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ABSTRACT 
 
This paper presents a method to calculate aerodynamic forces and moment of a hawkmoth 
Manduca sexta wing and to control a flapping wing Micro Air Vehicle (MAV) for navigation. 
The dynamical model of the MAV is inspired from hawkmoth Manduca sexta and is derived 
using 6 states. The control inputs are the stroke plane angle and wingbeat frequency. An 
optimal controller is designed to track the given position reference. It is shown by the 
simulations that the designed controller satisfies taking-off, hovering, forward motion and the 
landing. 
 

INTRODUCTION 

In order to perform operations that require high maneuverability and quietness, the flapping 
wing MAVs are convenient due to their small size and agility [Kurtulus, 2011a; Kurtulus, 
2011b]. Mathematical aerodynamic modeling of the flapping wing flight and body dynamics 
are presented by [Deng et al. (2006a)]. Flapping Wing MAV’s dynamic characteristics are 
observed to be unstable in hover [Sun et al. 2005, Sun et al 2007]. This increases the 
difficulty of control for flapping wing MAV and there is a need to investigate the unsteady 
aerodynamics of the flapping wing flight in detail in order to model their flight characteristics. 
Therefore, working on the wing kinematics and morphology of flying insects is an important 
issue for modelling and designing flapping wing MAVs [Kurtulus et al. 2004, 2005, 2006a, 
2006b, 2008; Kurtulus, 2009, Kurtulus, 2018]. 

In recent years, lots of studies have been carried out for the stabilization and control of 
flapping wing MAVs [Keennon et al., 2012; Nakatani et al., 2016; Garcia et al., 2003]. 
Different control methods have been tried for stabilization of flapping wing MAVs [Orlowski et 
al., 2012]. The desired motion is produced by changing the center of gravity of a butterfly-like 
flapping wing MAV where PI controller for the pitching angle and PID controller for the roll 
angle was used. PID controllers are used separately for the pitch and roll controls where the 
simulations gave satisfactory results in small angle maneuvers. Studies have also been 
made for altitude control with PID controller [Hines et al., 2011]. 
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The nonlinear system was linearized in hover condition and stability studies were performed 
with state feedback control where the LQR was used [Deng et al. 2006b]. LQR controller is 
used to stabilize a flapping wing MAV model that is linearized around hover. It is suggested 
that controller which is designed for hover can also be used to control low forward speeds. It 
is also stated that under which conditions the weightless wing model is sufficient and under 
what conditions the weight should not be neglected [Biswal, 2015]. There are some other 
studies that LQR method is used to calculate state feedback gain [Bhatia et al., 2012]. 

A non-linear control method is presented by [Rifai et al. (2008)] which shows that linear 
control methods are not sufficiently robust against external disturbing inputs. In another 
study, non-linear modeling of a flapping wing MAV was performed where the stability is 
tested with Lyapunov Method [Banazadeh et al., 2016]. 

In the current study, the dynamical model is inspired from an insect, namely hawkmoth 
Manduca sexta and the control is performed by the derivation of the dynamical model using 6 
states. The control inputs are the stroke plane angle and wingbeat frequency. 

 

METHOD 

In the current study, the altitude is controlled by changing the flapping frequency and the 
longitudinal motion is controlled by changing the stroke plane angle. Flapping frequency of a 
hawkmoth Manduca sexta varies between 24.8 Hz and 26.5 Hz at different flight speeds. 
Especially for the hovering flight, the wingbeat frequency is stated as 26.1 Hz. The stroke 
plane angle of a hovering Manduca sexta is 15o while it can get up to 60o at high forward 
speeds [Willmott et al., 1997]. The mass of the flapping wing MAV is assumed to be the 
same with the mass of a hawkmoth Manduca sexta which is approximately 1.456 grams 
[Kim, 2015]. In order to provide the hover condition of the flapping wing MAV, a flapping 
motion with 26.1 Hz is selected. But unlike a real hawkmoth Manduca sexta, the stroke plane 
angle is kept at 22o at hover. The difference is presumed to be resulted from the assumptions 
done during the modelling. 

