂𝒚) (𝜸 − 𝜸) = 𝑴𝒛 

 

The mathematical model is created by defining spatial properties of the system i.e., mass, 
stiffness, and damping elements. These elements are derived with matrix algebra, which 
provides a compact method depending on the generalized matrix method [Smollen, 1966]. 

System mass matrix contains principal masses and mass moments of inertia. 

 [𝑴] =

[
 
 
 
 
 
𝒎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝒎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝒎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝑰𝒙𝒙 −𝑰𝒙𝒚 −𝑰𝒙𝒛

𝟎 𝟎 𝟎 −𝑰𝒙𝒚 𝑰𝒚𝒚 −𝑰𝒚𝒛

𝟎 𝟎 𝟎 −𝑰𝒙𝒛 −𝑰𝒚𝒛 𝑰𝒛𝒛 ]
 
 
 
 
 

 (3) 

Translational stiffness matrix of the resilient supporting element according to its principal 
elastic axes is 

 [�̅�𝒕𝒕] = [

𝒌𝒑 𝟎 𝟎

𝟎 𝒌𝒒 𝟎

𝟎 𝟎 𝒌𝒓

] (4) 

Directional cosines matrix of the principal elastic axes of resilient supporting element and 
reference axes of rigid body motion is 

 [𝝀] = [

𝝀𝒙𝒑 𝝀𝒙𝒒 𝝀𝒙𝒓

𝝀𝒚𝒑 𝝀𝒚𝒒 𝝀𝒚𝒓

𝝀𝒛𝒑 𝝀𝒛𝒒 𝝀𝒛𝒓

] (5) 

Translational stiffness matrix of the resilient supporting element transformed to the reference 
axes is 

 [𝒌𝒕𝒕] = [𝝀][�̅�𝒕𝒕][𝝀]𝑻 (6) 

Global stiffness matrix of the system for an isolator is calculated according to that isolator’s 
stiffness terms and distance to the center of the rigid body motion. Global stiffness matrix in 
block matrices is 
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 [𝒌] = [
[𝒌𝒕𝒕] [𝒌𝒕𝒓]

[𝒌𝒓𝒕] [𝒌𝒓𝒓]
] (7) 

Where, in compact form for unloaded configuration, 

 [𝒌𝒕𝒓] = [𝒌𝒕𝒕][𝑨𝟎]
𝑻 (8) 

 

 [𝒌𝒓𝒕] = [𝒌𝒕𝒓]𝑻 (9) 

 

 [𝒌𝒓𝒓] = [𝑨𝟎][𝒌
𝒕𝒕][𝑨𝟎]

𝑻 (10) 

Where 

 [𝑨𝟎] = [

𝟎 −𝒂𝒛 𝒂𝒚

𝒂𝒛 𝟎 𝒂𝒙

−𝒂𝒚 𝒂𝒙 𝟎
] (11) 

Damping matrix can be written by adding the appropriate damping terms with analogous to 
the corresponding stiffness terms. 

System stiffness matrix is 

 [𝑲] = ∑[𝒌𝒊]

𝒏

𝒊=𝟏

 (12) 

System damping matrix is 

 [𝑪] = ∑[𝒄𝒊]

𝒏

𝒊=𝟏

 (13) 

Where 

 [𝑪] = 𝑨[𝑴] + 𝑩[𝑲] (14) 

Displacement vector consists of the unknowns of the equations of motion as given by 

 {𝑿} = {𝒙𝒈 − 𝒖 𝒚𝒈 − 𝒗 𝒛𝒈 − 𝒘 𝜶 − 𝜶 𝜷 − 𝜷 𝜸 − 𝜸}
𝑻
 (15) 

In this study, foundation on which resilient elements are attached is assumed to have no rigid 
body motion. Thus, translational and rotational displacement terms of base motion in the 
system equations of motion will vanish and reduce to 

 {𝑿} = {𝒙𝒈 𝒚𝒈 𝒛𝒈 𝜶 𝜷 𝜸}𝑻 (16) 

In the same manner, acceleration vector is given in the reduced form by 

 {�̈�} = {�̈�𝒈 �̈�𝒈 �̈�𝒈 �̈� �̈� �̈�}
𝑻

 (17) 

Load vector is given by 

 {𝑳} = {𝑭𝒙 𝑭𝒚 𝑭𝒛 𝑴𝒙 𝑴𝒚 𝑴𝒛}𝑻 (18) 
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Vibration Analysis 

Vibration analysis will be summarized by indicating the identifiable aspects of the subject. It 
consists of two successive stages. They are free vibration and forced vibration analyses. 

