DLR's Research in Morphing Structures for Aeronautics

Srinivas Vasista, Markus Kintscher, Martin Radestock, Maik Titze, Steffen Kalow, Bram van de Kamp, Oliver Huxdorf, Zhuzhell Montano, Martin Pohl, Melin Sahin*, Johannes Riemenschneider & Hans Peter Monner

Institute of Composite Structures and Adaptive Systems, German Aerospace Center (DLR)

* and visiting scientist from the Middle East Technical University, Ankara, Turkey

AIAC '19 September 19th 2019 Ankara, Turkey

Outline

- 1. DLR
 - Who we are
- 2. Morphing for Civil Aeronautics
 - Motivation
 - Morphing Wings
 - Rotorcraft
 - Wind turbines
- 3. Summary

Who We Are

DLR German Aerospace Center

- Research Institution
- Space Agency
- Project Management Agency

Research Areas

- Aeronautics
- Space Research and Technology
- Transport
- Energy
- Defence and Security
- Space Administration
- Project Management Agency

Locations and employees

Approx. 8000 employees across 33 institutes and facilities at 16 sites.

Offices in Brussels, Paris, Tokyo and Washington.

Morphing Wings for Civil Aeronautics – Motivation

- Reduce emissions and fuel burn
- Improve high-lift performance
- Reduce airframe noise

Morphing Wing Leading Edge Droop Nose – Laminarity

- High-Lift devices on leading and trailing edge for lift generation at low speed (take-off & landing)
- Common high-lift devices (Slat, Krueger) are highly effective (c_{a,max}) but exhibit slots, gaps and steps
- → Transition to turbulent flow on main wing due to steps and gaps
- \rightarrow Drag due to steps and gaps
- → Primary source of airframe noise in approach/landing

Smart Droop Nose

Morphing Droop Nose History at DLR

Ground Test Smart Leading Edge Device

- Full-scale 3D section of the leading edge for ground tests including wing bending, 2m span.
- Use of materials certified for aeronautics.
- Combined design process for kinematics and GFRP skin (HexPly 913).
- Investigation of strain and deformations under wing bending.

Smart Droop Nose Deployment, 18°

Wind Tunnel Test in T-101 at TsaGI

Flexible Skin Design

Approaches for skin design – Additional Challenges

- Integration of additional functionalities into a ,baseline' GFRP skin concept
 - Ice Protection System (IPS)
 - Lightning Strike Protection (LSP)
 - Erosion & Impact Protection
 - Bird Strike Protection

SARISTU SMART INTELLIGENT AIRCRAFT STRUCTURES

Improved Fatigue Behaviour

Bird Strike Protection

→Integration of bird strike protection and kinematics

 Shot on morphing leading edge with integrated bird splitter and separate hybrid splitter concept

Bird Strike Protection

DLR

Bird Strike Protection

DLR

Approaches for skin design – Additional Challenges "Integration of additional functionalities"

- Overall wing leading edge sections
- Integration concept of BSPS and kinematics

Comparison of rain and solid particle erosion durability of different materials

Integration concept of additional

functional layers

- Surface Protection
- De-/Anti- Icing
- Impact Resistance
- Lightning Strike Protection

Approaches for skin design – Additional Challenges "Integration of additional functionalities"

- Overall wing leading edge sections
- Integration concept of BSPS and kinematics

Integration concept of additional

functional layers

- Surface Protection
- De-/Anti- Icing
- Impact Resistance
- Lightning Strike Protection

Approaches for skin design – Additional Challenges "Integration of additional functionalities"

- Overall wing leading edge sections
- Integration concept of BSPS and kinematics

Integration concept of additional

functional layers

- Surface Protection
- De-/Anti- Icing
- Impact Resistance
- Lightning Strike Protection

DLR.de • Chart 22 > Vasista et al. > DLR's Research in Morphing Structures for Aeronautics > AIAC, Ankara, Tur<u>k</u>ey > September 19th 2019

SARISTU Droop Nose T104 Wind Tunnel Zhukowsky, Russia TsAGI

Kinematics Design

Compliant Mechanism Design

Advantages of Compliant Mechanisms

- lightweight structures
- reduced assembly complexity
- no backlash

Topology Optimization

- find best structural layout starting from a "blank canvas"
- Shape control formulation: precision displacement

Wind Tunnel Testing – v3.0

NOVEMOR Morphing Wingtip, 5' x 7' Wind Tunnel, Univ. of Bristol, UK

Very 3D Skin Design

Compliant Mechanism Design

- Topology post-processed
- Superelastic nickel titanium (>2% strain)
- Manufactured by wire electrical discharge machining (EDM, 5 mm plate form)

Leading Edges with Large Displacement

- Morphing leading edge for an active blown High-Lift system of a regional airliner
 - Gaps: noise and drag → Gapless active high lift system
 - Coanda effect is used for significantly increasing lift generation

Cruise position

High-Lift position

Large-displacement Morphing Droop Nose

interior surface

Integral Stringers

Hardware

DLR

Hardware

Shape & Curvature Comparisons

Morphing droop nose with conventional actuation

Morphing droop nose with FAMoUS

Active Helicopter Rotorblades

Active Engine Fan & Compressor Blades

Adaptive Wind Turbine Blades

Design and manufacture of blades in Germany and testing at NREL, USA

Adaptive Wind Turbine Blades

Passive Morphing Ship Stabilizer

German Coastguard ship with stabiliser for low-speed (in service since 2014)

Summary

- Morphing structures enable many potential benefits
- Integrating skin, substructure, actuation \rightarrow a big challenge!
- Stiffness vs flexibility \rightarrow a careful balance
- Many applications
- Highly multidisciplinary

Acknowledgments

- Prof. Ismail H. Tuncer & METU
- European Union
- Federal Ministry of Economic Affairs and Energy (BMWi)
- German Research Foundation (DFG)
- German Academic Exchange Service (DAAD)

Thank You & Questions

