
10th ANKARA INTERNATIONAL AEROSPACE CONFERENCE AIAC-2019-035

18-20 September 2019 - METU, Ankara TURKEY

AN EDUCATIONAL IN-HOUSE PYTHON COMPUTATIONAL FLUID

DYNAMICS (CFD) CODE

Fatima Abusbei∗ and Abdulhaq Emhemmed†

University of Tripoli

Tripoli, Libya

Ashraf A. Omar‡

International University of Rabat

Rabat, Morocco

ABSTRACT

In this work, in-house computational fluid dynamics (CFD) code was developed to solve five pop-
ular fluid dynamics and heat transfer problems. The code was written using python programming
language and in order to improve the written code object-oriented programming protocol (OOP)
was used. The solved problems are Couette flow, steady and unsteady heat conduction, cavity
flow and backward facing step. The finite difference method (FDM) was used to reduce the partial
differential equations of the governing equation to a set of algebraic equations (Discretization).
Iterative procedure for the explicit and implicit methods was used to solve the discrete system.
Modern Multi-steps technique such as alternate directional implicit (ADI) method was also used
in some cases. The obtained numerical results of the solved problems were compared to published
results from the literature. Good agreement was achieved in most cases.

Keywords: In house CFD code, python programming language, object-oriented programming protocol (OOP).

INTRODUCTION

To analyze engineering systems, two methods are applied. First method, a physical model of the
system has to be made and put in an experimental. The second method is to drive a mathematical
model that represents the system and then solve it. Experimentation has been an extremely important
method to advance engineering. However, it has limitations. For example, it is expensive. Systems
that have many variables need to be analyzed with all these variables altered, this is di�cult to perform
in a laboratory. Another example is that experimentation is sometimes impossible or it requires tools
that are not available. For example, if the
ow of blood in the human body is to be studied, it is
impossible to perform such study especially in certain areas of the body.

Solving the mathematical model that represents the system is also a di�cult task, however, it has
the advantage of not requiring any physical model to be made. Its disadvantage is that for most
engineering systems, the mathematical model is a set of partial di�erential equations (PDEs) that are
di�cult or impossible to solve analytically. Therefore, numerical techniques need to be used to obtain
a solution.

∗Researcher, Email: f.abusbei@aerodept.edu.ly
†Teaching/Research Assistant , Email: abdulhaq.emhemmed@aerodept.edu.ly
‡Prof. in a school of Aerospace and Automotive Engineering , Email: ashraf omar@uir.ac.ma

AIAC-2019-035 Abusbei, Emhemmed & Omar

When using computers to solve PDEs that model
uid
ow numerically, this topic is called Computa-
tional Fluid Dynamics (CFD). As the power of computing increased, CFD has become an independent
�eld taught on its own. This work summarizes a project carried out to produce a simple in-house CFD
python code that will allow students to learn from and adapt to their needs very easily. The purpose
of the code is not to simulate real engineering cases such as those used by commercial products or
large research codes. It is to demonstrate CFD on basic applications with the ability to extend the
code without large editing. The choice of tools made to create the code to satisfy these requirements.

METHODOLOGY

Numerical Method

The general form of a partial di�erential equation is given by:

A
∂2φ

∂x2
+B

∂2φ

∂x∂y
+ C

∂2φ

∂y2
+D

∂φ

∂x
+ E

∂φ

∂y
+ Fφ+G = 0 (1)

The equation above was taken from ref[VERSTEEG H. K. , and MALALASEKERA W., 1995]

Where A,B,C,D,E, F,G are constants. The values of these constants determine the type of the
partial di�erential equation. The type depends on B2 − 4AC:

1. Parabolic PDE if B24AC = 0.

2. Elliptic PDE if B24AC < 0.

3. Hyperbolic PDE if B24AC > 0.

Each type has its own behavior and solution hence di�erent numerical methods need to be applied.

Numerical methods have been developed to solve any of the PDEs. Three famous methods are the
�nite di�erence method (FDM), the �nite volume method (FVM) and �nite element method (FEM).

The FDM is the most basic one and understanding it will help to understand others. It can be explained
simply by expressing each partial derivative by an algebraic fraction and the resulting equation is applied
to a set of points (called nodes) and this set of points make what is called the mesh.