Free vibration analysis 

The equation of motion for viscously damped system is written as 

 [𝑴]{�̈�} + [𝑪]{�̇�} + [𝑲]{𝒙} = {𝟎} (19) 

A solution to the system equation of motion is offered in the form of 

 {𝒙(𝒕)} = {𝑿}𝒆𝒋𝝀𝒕 (20) 

A complex eigenvalue problem is solved such that 

 ([𝑲] − 𝝀𝟐[𝑴]){𝑿} = {𝟎} (21) 

The solution to the eigenvalue problem yields the modal properties of the system. Eigenvalue 

and eigenvector matrices are denoted by [𝝀𝟐] and [𝝋], respectively. Solution of eigenvalue 

problem leads to damped natural frequency 𝝀𝒓. The eigenvalue 𝝀𝒓
𝟐 is related to the natural 

frequency or undamped natural frequency 𝝎𝒓 and modal damping ratio 𝜻𝒓 of the system as 
follows: 

 𝝀𝒓
𝟐 = 𝝎𝒓

𝟐(𝟏 − 𝜻𝒓
𝟐) (22) 

Mode shape matrix is 

 [𝝋] = [𝝋𝟏 𝝋𝟐 ⋯ 𝝋𝒏] (23) 

Modal mass, stiffness, and damping matrices are obtained by applying the orthogonality 
properties such that 

 [𝝋]𝑻[𝑴][𝝋] = [𝒎𝒓] 
(24) 

 [𝝋]𝑻[𝑲][𝝋] = [𝒌𝒓] 
(25) 

 [𝝋]𝑻[𝑪][𝝋] = [𝒄𝒓] 
(26) 

Mode shapes are normalized to unit modal mass in keeping with the conventional approach. 

 [𝝓]𝑻[𝑴][𝝓] = [𝑰] (27) 

Or 

 [𝝓] = [𝒎𝒓]
𝟏
𝟐[𝝋] 

(28) 

In which, 𝝓𝒓 is the mass-normalized mode shape of the rth mode. 

Modal matrix is treated with mass matrix to give diagonal identity matrix: 

 [𝝓]𝑻[𝑴][𝝓] = [𝑰] (29) 

Modal matrix is treated with stiffness matrix to give diagonal eigenvalue matrix: 

 [𝝓]𝑻[𝑲][𝝓] = [𝝎𝒓
𝟐] (30) 
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Modal matrix is treated with damping matrix to give: 

 [𝝓]𝑻[𝑪][𝝓] = [𝟐𝜻𝝎𝒓] 
(31) 

Thus, modal properties can be obtained by free vibration analysis [He, 2001]. 

Forced vibration analysis 

Vibration exposure for military aircraft is available in military standards. MIL-STD-810-G 
defines the vibration environment of the jet aircraft [DoD, 2008]. Acceleration spectral density 
level for turbulent air flow which is the main source of interior noise problems in jet aircraft, 

which leads the upper limit of acceleration spectral density level 𝑾𝟎 = 𝟎. 𝟐𝟎𝒈𝟐 𝑯𝒛⁄  [Dreher, 
1982] [Hall, 1980]. This vibration level is used in the vibration exposure offered by MIL-STD-
810-G as presented in Figure 5. 

 
Figure 5: Jet Aircraft Vibration Exposure  

 

Eventually, break points of the jet aircraft vibration exposure are given in Table 1. 

