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ABSTRACT 

A nonlinear model for the optimization of the aerodynamic thrust of flapping wing MAVs is 
implemented. The method is developed for harmonic motions in general but for the thrust 
optimization the amplitudes for a simple harmonic motion of a pitching-plunging airfoil are 
determined. The relation between the pitch-plunge amplitudes are solved in an iterative 
manner as a nonlinear eigenvalue problem. The maximum eigenvalue of the problem gives 
the maximum thrust and the associated eigenvector gives the amplitudes for the motion. The 
method is applied for a finite wing also, using the available Wagner function as indicial 
admittance .together with the circulation provided with the leading edge vortex.  As the 
optimum solution is obtained the Wagner function determines the phase lag between the 
motion and the aerodynamic response of the wing to the motion. The method, with a little 
modification, is also applied to the cases having no constraint on the pitch angle. 

INTRODUCTION 

In recent years, the interest in the flapping wing MAVs has become quite intense because of 
less noise production and more efficient performances as opposed to the MAVs with fixed 
wings. The unsteady aerodynamic predictions for the thrust, lift and moments take 
considearbly long time using numeriacal and experimental techniques. On the other hand  fast 
methods are preffered for the flight dynamics and control applications. The fast optimization of 
the aerodynamic thrust also plays an important role in MAVs design. In this study, quick results 
are obtained while computing the leading suction velocity and the lift, via the Wagner function 
[Bisblinghoff, et.al, 1996], which are necessary to calculate the aerodynamic thrust of a 
flapping wing. 

The thrust optimization of a flapping airfoil is first studied in details by [Tuncer ve Kaya, 2005] 
via 2-D Navier-Stokes solutions. Afterwards, their study is applied for the non sinusoidal priodic 
motions [Kaya ve Tuncer, 2007]. For the general simple harmonic motions, including morphing, 
the thrust optimization based on potential theory for the thin profiles is studied by [Walker, 
2012] and [Gülçat, 2017].   

The aim of this study is to calculate the optimum thrust with a nonlinear modeling of 
the leading edge vortex of a flapping wing in a periodic motion. The thrust optimization 
is reduced down to a solution of a nonlinear eigenvalue problem involving the 
amplitudes of the pitch and plunge where both amplitudes are constraint. As an 
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additional application no constraint on the pitch amplitude is also made. The 
establishment of the nonlinear eigenvalue problem, the solution technique and the 
results will be presented in following sections. 

METHOD 

The aerodynamic thrust force for  a pitching plunging airfoil is expressesd in terms of leading 
edge suction velocity S and the lift L as follows [Garrick, 1936] 

                               )( 2 LPS                                                                                                                       (1) 

The Wagner function   
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with the leading edge suction velocity as shown in [Gülçat, 2017] 
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and the sectional lift coefficient as  
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The Equation for the pitching plunging airfoil is   ))(()(),( axtthtxza   , and the 

corresponding downwash becomes  
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Wherein, a is the pitch point location. Now, we can write the expression for the quasi steady 

circulation as follows  
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                                      (5) 

  

Here, 2sinACls  , [Taha, et.al. 2014] is the sectional lift coefficient at high angles of attack 

including the effect of the leading edge vortex and it is the replacement for the convective term 
in (4).  Comparing Equations (4) and (5) gives us the relation between the downwash and the 
circulation as follows                                                                          

                                                           bttbw qs /)(),2/(                                                  (6) 

If we use Equation (6) in  (2) and (3), the leading edge suction velocity and the lift read as                                                                     
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Expanding (5) into the series in   we obtain the approximate expression for the steady lift 

coefficient as follows   

                                )15/43/42()( 53   ACls  

 
The relation between the steady lift coefficient and the quasi steady circulation is now used in  
(7) and (8) to obtain the aerodynamic thrust, Eqaution (1), as a nonlinear equation in terms of 

andh  which are function of time. Then we can take the time average of this equation for 

over a period to have  
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in terms of the amplitudes. 