Transforming the PDE into an algebraic equation is called discretization. Many numerical schemes are
developed for this process. Each scheme has its advantages and disadvantages. For example, some
schemes are slower to converge than others, some schemes are unstable for a certain equation or only
stable under certain conditions.

The basis of discretization is using Taylor series:

f(x+ ∆x) = f(x) + ∆x
∂f

∂x
+

∆x2

2!

∂2f

∂x2
+

∆x3

3!

∂3f

∂x3
+

∆xn

n!

∂nf

∂xn
(2)

Di�erent type of numerical schemes are used to solve problems and this depends on
ow models.

Whereas:

Couette Flow was solved by this schemes: FTCS, DuFort-Frankel, Laasonen and Cronk-Nicolson
scheme. Unsteady heat conduction problem was solved by Alternating Direction Implicit (ADI) scheme.
Steady heat conduction problem was solved by Point Successive Over-Relaxation (PSOR) and Line
Successive Over-Relaxation (LSOR) scheme. Cavity Flow problem was solved by: FTCS scheme for
vorticity and PSOR scheme for stream function.

Code Development

Python chosen as the programming language, because it is tops all the recent programming language
charts [Diakopoulos N. , and Cass S., 2017]. Moreover, Its features and packages has made scientists

2
Ankara International Aerospace Conference

AIAC-2019-035 Abusbei, Emhemmed & Omar

and engineers to adopt it. Finally, it is �rst choice in computational and data science [Python Core
Team, 2015].

Object Oriented Programming protocol (OOP) has been used to make structured code easy to use,
understand, read and develop. Object oriented programming is a software engineering paradigm used
to help software engineers to design software by modeling its components like real life objects. This
helps in organizing the codes and to solve problems like code repetition which exists in procedural
programming.

The code has been developed by using the agile philosophy. In the agile method, the requirements
are not completely gathered, the code is improved by steps. For example, a very simple sample is
developed initially, it is tested to ensure it is working correctly. Then the code is refactored to add
more features. This is repeated until the code satis�es the requirements.

The features of OOP were used extensively, and it has been used to avoid repeat functions. For this
purpose, the code has been divided to many classes, the main class that all solvers inherent is solver
class. This class has two other classes: a class for steady state solvers inherits from the base solvers
class and a class is available for unsteady solvers. All solvers will inherit from these two base classes.
For example, a solver for Laplace equation is a steady solver, it will inherit from steady solver and
implement the appropriate methods (e.g. solve steps and calculate error).

Moreover, using the code is very easy, no need to even open the code at sometimes, just the required
class must be imported and all the information such as mesh, time step and dimensions ..etc must be
accessed. This is the main features of the code. What is more, the cod is easy to develop, as a result,
just by writing the equations and inheritance the new scheme will be added easily.

Couette
ow problem has been solved by four schemes. Couette-Flow-Solver is the main class for
Couette
ow case. This class inherits from Steady Solve class. and each scheme has its own class,
all classes inherit from Couette-Flow-Solver, consequently, add new scheme is very simple. All other
cases have been written by the same technique.

The testing code is an important aspect of software engineering, the importance is greater when the
code changes frequently. In the development of this code, testing was used extensively to ensure that
no mistakes were made as the code changes. All schemes have code to test all the results. Version
control software (VCS) is an important tool in software engineering and has been used in this work.
From this tool the returning to any code edition easy and simple. Moreover, it can be used and edited.

Code samples

The following sample is for solving Couette
ow using FTCS discretization:

class CouetteFlowFTCSSolver (Coue t t eF l owSo l v e r) :

def d i s c r e t i s a t i o n (s e l f) :
u n = s e l f . s o l u t i o n [' t emp s o l u t i o n '] [' u n ']
return u n [1 : −1] + s e l f . CFL ∗ (
u n [2 :] − 2 ∗ u n [1 : −1] + u n [0 : −2])

def s o l v e t i m e s t e p s (s e l f) :
for n in range (1 , s e l f .NM + 1) :
s e l f . s e t b o u n d a r y c o n d i t i o n s ()
s e l f . t im e s t e p = n
s e l f . s o l u t i o n [' t emp s o l u t i o n '] [' u n ']=
s e l f . s o l u t i o n [' u '] . copy ()
s e l f . s o l u t i o n [' u '] [1 : −1] = s e l f . d i s c r e t i s a t i o n ()