 

Table 1: Jet Aircraft Vibration Exposure for All Other Material 

Frequency [Hz] ASD [g2/Hz] 

15 0.04 

89 0.04 

300 0.2 

1000 0.2 

2000 0.05 
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A transfer function must be defined for a given input to obtain a desired output. Specifically, 
transfer function becomes frequency response function when only the imaginary part of the 
Laplace operator s is considered. Employing frequency response function (FRF) is the most 
effective mean to come up with system response in a vibration analysis.  

System is diagonalized by utilizing the orthogonality properties of eigenmodes which are the 
constituents of the modal matrix. Thus, modal transformation is achieved by applying the 
separation approach as given by 

 

{𝑿} = [𝝋]{𝒒(𝝎)} 

(32) {𝑷} = [𝝋]{𝑳(𝝎)} 

[𝝋] = [𝝋𝟏 𝝋𝟐 ⋯ 𝝋𝒏] 

Herewith, the system of multiple degrees of freedom is decoupled to a system of single-mass 
oscillators as many as the number of degrees of freedom. Each single mass oscillator 
represents one of the eigenvectors of the system. Following the modal transformation, 
system is represented in general coordinates q as given by 

 

𝒎𝒓�̈�𝒓 + 𝒌𝒓𝒙𝒓 = 𝒍𝒓 

(33) 

𝒎𝒓𝝋𝒓�̈�𝒓 + 𝒌𝒓𝝋𝒓𝒙𝒓 = 𝝋𝒓𝒍𝒓 

𝒎𝒓�̈�𝒓(𝝎) + 𝒌𝒓𝒒𝒓(𝝎) = 𝒑𝒓 

�̈�𝒓(𝝎) +
𝒌𝒓

𝒎𝒓
𝒒𝒓(𝝎) =

𝒑𝒓(𝝎)

𝒎𝒓
 

�̈�𝒓(𝝎) + 𝝎𝒓
𝟐𝒒𝒓(𝝎) =

𝒑𝒓(𝝎)

𝒎𝒓
 

As of now, damping may be included in the equations by employing the modal damping ratio 
ζ by starting with 

 �̈�𝒓(𝝎) + 𝟐𝒋𝜻𝝎𝒓𝒒𝒓(𝝎) + 𝝎𝒓
𝟐𝒒𝒓(𝝎) =

𝒑𝒓(𝝎)

𝒎𝒓
 (34) 

This differential equation can be solved easily and the solution for the displacement in 
general coordinates is obtained as given by 

 
𝒒𝒓(𝝎) =

𝒑𝒓(𝝎)
𝒎𝒓

𝝎𝒓
𝟐 − 𝝎𝟐 + 𝟐𝒋𝜻𝝎𝒓𝝎

 
(35) 

All the single mass oscillators are combined linearly to give the system solution by 

 𝑿(𝝎) = ∑ 𝝋𝒓𝒒𝒓(𝝎)

𝑵

𝒓=𝟏

 (36) 

Frequency response function is obtained by dividing the response of the system by the 
excitation force. Response might be displacement, velocity or acceleration. Frequency 
response function for displacement i.e. receptance is given by 

 𝑯(𝝎) =
𝑿(𝝎)

𝑳(𝝎)
= ∑

𝝋𝒓𝝋𝒓
𝑻

𝝎𝒓
𝟐 − 𝝎𝟐 + 𝟐𝒋𝜻𝒓𝝎𝒓𝝎

𝑵

𝒓=𝟏

𝟏

𝒎𝒓
 (37) 
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Frequency response function might also be written in terms of mass normalized modal 
matrix, and it comprises the contributions of all individual modes as given by 

 𝑯(𝝎) =
𝑿(𝝎)

𝑳(𝝎)
= ∑

𝝓𝒓𝝓𝒓
𝑻

𝝎𝒓
𝟐 − 𝝎𝟐 + 𝟐𝒋𝜻𝒓𝝎𝒓𝝎

𝑵

𝒓=𝟏

 (38) 

Furthermore, the receptance for the ith node (degree of freedom) with a single excitation force 
at kth degree of freedom can be calculated by 

 𝑯𝒊𝒌(𝝎) =
𝑿(𝝎)

𝑳(𝝎)
= ∑

𝝓𝒊𝒓𝝓𝒌𝒓

𝝎𝒓
𝟐 − 𝝎𝟐 + 𝟐𝒋𝜻𝒓𝝎𝒓𝝎

𝑵

𝒓=𝟏

 (39) 

Conversion from displacement to velocity and acceleration may be achieved through 
multiplication by ω and ω2, respectively. The response can be found using the receptance to 
calculate the response and mean square of the response [Yang, 1986]. 