 

Coordinate Definitions 

To introduce the wing kinematics 3 different coordinate frames which are Body Fixed 
Coordinate Frame (XB,YB,ZB), Global Frame (XG,YG,ZG) and Wing Fixed Coordinate Frame 
(XW,YW,ZW)  are shown in Figure 1a and Figure 1b. As shown in Figure 1, Body Fixed 
Coordinate Frame is fixed to the center of gravity of the body and XB axis is along the body of 
the insect. ZB axis is perpendicular to body and XB axis. The axis YB is pointing out of the 
page, perpendicular to the XB and ZB axes. The Global Frame is fixed at any point on the 
ground. The XG axis is pointing the North and the ZG axis is through the center of the Earth. 
The YG axis is perpendicular to the XG and ZG axes and is through to the out of the page. 
Wing Fixed Coordinate Frame is fixed to the wing root as it is shown in Figure 1b. XW is 
along through the chord and ZW is pointing the wing tip throughout wingspan.  

β is the stroke plane angle and θ which is 39.8𝑜 at hover is the body pitch angle in Figure 1a. 
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a) Side view 

 

b) Top view 

Figure 1 Coordinate definitions and kinematic parameters of the Flapping Wing MAV 

 

Aerodynamic Model 

The aerodynamic model used to get lift, drag and rotational forces is based on a quasi-
steady model that is proposed by [Kim et al. (2014)]. The translational and rotational forces 
were considered while added-mass effect and wake-capture were neglected at the quasi-
steady approach. 

In the current study, the hawkmoth Manduca sexta wing that is used for the aerodynamic 
model is drawn by attaching the leading edge to the trailing edge where they are both 
represented via simple functions as shown in Figure 2. The wing is separated into equal 
pieces along the chord as shown in Figure 2. Total forces and the moment are computed by 
integrating the lift, the drag and the moment that are created on each strip. 

 

Figure 2 Hawkmoth Manduca sexta wing model (Number of strips = 10) 
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From the aerodynamic model, the lift, the drag and the moment around the root at (0,0) point 
of the wing is obtained (Figure 2). Vertical, horizontal and rotational forces acting on the 
center of gravity of the flapping wing MAV are obtained by translating these forces to the 
Global Frame.  

In order to obtain enough vertical force that supports the weight of the flapping wing MAV, 
which is one of the main objectives, the model is evaluated. As a first step a strip refinement 
study is performed to check the number of strip effects on the aerodynamics forces. Six 
different cases are compared with respect to number of strips = 25, 50, 75, 100, 125 and 150 
as shown in Figure 4. 

For the simulations, the kinematics used are given in Eq. 1 to Eq.6 which are taken from [Kim 
et al. (2014)]. 

𝜑(𝑡) = 𝜑𝑎𝑚𝑝𝑠𝑖𝑛(2𝜋𝑓𝑡)     (1) 

 

�̇�(𝑡) = 𝜑𝑎𝑚𝑝  ∙ (𝜋/180)(2𝜋𝑓)𝑐𝑜𝑠(2𝜋𝑓𝑡)     (2)

  

 

𝜃(𝑡) = 𝜃𝑎𝑚𝑝𝑠𝑖𝑛(2𝜋𝑓𝑡)                  (3) 

 

�̇�(𝑡) = 𝜃𝑎𝑚𝑝  ∙ (𝜋/180)(2𝜋𝑓)𝑐𝑜𝑠(2𝜋𝑓𝑡)     (4)

  

 

𝛼(𝑡) =
𝛼𝑎𝑚𝑝

tanh (𝐶𝛼)
∙ tanh (𝐶𝛼 ∙ sin(2𝜋𝑓𝑡 + 𝜓𝛼)) + 𝛼0   (5) 

�̇�(𝑡) =
𝛼𝑎𝑚𝑝

tanh (𝐶𝛼)
∙ (𝜋/180)(2𝜋𝑓) ∙ [1 − (tanh(𝐶𝛼 ∙ sin(2𝜋𝑓𝑡 + 𝜓𝛼)))2] ∙ (𝐶𝛼 ∙ cos(2𝜋𝑓𝑡 + 𝜓𝛼))                  (6) 

 
In the current study, 

𝜑𝑎𝑚𝑝 = −55.4° 

𝜃𝑎𝑚𝑝 = 0° 

𝛼𝑎𝑚𝑝 = 45° 

𝛼0 = 90° 
f = 26.1 Hz 
𝐶𝛼 = 4.5 

𝜓𝛼 = −
𝜋

2
 

 
The wing kinematics used for calculations is shown in Figure 3a and Figure 3b. 
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Figure 3 a) Angular positions of the wing with respect to time during one period b) Angular 
velocities of the wing with respect to time during one period 

 

 

 

Figure 4 Representation of the hawkmoth Manduca sexta wing model based on different 
number of strips 

 

As the number of strips is increased, the created vertical force converges to a maximum 
value which is enough to lift a hawkmoth Manduca sexta as represented in Figure 5. The 
convergence is obtained after 125 strips. The case with the number of strips of 150 creates 
0.014298 Newton which is found to be satisfactory in order to support the weight of the 
flapping wing MAV which is assumed to have the same mass with a hawkmoth Manduca 
sexta. 
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Figure 5 Mean vertical force versus number of strips 

 

The vertical and horizontal forces at 22 degrees stroke plane angle are shown in Figure 6. 

