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The Collapse of Tacoma Narrows Bridge (Nov. 7th, 1940)

Transverse mode excitation followed by a torsional mode 

vibration caused the failure.



Computational Aeroelasticity
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Aerodynamic

Forces

Elastic Forces Inertia Forces

Flight

Mechanics

Structure

Dynamics

The Collar’s Aeroelasticity Triangle

Collar (1946)

Static

Aeroelasticity
Dynamic 

Aeroelasticity



Flutter and Limit Cycle Oscillation
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Flutter test of the DG-300 Glider

 Flutter:  

     The onset point of self-excited vibration

(Stability problem)

 Limit Cycle Oscillation (LCO) :

     The vibration following the flutter point having a finite amplitude

(Response problem)

Benign LCO response Explosive LCO response



Aeroelastic Governing Equations
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 Fluid Dynamics:   Reynolds-Averaged Navier-Stokes (RANS) equations 

                                     closed by the one equation Spalart-Allmaras turbulence model

 Structure Dynamics: 

Huang and Ekici (2013), Howison and Ekici (2014)



Harmonic Balance (HB) Method
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 Capacity of modeling strong nonlinear 

periodic unsteady flows and structural 

vibrations by incorporating multiple 

harmonics

Hall et al. (2002, 2013) , Ekici and Huang (2012)

Iniial Transient

 Fourier-based mixed time-frequency 

     domain method

 Significant computational cost savings 

     by transferring unsteady problem into

     mathematically stable problem  

 More convenient to analyze the flutter 

and LCO problems
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Harmonic Balance (HB) Method
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Original RANS equaion:

Equaion in a number of 

sub-ime levels:

Equaion with pseudo-

ime derivaive:

Approximate ime derivaive 

by pseudo-spectral operator:

pseudo-spectral operator

Hall et al. (2002, 2013) , Ekici and Huang (2012)



Structural Dynamics Equations
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State-space formulaion:

Original structural dynamics equaion:

Equaion with pseudo-

ime derivaive:

Approximate ime derivaive 

by pseudo-spectral operator:

Unstable when solved in pseudo-ime !



The “One-Shot” Approach
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Equaion with pseudo-

ime derivaive:

• The essence of the One-shot approach is to determine the value of the reduced 

frequency by minimizing the residual of the structural dynamics equaion using an 

opimizaion.

• The structural dynamics equaion is much simpler (ODE) to deal with

• It can be solved using a very eicient implicit Euler method with a global 

“Structural” pseudo imestep allowing values as high as 100.

• The diiculty due to the nonlinearity (the term f due to the generalized 

aerodynamic forces) in the ODE can be miigated by lagging the term by one 

pseudo ime iteraion.

• The resuling technique is very eicient with computaional imes that are orders 

of magnitude smaller than a ime-accurate approach.
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Aeroelastic Governing Equations

Fluid Dynamics Structure Dynamics 

Fixed parameters Fixed parameters

Compact form:

Assume both low and structural vibraions share 

the same frequency, i.e. frequency “lock-in”
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Flowchart of the One-Shot Method

Prescribed AmplitudePrescribed Velocity
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Computational Aeroelasticity 

Results

1-DOF VIV

2-DOF Pitch-Plunge Airfoils

AGARD 445.6 Wing



One-Shot Aeroelastic Results
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1-DOF Vortex Induced Vibraion (VIV)

Anagnostopoulos and Bearman (1996)

 Elasically Supported Circular Cylinder in Two-Dimensional Laminar Cross-Flow

 Vortex shedding remains 2D and laminar

 Strouhal frequency is used

 Constant damping and linear elasticity

Nondimensionalized in terms of Reynolds number 

which funcions similarly to the reduced velocity

(Carlson et al., 2005; Besem et al., 2016)

U

+ h

L

TK h h



One-Shot Aeroelastic Results
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1-DOF Vortex Induced Vibraion (VIV)

 Case 1:

 Sweep over the Reynolds number 

and determine the LCO condiions 

(amplitude/frequency) of the 

system using the one-shot 

approach



Aeroelastic Results
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2-DOF Pitch-Plunge Airfoil

Staic equaion:

Unsteady equaions:



Aeroelastic Results
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2-DOF NLR 7301 Airfoil

Prescribing velocity: 

Prescribing amplitude: 



Computational Efficiency
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2-DOF NLR 7301 Airfoil

 Stable LCO condiion

  Compared to the HB/LCO method:

Time-accurate results



Aeroelastic Results
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2-DOF NACA 64A010 Airfoil



Aeroelastic Results
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Fluter Predicion for AGARD 445.6 Wing

Yates (1963, 1985)

Mode 1 (first bending) - 9.6 Hz Mode 2 (first torsion) - 38.1 Hz

Mode 3 (second bending) - 50.7 Hz Mode 4 (second torsion) - 98.5 Hz



Aeroelastic Results
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Fluter Predicion for AGARD 445.6 Wing

Validation of 

One-shot 

Method

Results

Comparison 

of Inviscid 

and Viscous 

Results



Aeroelastic Results

24

Fluter Predicion for AGARD 445.6 Wing

Comparison of Inviscid and Viscous Surface Pressure Distributions



Aeroelastic Results

25

Fluter Predicion for AGARD 445.6 Wing

LCO response
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Aerodynamic Design Optimization

Introduction



Aerodynamic Design Optimization
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 Computaional Fluid Dynamics (CFD):
o Low-Fidelity: Blade-Element-Momentum
o Moderate-Fidelity: Euler and Navier-Stokes Solvers
o High-Fidelity: (U)RANS Solvers, DES, LES, DNS

 Design Opimizaion:
o Non-Gradient-Based

o Evoluion Strategies, Geneic Algorithms, Random 

Search

- Repeated cost funcion evaluaions

o Gradient-Based
o Iteraive soluion of nonlinear programming 

problems

- Faster convergence (less design cycles) 
- Sensiivity (gradient) informaion is required

“evolved antenna” for 2006 NASA 

ST5 spacecrat designed using an 

evoluionary algorithm

“gradient descent” approach



Aerodynamic Design Optimization
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- Grid-Transparent Unstructured Parallel Solver

- Reynolds-Averaged Navier-Stokes (RANS) Eqn’s +

   S-A Turbulence and B-C Transiion Models

- Steady, Time-Accurate, Time-Periodic (HB)

- Fast and Fully-Automated Discrete Adjoint Sensiivity Analysis

- Operator-Overloading Technique with OOP

- Computaionally and Memory Eicient

- Easy Implementaion into any Solver

UNPAC

Design Opimizaion 

Framework
UNPAC-DOF



1) UNPAC Solver
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Governing Equaions
 Reynolds-Averaged Navier-Stokes Equaions:

where

Convecive Flux Viscous Flux Source Terms

Coninuity

x-Momentum

y-Momentum

z-Momentum

Energy

Spalart-Allmaras

Flux-Diference Spliing (Roe scheme)
1st order & 2nd order

(w/ Venkatakrishnan’s limiter funcion)

Flux-Diference Spliing (Roe scheme)
1st order & 2nd order

(w/ Venkatakrishnan’s limiter funcion)

Central Averaging (2nd order)

(Corrected face averaging of 

gradients)

Central Averaging (2nd order)

(Corrected face averaging of 

gradients)

Volumetric (nodal)
External forces deined by “Coriolis” and 

“Centrifugal” terms for RFR

Volumetric (nodal)
External forces deined by “Coriolis” and 

“Centrifugal” terms for RFR

Conservaion Variables

semi-discreized RANS equaions



2) FDOT Toolbox
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Operator-Overloading and OOP
 Overloading operators:

o Considering 

o Recording “expression tree”

AD

index of x2

OPT_COS

indices of x1 & x3

OPT_MUL OPT_COS

OPT_MUL



2) FDOT Toolbox

Operator-Overloading and OOP
 Overloading operators:

o Considering 

o Recording “expression tree”

 Primal and Adjoint Operaions

AD

index of x2

OPT_COS

indices of x1 & x3

OPT_MUL OPT_COS

OPT_MUL

31

Primal 

(CFD) 

Solver

Adjoint 

Solver

 In the forward (primal) pass, the 

expression tree, that includes all 

operaions, is recorded to the 

“tape”

 In the reverse (adjoint) pass, the 

recorded tape is rewound and 

sensiiviies/gradients are 

evaluated.