If we let )(cos thh   for plunging and )(cos   t  for pitching the average thrust in  

terms of the amplitude vector, 
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In order to find the maximum value of the thrust amplitude we have to set the gradient of (10) 
to zero to obtain an equation for the amplitude vector Q. However, this gives us a trivial solution 
because of H being a non-singular matrix. In order to remedy this, we need to put a constraint 
on the amplitude vector while setting the gradient of (10) into zero. Hence, we have now  
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, and apply the concept of  Lagrange multiplier,  , we have 
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without changing the value of T, i.e. T=S. The gradient of T together with the constraint gives  
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which is a non-linear eigenvalue problem in the following matrix form                                             
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In Equation (13), except   11a   all entries depend on  . The contribution of plunging to the 

leading edge velocity is denoted with hP , to pitching is  P , contribution of the lift to the plunging 

is hL , and finally contribution to pitching is shown with L . Hence, the entries of the matrix read 

as follows:
2

11 hPa  , 2/2)3/21( 2

2112 hh LPPaa   , 

  LPa )3/21(2)3/21(16 2222

22  . Now, with (13) we have a non-linear system with 

3 equations for 3 unknowns.  The solution of this non-linear eigenvalue system gives the 
optimum thrust for the maximum eigenvalue and the corresponding eigen vector provides the 
amplitudes for the motion.   
 
Finite Wings  
For the finite wings, the spanwise integration of the sectional value of the lift given with (7-8) 
provides the wing’s lifting force. The time wise integration of the Duhamel integral is performed 
Matlab as shown in the Appendix. Then, Equations (11a,b) for the wings can be put into the 
following form  
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Here, A is the wing area. For rectangular wings the Wagner function effect remains the same 
at evrey section to keep the Equations  (13a,b) the same. For the case of elliptical wings the 
Wagner function is altered to cause the changes in the coefficient matrix. There exist, however,  
expressions for the Wagner functions for the elliptical wings of the following aspect ratios 
[Bisblinghoff, et.al, 1996]: 
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No constraint on AoA 
When we put a constraint on angle of attack with (13-b), we end up with low values for it. For 

a non-linear application we have to let  be free so that the optimization is realistic. This can 

approximately be achieved by fixing rhe plunge amplitude while letting the pitch to be free in 

the first and second rows of (13a) with no  being involved. Hence, we get  

                               hPaha h

2

1211   +   02/2)3/21( 2    hh LPP                                 (15) 

If we fix the amplitude of plunge , h , arbitrarily, we can find the optimum value for the AoA 

amplitude from (15). We have to note here that the second row of (13-b) may give slightly 
different result obtained by (15) since the matrix H of (12) is non-singular. Hence, we can call 
this partial optimization! 
 

APPLICATIONS  
The method based on the non-linear modeling of the leading edge vortex is first implemented 
for a simple harmoncally pitching plunging thin airfoil. The circulation created by the leading 

edge vortex is given as 2sin833.1qs

lC  [Taha, et.al. 2014], and the sine term is expanded 

into the series in terms of angle of attack, Figure 1 shows the variation of quasi steady lift in 
terms of  powers of angle of attack and shows with the expression given with sine.  As seen in 
(Figure 1) the linear  

 
Figure 1: Linear, non-linear and the sine curves for the quasi-steady lift  

 
approach represents the sine curve in 00-200 range, whereas the 3rd degree aproach is good 
for 200-500. The iterative solution of the Equations (13a-b) with the  3rd degree approach gives 
the value of maximum average thrust S= 3.63, in non dimensionalized form. The corresponding 
motion is determined from the corresponding eigenvector as          
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In (16a-b) the phase difference between the plunge and pitch is taken as 900 together with 