 

 

Figure 6 Vertical and horizontal forces with respect to time for one period 

 

Vertical and horizontal forces obtained with different stroke planes angles are shown in 
Figure 7 and Figure 8 
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Figure 7 Vertical forces for different stroke plane angles with respect to time for one period  

 

 

 

Figure 8 Horizontal forces for different stroke plane angles with respect to time during one 
period 
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System Modelling 

The forces and moments created by the flapping of the wing were applied to the wing root. 
The distance between the wing root and the center of mass of the MAV acts as moment arm 
and the pitching movement occurs. The forces FXB, FZB and the moment MYB includes the 
aerodynamic forces and moment. The LTI model is obtained for hovering condition. 

The 2D flight of a flapping wing MAV is studied and velocity components are obtained as Eq. 
(7). 

�⃗� = 𝑋�̇�𝑖 + 𝑍�̇� �⃗⃑� = 𝑢𝑖 + 𝑤�⃗⃑� 
(7) 

 

When the time-dependent derivative of the body velocity is achieved, the body accelerations 
aXB and aZB are found as shown at Eq. (8). 

�⃗⃑�
̇
= (�̇� + 𝑤𝑞)𝑖 + (�̇� − 𝑢𝑞)�⃗⃑� (8) 

where, aXB is the acceleration of the body in XB direction and aZB is the acceleration of the 
body in ZB direction. 

        𝑎𝑋𝐵 = �̇� + 𝑤𝑞 

 

(9) 

       𝑎𝑍𝐵 = �̇� + 𝑢𝑞 

 

(10) 

 

Total forces acting on the body is equal to the mass times acceleration. Similarly total 
moment acting on the center of gravity is equal to the moment of inertia times angular 

velocity. �̇�, �̇� and �̇� are found as shown between Eq. (11) and Eq. (13) 

  

�̇� = −𝑤𝑞 + 𝐹𝑋𝐵 − 𝑔𝑠𝑖𝑛𝜃 

 

(11) 

 

�̇� = 𝑢𝑞 + 𝑔𝑐𝑜𝑠𝜃 − 𝐹𝑍𝐵 (12) 

 

�̇� =
𝑀𝑌𝐵

𝐽𝑌
 

(13) 

 
 

Six state equations are obtained as shown in Eq. (14) to Eq. (19). 

𝑥1̇ = 𝑥2 = �̇�𝐵 = 𝑢𝑐𝑜𝑠𝜃 − 𝑤𝑠𝑖𝑛𝜃 
(14) 

 

𝑥2̇ = 𝑥1̈ = 𝑋�̈� =
𝐹𝑋𝐵

𝑚
𝑐𝑜𝑠𝜃 +

𝐹𝑍𝐵

𝑚
𝑠𝑖𝑛𝜃 − 2𝑔𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 

 

(15) 

 

𝑥3̇ = 𝑥4 = 𝑍�̇� = 𝑢𝑠𝑖𝑛𝜃 + 𝑤𝑐𝑜𝑠𝜃 
(16) 

 

𝑥4̇ = 𝑥3̈ = 𝑍�̈� =
𝐹𝑋𝐵

𝑚
sinθ −

𝐹𝑍𝐵

𝑚
𝑐𝑜𝑠𝜃 − 𝑔𝑠𝑖𝑛2θ + g𝑐𝑜𝑠2θ (17) 
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𝑥5̇ = 𝑥6 = 𝑞 
(18) 

 

𝑥6̇ = 𝑥5̈ = �̇� =
𝑀𝑌𝐵

𝐽𝑌
 

(19) 

 

The System Matrix A is achieved by Jacobian Matrix Method. Derivatives of all the six state 
equations from Eq. 14 to Eq. 19 with respect to each of the six state variables                    

𝑥 = [𝑥𝐵 𝑥�̇� 𝑧𝐵 𝑧�̇� 𝜃 𝑞]𝑇 are obtained. The result is 6 by 6 linearized System Matrix A as shown 
in Eq. (20) 

 

(20) 

 

 

RESULTS 

 

Stability Analysis and Stabilization 

At this stage numerical values of System Matrix A that are proposed by [Lee et al. (2014)] 
are used. The System Matrix A that is used for the stability analysis and controller design is 
shown in Eq. (21).  