2) FDOT Toolbox
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Operator-Overloading and OOP
 Overloading operators:

o Considering 

o Recording “expression tree”

 Minimal changes need to be made

in order to convert the primal code to

the adjoint code:

AD

index of x2

OPT_COS

indices of x1 & x3

OPT_MUL OPT_COS

OPT_MUL

Pseudo-code: Nozzle Flow Solver (primal code)

Pseudo-code: Nozzle Flow Solver (adjoint code)



2) FDOT Toolbox
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Implementaion
 FDOT Toolbox Module:

o Module is included in source codes

o Real variables are replaced by AReal type
o Nominal solver is run and the 

“fully-converged” soluion is used to 

iniiate the adjoint solver

o Using a “checkpoining” funcion, the 

iteraive part of the tape is marked
o Iteraive variables are lagged

o Adjoint of the cost funcion is set to unity

with all others iniialized by zero

o “Tape evaluaion” funcion is called

o Djeddi, R., and Ekici, K.. "FDOT: A Fast, memory-eicient 

and automated approach for Discrete adjoint sensiivity 

analysis using the Operator overloading Technique." 

Aerospace Science and Technology 91 (2019): 159-174.



3) UNPAC-DOF
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UNPAC-AD
 UNPAC Adjoint Solver:

o UNPAC solver coupled with the FDOT toolbox

UNPAC-OPT
 Opimizer Program:

o Unbounded and Bound Constrained Opimizaion
o L-BFGS-B Opimizer:

Shape Deformaion/Parameterizaion
 Surface Grid Points:

o Smoothing process applied to surface perturbaions

 Free-Form Deformaion (FFD) Box:

UNPAC-AD

Broyden-Fletcher-Goldfarb-Shanno

o Objecives:
 Drag (Minimize)

 Lit (Maximize)

 Lit/Drag (Maximize)



3) UNPAC-DOF
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UNPAC-DOF
 Wrapper Program:

o Couples the UNPAC, UNPAC-AD, 

and UNPAC-OPT programs

o Writen in Modern Fortran

o Uses “bash scriping” to organize

soluion iles and folders at each

design cycle

o Applies a pseudo-Laplacian to

smooth surface perturbaions
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Aerodynamic Design 

Optimization Results

NACA0012 Airfoil

ONERA M6 Wing



Design Optimization Results
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NACA0012 Airfoil Subject to Inviscid Transonic Flow
 Drag Minimizaion:

o M = 0.8, AoA = 1.25 deg
o “Surface Points” used as DV’s for deformaion

Unsmoothed 

Perturbaions
Smoothed 

Perturbaions

96% reducion!



Design Optimization Results

38

NACA0012 Airfoil Subject to Inviscid Transonic Flow
 Drag Minimizaion:

o M = 0.8, AoA = 1.25 deg
o “2D FFD Box” used for shape parameterizaion

Opimized

FFD Box

Original

FFD Box

96% reducion!



Design Optimization Results
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NACA0012 Airfoil Subject to Inviscid Transonic Flow
 Drag Minimizaion:

o M = 0.8, AoA = 1.25 deg
o Comparison of Shape Parameterizaion Results

Original Opimized

(Surface Points)

Opimized

(FFD Box)

96% reducion!



Design Optimization Results
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NACA0012 Airfoil Subject to Inviscid Transonic Flow
 Drag Minimizaion:

o M = 0.8, AoA = 1.25 deg
o Comparison of Shape Parameterizaion Results

Opimized

(Surface Points)

Opimized

(FFD Box)

Memory Footprint:

Adjoint Solver -> 800 Mbytes

Normalized CPU Time:

Adjoint/Primal = 2.5



Design Optimization Results
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ONERA M6 Wing
 Drag Minimizaion:

o Based on ONERA D airfoil secion (10% t/c)
o 30 degree sweep angle
o Aspect Raio = 3.8, Taper Raio = 0.562
o M = 0.8395, AoA = 3.06 deg NASA TMR: Schmit and Charpin (1979)

~583K 

tetrahedra

~39K 

triangles

FFD Box

11x9x2

Control Points



Design Optimization Results
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ONERA M6 Wing
 Drag Minimizaion:

o M = 0.8395, AoA = 3.06 deg



Design Optimization Results
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ONERA M6 Wing
 Drag Minimizaion:

o M = 0.8395, AoA = 3.06 deg

28% reducion!