Response at coordinate i of an MDOF system to a single stationary random excitation at 
coordinate k is calculated by 

 𝑺𝒊(𝝎) = |𝑯𝒊𝒌||𝑯𝒊𝒌|𝑺𝒌(𝝎) (40) 

The mean square of spectral response may be calculated by 

 𝛔𝐢
𝟐 = ∫𝐒𝐢(𝛚)𝒅𝝎 (41) 

Verification of the Mathematical Model and Analysis Process 

Literature is reviewed for studies which perform free vibration analysis of isolation systems. 
An isolation system from literature, whose natural frequencies are shared out explicitly, is 
modeled in an FE environment. Natural frequencies of the reference study and FE model are 
compared to be sure of that the finite element model is created properly. Once the FE model 
is made certain of, random response analysis is conducted and response results for 
displacement, velocity and acceleration are obtained in the FE environment.  

The reason to use an FE environment is the facility to simulate lots of different isolation 
systems. Furthermore, random response analysis data is not readily accessible in literature. 
This makes the complete verification of the developed tool difficult. However, it is relatively 
easier to reach modal properties of various isolation systems in literature, and this fact is 
utilized to verify whether the FE model is created correctly, which is required to continue with 
the random response analysis. Hereby, both the free vibration and forced vibration 
procedures of an entire vibration analysis are achieved through the FE model. Eventually, 
analysis results which are obtained from the FE model are used to verify the developed 
computer code. 

There exist plenty of finite element software packages such as Feemap®, SESAM®, 
Abaqus®, Hypermesh®, Ansys®, Nastran®, etc. Nastran® is developed by NASA and 
commonly employed in the aerospace industry. The finite element environment used in this 
study is MSC Patran/Nastran®. It is a multidisciplinary structural analysis software which can 
perform static, dynamic, and thermal analysis in both linear and nonlinear domains. 

Center-of-gravity installation arrangement of four coplanar identical resilient elements with 
three planes of vibrational symmetry is considered in this example [Vane, 1958]. Isolation 
subjects to a solid homogeneous rectangular body, and the results are found by analytical 
calculations. 
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Isolation system is shown in Figure 6. Isolation system properties are given in inertial axis 
system �̅�𝒀𝒁̅̅ ̅̅ , and center-of-gravity and mounting positions are given in global axis system 
xyz. Mounting orientations of resilient elements are also given with respect to the global axis 
system xyz.  

 

Figure 6: Representation of the Sample Isolation System 

Positions of center-of-gravity and mounting points beside the directional cosines of mounts 
and body dimensions are presented in Table 2. 

Table 2: Geometric Texture of the Isolation System 

Parameter x [mm] y[mm] z[mm] 

Directional 

Cosine 

CG 635.0 406.4 254.0 N/A 

Isolator I 1219.2 889.0 254.0 <0,0,1> 

Isolator II 50.8 889.0 254.0 <0,0,1> 

Isolator III 50.8 -76.2 254.0 <0,0,1> 

Isolator IV 1219.2 -76.2 254.0 <0,0,1> 

Body Dimension 1270.0 812.8 508.0 N/A 

Inertial properties of the isolation system which comprise of mass and mass moments of 
inertia in principal directions are given in Table 3. 

Table 3: Inertial Properties of the Isolation Systems 

Component 𝑚 [𝑀𝑔] IX̅ [𝑀𝑔𝑚𝑚4] IY̅[𝑀𝑔𝑚𝑚4] IZ̅[𝑀𝑔𝑚𝑚4] 

Body 1.8144 138906.2888 282884.9983 343754.0462 

 

Elastic properties of resilient elements of the isolation system are presented in Table 4. 
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Table 4: Elastic Properties of the Isolation System 

Parameter Kaxial [N/mm] Kradial [N/mm] ζr 

Isolator I 4027.92 4027.92 0.05 

Isolator II 4027.92 4027.92 0.05 

Isolator III 4027.92 4027.92 0.05 

Isolator IV 4027.92 4027.92 0.05 

 

Insofar, all the parameters required for a complete definition of the isolation system are 
provided. Based on these parameters, FE model is created in the MSC Patran/Nastran® 
software. 