1 . The iterations begin with the values taken from the linear soluton, and continues with 

these new values substituted in their proper places in the coefficient matrix. The linear solution 
gives the maximum value of the thrust as S=4.26. The iterations, on the other hand, converges 
to 4 digit accuracy [Matlab, 2015]. If we increase the uccuracy with the 5th degree 
approximation we obtain the value of the maximum thrust to read as S=3.66. This means 
increasing the number of non-linear terms does not improve the accuracy of the thrust value 
that much. In (Figure 2), the variaton of the quasi steady circulation with respect to 3rd and 5th 
degree representations and also for the sine dependence. Accordingly, the 5th degree 
approximation and the sine representation gives almost the same circulation change by with 
time.  
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Figure 2:  Change in quasi steady circulation , qs , by time 

(sine -----, 3rd and 5th___ degree approximations) 
 

 
Figure 3: Time variation of maximum aerodinamic thrust S, lift L, and P*P 

 
The time variation of maximum thrust S, associated lift L and the effect of the leading edge 
suction force P*P, in non-dimensional forms, are shown in Figure 3. As seen from Figure 3, 
the propulsive force S is positive most of the period covered except for a very short duration 
at around the half and full period locations.  
 
Elliptical wing 
For the elliptical wing the aerodinamic thrust S for a wing with aspect ratio of 3  is obtained 
from Equations (14a,b) as shown in Figure 4 wherein the shapes of the curves are similar to 
that of given in Figure 3. 
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Figure 4: Time variation of maximum aerodinamic thrust S, lift L, and P*P 

for an elliptical wing with AR=3 
 

Here, the results obtained for Figure 3-4 are non-dimensional quantities. In Figure 3 for non-
dimensionalization the half chord is used for a charactestic length, whereas for Figure 4 half  
the wing area is taken as the charactersitic area. In both figures the free stream speed is 
employed as the characteristic speed. 
 
No constraint on AoA 

We employ (15) for the case of no constraint on  . Hence in terms of the plunge amplitude 

(15) becomes  

                                     2/2)3/21(/ 22

hhh LPPhP                                                       (17) 

Assigning  values for h  in (17) makes the equation a cubic polynomial to be solved for  . 

The method here is tested with the plunge values close to the value taken from (16a). Results 
then found for the optimum AoA values are given in the following Table1: 
 

                                        Table1: Optimum AoA values for various h  

                                            ___________________________________ 

                                                         h                            (deg) 

                                            ----------------------------------------------------------- 
                                                       -0.40                            42 
                                            ----------------------------------------------------------- 
                                                       -0.48                            54 
                                            ----------------------------------------------------------- 
                                                       -0.50                            58 
                                            ----------------------------------------------------------- 
                                                       -0.55                            71 

                                        ------------------------------------------------------ 
 
It seems from  Table1 that as the plunge amplitude increases with small amounts, the optimum 
pitch amplitudes increase considerably.  
 

CONCLUSION  

A non-linear model of the leading edge vortex is implemented to find the maximum 
aerodynamic thrust for a flapping wing. The implementation is based on a solution of a non-
linear eigenvalue problem. The procedure is based on an iterative solution which converges 
to desired accuracy in 4-5 iterations.  
 
It is worth noting that the quasi steady formula gives the maximum lift at 450angle of attack, 
whereas the nonlinear optimized unsteady solution gives the maximum lift at 490. 
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The aerodynamic thrust optimization employs the Wagner function to consider the time lag 
between the flapping motion and the aerodynamic response of thin profiles or wings with a 
constraint on flapping. The method is satisfactorily extended to handle the cases without 
having any constraint on pitch amplitude for more realistic optimization for large AoA. For larger 
AoA higher degree approximation looks necessary. 
 
Appendix: Duhamel integral with the sine term calculated for the elliptical wing with AR=3. 
 

                                    

t

dt
0

)()sin(    

 
faa=int((sin(x))^1*(0.17*0.54*exp(0.54*(x-t))),x,0,t) 

 
 

fs(t) =(201*exp(-(3*t)/10))/2180 + (5282933469138125*exp(-
(91*t)/200))/849368334410448896 - 
(45559957544805335149*cos(t))/462905742253694648320 + 
(564570522729881746163*sin(t))/18516229690147785932800; 
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