 

𝐴 =

[
 
 
 
 
 
0 1 0
0   −1.7008       0
0 0 0

0 0 0
−0.4986 −7.5291 −0.0009

1 0 0
0 −1.6286    0
0 0    0
0 −351.4311    0

−1.8916 −6.2730 −0.0005
0 0 1

205.7584 0 −0.7916]
 
 
 
 
 

 

 

(21) 

 

Two of the eigenvalues of the open loop system is located on the positive side of the real 
axis so the system has unstable dynamic characteristics Eq. (22). 
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𝜆 =

[
 
 
 
 
 

0
0

−16.9804
6.7527 + 13.6469𝑖
6.7527 − 13.6469𝑖

−0.9089 ]
 
 
 
 
 

 
(22) 

 

 

In order to calculate the Control Matrix B, derivatives of the six state equations between Eq. 
(14) and Eq. (19) with respect to the control variables that are control input angle (β) and 
wingbeat frequency (f) are obtained. The 6 by 2 Control Matrix B is created with the results.  

Control Matrix B is obtained by calculating the changes of the 6 state equations according to 
the control input angle (β) and wingbeat frequency (f) Eq. (23). 

 

B =

[
 
 
 
 
 
 
 
 
 

0
∂ẟFXB

∂ẟβ⁄ cosθ +
∂ẟFZB

∂ẟβ⁄ sinθ          

0
∂ẟFXB

∂ẟf⁄ cosθ +
∂ẟFZB

∂ẟf⁄ sinθ

0
∂ẟFXB

∂ẟβ⁄ sinθ −
∂ẟFZB

∂ẟβ⁄ cosθ          

0
∂ẟFXB

∂ẟf
⁄ sinθ −

∂ẟFZB
∂ẟf

⁄ cosθ

0
∂ẟMYB

∂ẟβ⁄

0
∂ẟMYB

∂ẟf
⁄

]
 
 
 
 
 
 
 
 
 

 

 

(23) 

The numerical values that are proposed by [Lee et al. (2014)] are used at this stage and the 
Matrix B is shown as Eq. (24). 

B =

[
 
 
 
 
 

0 0
7.73 0.51
0 0

6.6 −0.59
0 0

−686.52 −0.55]
 
 
 
 
 

 
(24) 

 

 

Algebraic Riccati Equation is solved to calculate the feedback gain by aiming to minimize the 
cost function Eq. (25). 

𝐽 =  
1

2
∫ (𝑥𝐵

𝑇𝐹𝑥𝐵 + 𝑢𝑏
𝑇𝐺𝑢𝑏)𝑑𝑡

∞

0

 (25) 

 

The weight matrixes F and G are chosen as Eq. (26) and Eq. (27) to minimize the Cost 
Function J [Lee et al. (2014)]. 
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𝐹 =

[
 
 
 
 
 
10 0 0
0 1 0
0 0 10

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 10 0
0 0 1]

 
 
 
 
 

 
(26) 

 

 

𝐺 = [
0.01 0
0 0.041

] (27) 

 

After the full state feedback is applied to the system, all the six states became stable as 
shown in Figure 9. 

 

Figure 9 Closed loop system response of the flapping wing MAV model 

 

 

Tracking Controller 

In order to make the system states to come to the desired values, an integral tracker has 
been designed to track the reference value. Reference inputs are given for forward and 
upward movement to the LTI system that is modelled for hover. The input value is such that 
Flapping Wing MAV will move to a height of 1 meter during 2 seconds and after staying in 
the hover condition at this height for 3 seconds, to move 5 meters forward. After staying in 
the hover condition again for 3 seconds, the Flapping Wing MAV will land on the ground in 2 
seconds. The reference inputs and the responses of the system are given in Figure 10a and 
Figure 10b. 
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a) The desired XG input and the XG response of the system. 

 

 

 

b ) The desired ZG input and the ZG response of the system. 

 

Figure 10 Responses of the system to reference inputs 

 

In order to track the reference XG, the error is tried to be reduced to zero. Consequently a 
deterioration occurs at ZG output between seconds 7 and 13 as shown in Figure 10b. 
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Conclusion 

The dynamical model of a hawkmoth Manduca sexta insect is derived using 6 states. LQR 
controller is found to be proper to stabilize a Flapping Wing MAV at hover condition. The 
controller which is designed for the hover condition is tested at low speed flights and the 
simulation was able to track the reference inputs. Calculations and simulations have been 
made in Matlab and Matlab/Simulink. 
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