Design Optimization Results
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ONERA M6 Wing
 Drag Minimizaion:

o M = 0.8395, AoA = 3.06 deg

Memory Footprint:

Adjoint Solver -> 14.1 Gbytes

Normalized CPU Time:

Adjoint/Primal = 4.2
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Machine Learning and Neural Networks

For Unsteady Flow Predictions



Machine Learning (ML)

Artificial Neural Networks (ANN)
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Ariicial Intelligence Based on ML/ANN

 Muli-Layer Perceptron Network

Predicing 

transient lit 

coeicient, CL



Machine Learning (ML)

Artificial Neural Networks (ANN)
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Ariicial Intelligence Based on ML/ANN

 Problem Formulaion:

Governing Eqn’s:

Rotaionally oscillaing cylinder in cross-low:

 Choi et al. 2002



Machine Learning (ML)

Artificial Neural Networks
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Ariicial Intelligence Based on ML/ANN

 Flow Predicion Results:

“Lock-in case”

“Non-Lock-in 

case”

Lock-In and Non-Lock-In Regions 

Predicted Using ML
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Summary: Computational Aeroelasticity
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 A novel dynamic aeroelastic solution approach, called the One-shot 

method, is developed, which features the following advantages:

 High efficiency and robustness

      Both low and structure solvers converge simultaneously, and numerical

      convergence is ensured for a wide range of iniial guesses

 DOF-independent computational cost

 Free from time-synchronization

     Both low and structure solvers preserve relaive independence while being 

     coupled in pseudo-ime, which greatly improves the eiciency

 Flexible inputs

     Prescribe either aerodynamic parameter (velocity) or structure parameter

     (amplitude) as the input; Capacity of resolving both benign and detrimental

     types of LCO, and flutter onset point using one solver



Summary: Computational Aeroelasticity
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 Frequency (and Velocity) search procedure  
     Determine self-excited flutter and LCO;

 Implicit CSD solver

     Significantly reduces the artificial energy at interface of CFD and CSD 

     solvers, and stabilizes the coupled aeroelastic solver;

 Easy implementation 

     Partitioned code-coupling can be done based on off-the-shelf standalone

     solvers; No dynamic mesh technique is needed, and no Jacobian terms are

     involved;

 The One-shot method has been applied to model various aeroelastic 

systems. Numerical results show that this new approach can rapidly 

predict flutter boundary and different types of LCO responses, 

offering a promising tool to solve dynamic aeroelasticity problems



Future Works: Computational Aeroelasticity
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whirl flutter     

One-shot 

turbomachinery     aeroservoelasticity     

aerothermal-elasticity     “non-lock-in” vibration
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 Grid-transparent unstructured 2D and 3D compressible RANS solver
UNstructured PArallel Compressible (UNPAC)

 A novel toolbox for sensiivity analysis based on discrete adjoint method:
o Fast automaic Difereniaion using Operator-overloading Technique (FDOT)
o Eicient and fully-automated; requiring minimal changes to the primal solver

 Memory eicient (manageable memory footprint for 2D and 3D cases)

 Computaionally eicient (Adjoint/Primal normalized CPU ime ~ 2 - 5x

UNPAC Design Opimizaion Framework

UNPAC-DOF  Design Opimizaion Framework
UNPAC-DOF Wrapper Program
o Performs Gradient-Based Design Opimizaion
o Uses L-BFGS-B Opimizer Program
o Unbounded and Bound Constrained Opimizaion
o Surface Points (2D) & FFD Box for Shape 

Parameterizaion/Deformaion



Future Works: Aerodynamic Design Optimization
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 Improving the Memory and Computaional Eiciency:
o Opimizing the tape recording process for the 

expression tree

o Use of recursive paterns for reducing tape size

(will require more changes to be made to the 

original solver)

 using direcive funcions to automize tape 

recording without requiring a signiicant 

amount of user intervenion

One-Shot Method for simultaneous soluion 

of “Primal”, “Adjoint”, and “Design” 

problems



Thank You!