A sample test for the above code is given below:

class TestCouetteFlowFTCS :

3
Ankara International Aerospace Conference

AIAC-2019-035 Abusbei, Emhemmed & Omar

c o n f i g = {
' Scheme ' : 'FTCS ' ,
' Time Step ' : 0 . 002 ,
' Time ' : 1 . 08 ,
'mu ' : 0 .000217 ,
'Mesh ' : mesh ,
' Boundary Cond i t i o n s ' : BC
}
s o l v e r = CouetteFlowFTCSSolver (c o n f i g=c o n f i g)
s o l v e r . s o l v e ()

def t e s t c o u e t t e f l o w b o u n d a r y c o n d i t i o n s (s e l f) :
bottom p l a t e
a s s e r t np . a l l (np . i s c l o s e (s e l f . s o l v e r . s o l u t i o n
[' u '] [0] , 40))

top p l a t e
a s s e r t np . a l l (np . i s c l o s e (s e l f . s o l v e r .
s o l u t i o n [' u '] [−1] , 0))

#def t e s t c o u t t e f l o w i n i t i a l c o n d i t i o n s () :
a s s e r t np . a l l (np . i s c l o s e (s o l v e r . s o l u t i o n
[' u '] [1 : −1] , 0))

def t e s t c o u e t t e f l o w r e s u l t s (s e l f) :
a = s e l f . s o l v e r . s o l u t i o n [' u ']
a s s e r t np . a l l (np . i s c l o s e ([a [1 0]] , [2 5 . 7 3 9] ,
r t o l =1.e−4))

4
Ankara International Aerospace Conference

AIAC-2019-035 Abusbei, Emhemmed & Omar

RESULTS AND DISCUSSION

In this section, some obtained results are showed and discussed.

Couette Flow

Figure 1 shows the variation of the velocity was function of time 1, with moving bottom plate, using
the FTCS scheme.

This scheme is conditionally stable, with the condition that CFL ≤ 0.5. When the time step is equal
to ∆t = 0.002, the CFL is 0.434 ≤ 0.5 therefore this time step will give a stable solution as shown in
�gure 1.

0 5 10 15 20 25 30 35 40

0

1

2

3

4

·10−2

u(m/s)

y
(m

)

Velocity profiles

t = 0.0 sec
t = 0.18 sec
t = 0.36 sec
t = 0.54 sec
t = 0.72 sec
t = 0.90 sec
t = 1.08 sec
t = 4.0 sec

Figure 1: Velocity pro�les obtained by FTCS explicit method

The �gure 1 shows that, the velocity increases at a linear rate as rise to the top, because the bottom
plate velocity is zero, ie, when the y = 0, the air particles gains the velocity of the toucher plate.
This is called no slip condition. And because the e�ect of the viscosity each layer of
uid working to
reduce the velocity of
uid above it. This happens in the upper plate also, ie, when the y = 40, the
velocity is the maximum, because it gained the velocity of the plate 40, ie, the velocity increases from
zero on the bottom plate to 40 on top plate, and the relation is linear, because no pressure gradient.
Vice versa in the �gure 1, because in this case the bottom plate moves whereas the top plate is �xed,
ie, the velocity decreases as rise to the top and at a linear rate also.

5
Ankara International Aerospace Conference

AIAC-2019-035 Abusbei, Emhemmed & Omar

Unsteady heat conduction

Figure 2 shows contours of temperature for a rectangular plate, by using ADI scheme.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
X(ft)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Y(
ft)

Contours of temperature

0

25

50

75

100

125

150

175

200

Te
m

pe
ra

tu
re

(R
)

Figure 2: Contours of temperature distribution for rectangular plate

From �gure2, it shows that the temperature gradually changes from the sides which are highest
temperature to the sides which have a lower temperature. So that the temperature distribution at
the points which are touching the sides which have the highest temperature are higher than the other
points.

This distribution is compared with results obtained by Ref. [Ho�mann K. A. , and Chiang S. T.,
2000]. The comparison is shown in �gure 3.

