

Progress on the Development of Efficient Methods for Computational Aeroelasticity and Aerodynamic Design Optimization

Kivanc Ekici, PhD Professor

Associate Department Head Graduate Program Director Mechanical, Aerospace, and Biomedical Engineering Department University of Tennessee, Knoxville Knoxville, TN, USA

COMPUTATIONAL FLUID DYNAMICS LABORATORY

Acknowledgments

- Many thanks to our sponsors; including the National Science Foundation for its support for our work presented today.
- This work would not have been possible without the hard work and countless hours of research/code-development/debugging of our team over the years.
 - Dr. Reza Djeddi (UTK, Postdoc)
 - Dr. Hang Li (Duke U., Postdoc)
 - Mr. Andrew Kaminsky (CFDRC, finishing PhD, Senior Research Scientist)
 - Dr. Jason Howison (The Citadel, Assoc. Prof.)
 - Dr. Huang Huang (Northwestern Poly. U., Assoc. Prof.)
 - Dr. Emily Buckman (Raytheon Missile Sys, Senior Eng.
 - Dr. Franklin Curtis (Oak Ridge National Lab, Senior Res
 - Mr. Ali Nejad (NCSU-Havelock, finishing PhD, Lecturer
 - Mr. Matthew Whisenant (PhD student)
 - Mr. John Thress (PhD student)
 - Mr. Coleman Floyd (PhD student)

2

Contents

- 1) Flutter and LCO Predictions Using our State-of-the-Art "One Shot" Method
- 2) Adjoint-Based Sensitivity Analysis Using our Novel FDOT Automatic Differentiation Tool for Aerodynamic Design Optimization
- 3) Machine Learning and Artificial Neural Networks for Unsteady Flow Prediction

4) Conclusion

Computational Aeroelasticity using the One-Shot Method Introduction

Computational Aeroelasticity

The Collapse of Tacoma Narrows Bridge (Nov. 7th, 1940) Transverse mode excitation followed by a torsional mode vibration caused the failure.

Computational Aeroelasticity

Flutter and Limit Cycle Oscillation

> Flutter:

The onset point of self-excited vibration (Stability problem)

Limit Cycle Oscillation (LCO) :

The vibration following the flutter point having a finite amplitude (Response problem)

Benign LCO response

Explosive LCO response

Flutter test of the DG-300 Glider

Aeroelastic Governing Equations

Structure Dynamics:

 $M\ddot{q} + T\dot{q} + Kq = P(q, t)$

Fluid Dynamics: Reynolds-Averaged Navier-Stokes (RANS) equations closed by the one equation Spalart-Allmaras turbulence model

$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{F}}{\partial x} + \frac{\partial \boldsymbol{G}}{\partial y} + \frac{\partial \boldsymbol{H}}{\partial z} = \boldsymbol{S}$$

$$\boldsymbol{U} = \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho E \\ \rho \tilde{\nu} \end{bmatrix}, \quad \boldsymbol{F} = \begin{bmatrix} \rho u - \rho \dot{f} \\ \rho u^{2} + p - \tau_{xx} - \rho u \dot{f} \\ \rho uv - \tau_{xy} - \rho v \dot{f} \\ \rho uw - \tau_{xz} - \rho w \dot{f} \\ \rho uW - \tau_{xz} - \rho w \dot{f} \\ \rho uW - \tau_{xh} - \rho E \dot{f} \\ \rho u\tilde{\nu} - \tau_{x\nu} - \rho \tilde{\nu} \dot{f} \end{bmatrix}, \quad \boldsymbol{G} = \begin{bmatrix} \rho v - \rho \dot{g} \\ \rho uv - \tau_{yx} - \rho u \dot{g} \\ \rho v v - \tau_{yz} - \rho w \dot{g} \\ \rho v W - \tau_{yz} - \rho w \dot{g} \\ \rho v \tilde{\nu} - \tau_{y\nu} - \rho \tilde{\nu} \dot{g} \end{bmatrix}, \quad \boldsymbol{H} = \begin{bmatrix} \rho w - \rho \dot{h} \\ \rho uw - \tau_{zx} - \rho u \dot{h} \\ \rho w v - \tau_{zy} - \rho v \dot{h} \\ \rho w H - \tau_{zh} - \rho E \dot{h} \\ \rho w \tilde{\nu} - \tau_{z\nu} - \rho \tilde{\nu} \dot{h} \end{bmatrix}, \quad \boldsymbol{S} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ S_t \end{bmatrix}$$