Q & A
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RAE “A” Wing-Body Configuration



Aeroelastic Results
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1-DOF Vortex Induced Vibraion (VIV)
 Sweep over Reynolds number

Resonance 

“Lock-in” of three frequencies:

“unstable” 

  branch
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RAE “A” Wing-Body Coniguraion (AGARD-AR-138, Case 6)
 M = 0.9, AoA = 1.0 deg

 RAE “A” Wing:
o A.R. = 5.5
o L.E. Sweep Angle = 36.7 deg
o T.E. Sweep Angle = 22.3 deg
o Taper raio = 0.375
o RAE 101 symmetrical airfoils (untwisted)

 Unstructured Grid, ~460K tetrahedra, extended for 3L in each direcion



Validation & Verification Results
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RAE “A” Wing-Body Coniguraion (AGARD-AR-138, Case 6)
 Mach number and Pressure Contours



Validation & Verification Results
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RAE “A” Wing-Body Coniguraion (AGARD-AR-138, Case 6)
 Pressure Coeicients at Various Spanwise Locaion Along the Wing



Validation & Verification Results
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RAE “A” Wing-Body Coniguraion (AGARD-AR-138, Case 6)
 Pressure Coeicients Distribuions for 2 Longitudinal Secions along the body
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ROM-Based Convergence 

Acceleration
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ROM-Based Convergence Acceleraion
 Model Reducion:

 Update formula:

Assumpion

ROM where

Correlaion-Based Approach

Covariance-Based Approach



ROM-Based Convergence 

Acceleration
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Inviscid Transonic Flow Past NACA0012 Airfoil
 ROM-Based Convergence Acceleraion:

o Covariance-based approach
o 10, 20, 40, and 80 soluion snapshots used for projecions (over a span of 2000 iteraions)

o Process lagged by 1000 iteraions (2 orders of magnitude drop in residual)

Case Seings

Reducions in Iteraions and CPU Time
0 2 4 6 8 10 12 14

No. of Iterations x 10
3
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40 Snaps -   50 - 2K (Lagged 1K)

80 Snaps -   25 - 2K (Lagged 1K)
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Adaptive Mesh Redistribution (AMR)
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r-Adapive Mesh Redistribuion (AMR)

 Ball-Vertex Approach (Spring Analogy):
o Node relocaion to have clustering around regions of

large low gradients
o Hook’s law:

Force ield:

where

combinaion of gradient & curvature forces acing on the two end nodes

Baseline Grid              Soluion Field Adapted Grid

Mesh Entanglement

 Local relaxaion:



Adaptive Mesh Redistribution (AMR)
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Case Seings

Baseline Grid Adapted Grid
Reined Grid

Lit and Drag Predicions

Computaional Cost

Inviscid Transonic Flow Past NACA0012 Airfoil
 r-Adapive Mesh Redistribuion (AMR):

o Convergence and Errors
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AGARD-702 CT5 Case
 Inviscid Periodic Flow:

o Unstructured Grid:

Nodes = 5,233

Cells = 10,216
o Harmonic Balance Method

Case Seings
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Adaptive Mesh Redistribution (AMR)
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AGARD-702 CT5 Case
 r-Adapive Mesh Redistribuion (AMR):

o Baseline grid:

Nodes = 1,837

Cells = 3,542
o Fully-reined grid:

Nodes = 5,233

Cells = 10,216

r-Adapted Grid at various 

sub-ime levelsFully-reined Grid

Baseline Grid

Case Seings

Adaptive Mesh Redistribution (AMR)
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AGARD-702 CT5 Case
 r-Adapive Mesh Redistribuion (AMR):

o Signiicant improvements 

in numerical accuracy at a fracion

of the computaional cost

L2 Norm of Errors in CL and CM Computaional Cost Comparison

Case Seings

Adaptive Mesh Redistribution (AMR)
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