0 0.5 1 1.5 2 2.5 3 3.5

0

50

100

150

200

location y(ft)

T
em

p
er

at
u
re

(R
)

The compare temperature distribusion

CFD Python Code
Hoffmann

Figure 3: The compare temperature distribution of CFD code with Ho�mann

The result have been taken at location (x = 2ft) for all (y) location. The identical between the
results is clear.

6
Ankara International Aerospace Conference

AIAC-2019-035 Abusbei, Emhemmed & Omar

Steady heat conduction

Figure 4 shows contours of temperature for a rectangular plate, by using PSOR scheme.

0.0 0.2 0.4 0.6 0.8 1.0
X(ft)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Y(
ft)

Contours of temperature

0

20

40

60

80

100

Te
m

pe
ra

tu
re

(R
)

Figure 4: Contours of temperature distribution for rectangular plate

The temperature distribution has characteristics similar to the unsteady case. This distribution is
compared with results obtained by Ref. [Ho�mann K. A. , and Chiang S. T., 2000]. The comparison
is shown in �gure 5.

0 0.5 1 1.5 2

0

20

40

60

80

100

location y(ft)

T
em

p
er

at
u
re

(R
)

The compare temperature distribusion

CFD Python Code
Hoffmann

Figure 5: The compare temperature distribution of CFD code with Ho�mann

The result have been taken at location (x = 0.4ft) for all (y) location. The identical between the
results is clear.

7
Ankara International Aerospace Conference

AIAC-2019-035 Abusbei, Emhemmed & Omar

Cavity Flow

Figures 6 show the stream line for cavity
ow without inlet and the outlet, at Reynolds Number
(Re = 100), by using FTCS scheme.

Figure 6: The stream line plot for the rectangular cavity without inlet & outlet

A comparison between the velocity components u and v with results obtained by Ref. [Ghia U. , Ghia
K. N., and Shin Wi C. T., 1982] is shown in �gures 7. The results are taken through the geometric
center of the cavity.

Figures 7 show the distribution of streamline, respectively. The �gures show clearly the smooth
distribution of the
ow. The results were compared Ghia [Ghia U. , Ghia K. N., and Shin Wi C. T.,
1982] in �gures 7.A good agreement was observed, which prove the accuracy of the developed CFD
in-House code in predicting the cavity
ow problem.

8
Ankara International Aerospace Conference

AIAC-2019-035 Abusbei, Emhemmed & Omar

0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

y/L

u
/U

The compare u profile

CFD Python Code

Ghia et al (1982)

Figure 7: Comparison of pro�le for velocity component u

CONCLUSIONS

In conclusion, an educational in-house CFD code has been developed. It is educational because it is
easy to understand expand and a useful teaching tool. The paper has used modern software engineering
principles with a modern programming language. Its structure allows for the easy extending and
simplicity. Di�erent mathematical models for
uid
ow and heat transfer have been implemented and
veri�ed. This includes Couette
ow, Laplace equation and vorticity-stream function formulation of
the Navier-Stokes equations. Furthermore, these models were solved using di�erent techniques and
numerical schemes.

References

Diakopoulos N. , and Cass S. , (2017) , IEEE Spectrum., URL: https://spectrum.ieee.org/
static/interactive-the-top-programming-languages-2017 (visited on 02/27/2019), 2017

Ghia U. , Ghia K. N., and Shin Wi C. T. , (1982) High-Re Solutions for Incompressible Flow Using
the Navier- Stokes Equations and a Multigrid Method*, JOURNAL OF COMPUTATIONAL
PHYSICS 48 (1982), pp: 387411, 1982

Ho�mann K. A. , and Chiang S. T. , (2000) Computational Fluid Dynamics, Volume I. 4th Ed. ,
Engineering Education System, 2000

Python Core Team, ed. Python: A dynamics, open source programming language. Python Software
Foundation. 2015, URL: https://www.python.org/ (visited on 01/27/2019), 2015

VERSTEEG H. K. , and MALALASEKERA W. , (1995) An Introduction to Computational Fluid
Dynamics The Finite Volume Method, 1995

9
Ankara International Aerospace Conference

 https://spectrum.ieee.org/ static/interactive-the-top-programming-languages-2017
 https://spectrum.ieee.org/ static/interactive-the-top-programming-languages-2017
 https://www.python.org/