System FE model 

FE Model contains CBUSH elements to represent resilient mounts in the system. Besides, 
CONM2 element to represent the rigid body by introducing mass and inertia properties is 
rigidly connected to the CBUSH elements with RBE2 elements in all degrees of freedom. 
Model generation is performed in the MSC Patran® pre-processor environment. 

As the solution sequence, SOL 111 included in the MSC Nastran® analysis solver is 
employed. Excitation is introduced to the system from the fixed ends of CBUSH elements, 
which represent the rigid connection points of resilient mounts to the base. Response is 
measured from the center-of-gravity of the isolated body which corresponds to the position of 
the CONM2 element. 

FE model is shown in Figure 7. 

 

 

Figure 7: Representation of the FE Model 

According to the free vibration analysis results of both FE model and reference application 
natural frequencies are compared in Table 5. The results are demonstrated to be in good 
agreement. 
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Table 5: Natural Frequency Comparison of Reference [Vane, 1958]  & FE Model 

DOF 

Natural Frequency [Hz] 

Difference [%] FE Model Reference [Vane, 1958] 

1 14.998~15.0 15.0 0.0 

2 14.998~15.0 15.0 0.0 

3 14.998~15.0 15.0 0.0 

4 22.189~22.2 22.3 0.4 

5 26.109~26.1 26.1 0.0 

6 26.159~26.2 26.1 0.4 

 

Following the confirmation of that the FE model is created properly by correct definition of 
mass and stiffness terms, modal property results of the FE model are compared with those of 
the mathematical model. According to the free vibration analysis results of both the FE model 
and mathematical model, modal properties are compared in Table 6 and in Table 7 in terms of 
natural frequencies and eigenmodes, respectively. 

Table 6: Natural Frequency Comparison of Mathematical Model & FE Model 

DOF 

Natural Frequency [Hz] 

Difference [%] FE Model Mathematical Model 

1 14.998 14.998 0.0 

2 14.998 14.998 0.0 

3 14.998 14.998 0.0 

4 22.189 22.189 0.0 

5 26.109 26.109 0.0 

6 26.159 26.159 0.0 

 

Table 7: Eigenmode Comparison of Mathematical Model & FE Model 

Natural 

Frequency [Hz] 
 

Eigenmode Constituent 

1 2 3 4 5 6 

14.998 

FEM -0.7424 0.0 0.0 0.0 0.0 0.0 

TOOL* -0.7424 0.0 0.0 0.0 0.0 0.0 

DIFF [%] 0.0 0.0 0.0 0.0 0.0 0.0 

14.998 

FEM 0.0 0.7424 0.0 0.0 0.0 0.0 

TOOL 0.0 0.7424 0.0 0.0 0.0 0.0 

DIFF [%] 0.0 0.0 0.0 0.0 0.0 0.0 

14.998 

FEM 0.0 0.0 0.7424 0.0 0.0 0.0 

TOOL 0.0 0.0 0.7424 0.0 0.0 0.0 

DIFF [%] 0.0 0.0 0.0 0.0 0.0 0.0 

22.189 FEM 0.0 0.0 0.0 0.0 0.00188 0.0 
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Table 7 continued. 

TOOL 0.0 0.0 0.0 0.0 0.00188 0.0 

DIFF [%] 0.0 0.0 0.0 0.0 0.0 0.0 

26.109 

FEM 0.0 0.0 0.0 0.0 0.0 0.00170 

TOOL 0.0 0.0 0.0 0.0 0.0 0.00171 

DIFF [%] 0.0 0.0 0.0 0.0 0.0 0.6 

26.159 

FEM 0.0 0.0 0.0 -0.00268 0.0 0.0 

TOOL 0.0 0.0 0.0 -0.00268 0.0 0.0 

DIFF [%] 0.0 0.0 0.0 0.0 0.0 0.0 

*TOOL refers to the developed computer code which implements vibration analysis through the 

mathematical model 

Result of modal properties show that mathematical model is created properly by correct 
definition and formulation of mass and stiffness elements. Mode shapes obtained from the 
FE model and mathematical model are illustrated in Figure 8 and Figure 9, respectively. 

 

 

Figure 8: Mode Shapes by the FE Model 
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Figure 9: Normalized Mode Shapes by the Mathematical Model 

 

Modal assurance criterion is also applied to visualize the identity extent of the mode sets. 
Yellow and purple boxes in Figure 10 correspond 1 and 0, respectively. This indicates that 
MAC values are 100% or that the mode sets of the FE model and mathematical model are 
identical. 

 

Figure 10: Modal Assurance Criterion 
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Random response analysis of the mathematical model is also to be verified. A random 
excitation of acceleration spectrum is considered to demonstrate the capability of the 
theoretical model to execute a random response analysis. Acceleration power spectral 
density function has units of acceleration g2/Hz versus frequency Hz. In the meantime, 
acceleration may be expressed in metric units as (mm/s2)2/Hz. System is subjected to the 
constant acceleration of 0.01 g2/Hz over the entire frequency range as shown in Figure 11. 

 

 

Figure 11. ASD Input in Z-Direction 

 

System response is obtained as acceleration response, velocity response and displacement 
response for comparison. Random response graphs are presented in Figure 12 through. 
Figure 14. There is a remarkable agreement between the response curves. 

 

 

Figure 12: Response Comparison for Displacement in Z-Direction 
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Figure 13: Response Comparison for Velocity in Z-Direction 

 

 

Figure 14: Response Comparison for Acceleration in Z-Direction 

 

Root mean square (RMS) values of response spectrums are also compared in Table 8. 

Table 8. RMS Comparison 

Response 
 Degree-of-Freedom 

 Z 

Displacement RMS 

FEM [mm] 1.774 

TOOL* [mm] 1.774 

DIFF [%] 0.0 

Velocity RMS 

FEM [mm/s] 159.592 

TOOL [mm/s] 159.592 

DIFF [%] 0.0 

Acceleration RMS 

FEM [mm/s2] 14779.08 

TOOL [mm/s2] 14779.11 

DIFF [%] 0.0 

*TOOL refers to the developed computer code which implements vibration analysis through the 

mathematical model 
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In conclusion, vibration analysis of a passively isolated equipment is completed by 
developing a computer code which is brought into use via a GUI. A mathematical model with 
realistic viscous damping is created with pre-determined spatial values. Mathematical 
modeling of the system is followed by normal modes and random response analyses. 
Eventually, the mathematical modeling and performed vibration analysis are verified by 
comparing results with those of created FE model. Modal property and random response 
results of the developed computer code and FE model show well agreement. Therefore,  a 
convenient vibration analysis environment with the opportunity of a GUI is developed by 
utilizing open software  Python environment  for passively isolated jet aircraft avionics.
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Appendices 

A. GUI of Developed Computer Code 

 

GUI is composed of three main sections:  
Section for the definition of spatial properties 
Section for the preparation of the optimization problem 
Section for the setup of the uncertainty simulation parameters 

In the first section, job name and description are optionally required for convenience. 
Furthermore 

i Mass 
ii Geometric Shape may be either point or other basic shapes such as cube. This 

option is provided for automatic calculation of mass moment of inertia. 
iii Geometric Dimensions if (ii) exists. 
iv CG 

a. At Centroid is available if (ii) exists 
v Inertia Tensor 

a. Automatic Calculation is available if (ii) exists 
vi Isolator Connection requires position and orientation of each single isolator.  

a. Natural Coord option is available if (ii) exists 
b. List button enables checking and modifying added isolators 

vii Elastic Properties can be entered separately for each single isolator previously 
added. 

History window at the bottom enables following the taken actions on the window. 
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