Huang and Ekici (2013), Howison and Ekici (2014)

Harmonic Balance (HB) Method

Hall et al. (2002, 2013), Ekici and Huang (2012)

- Fourier-based mixed time-frequency domain method
- Capacity of modeling strong nonlinear periodic unsteady flows and structural vibrations by incorporating multiple harmonics
- Significant computational cost savings by transferring unsteady problem into mathematically stable problem
- More convenient to analyze the flutter and LCO problems

Harmonic Balance (HB) Method

Structural Dynamics Equations

Original structural dynamics equation:

$$M\ddot{q} + T\dot{q} + Kq = P(q, t)$$

$$\tilde{\omega}^2 D^2 M^* q^* + \tilde{\omega} DT^* q^* + T^* q^* - P^* = 0$$
Unstable when solved in pseudo-time !

State-space formulation:

time derivative:

$$\dot{\eta} + A\eta + Rf = 0$$

$$\eta = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}, \quad A = \begin{bmatrix} 0 & | & -I \\ M^{-1}K & M^{-1}T \end{bmatrix}, \quad R = \begin{bmatrix} 0 & 0 \\ 0 & | & -M^{-1} \end{bmatrix}, \quad f = \begin{bmatrix} 0 \\ P \end{bmatrix}$$
Approximate time derivative by pseudo-spectral operator:

$$\tilde{\omega}D\eta^* + A^*\eta^* + R^*f^* = 0$$
Equation with pseudo-

$$\partial \eta^* \qquad \tilde{\sigma} \eta^* \qquad \tilde{\sigma} \eta^* \qquad \tilde{\sigma} \eta^* \qquad \tilde{\sigma} \eta^* = 0$$

$$rac{\partial oldsymbol{\eta}^*}{\partial au_s}+ ilde{\omega}oldsymbol{D}oldsymbol{\eta}^*+oldsymbol{A}^*oldsymbol{\eta}^*+oldsymbol{R}^*oldsymbol{f}^*=oldsymbol{0}$$

The "One-Shot" Approach

Equation with pseudotime derivative:

$$rac{\partialoldsymbol{\eta}^*}{\partial au_s}+ ilde\omegaoldsymbol{D}oldsymbol{\eta}^*+oldsymbol{A}^*oldsymbol{\eta}^*+oldsymbol{R}^*oldsymbol{f}^*=oldsymbol{0}$$

- The essence of the One-shot approach is to determine the value of the reduced frequency by minimizing the residual of the structural dynamics equation using an optimization.
 - The structural dynamics equation is much simpler (ODE) to deal with
 - It can be solved using a very efficient implicit Euler method with a global "Structural" pseudo timestep allowing values as high as 100.
 - The difficulty due to the nonlinearity (the term *f* due to the generalized aerodynamic forces) in the ODE can be mitigated by lagging the term by one pseudo time iteration.
- The resulting technique is very efficient with computational times that are orders of magnitude smaller than a time-accurate approach.

$$Z(\tilde{\omega}) = \frac{1}{2} |\tilde{\omega} D\eta + A\eta + Rf|^2 \longrightarrow \tilde{\omega}_{\text{new}} = -\frac{[\eta^T A^T + f^T R^T] D\eta}{\eta^T D^T D\eta}$$

Aeroelastic Governing Equations

Fluid Dynamics

$$\frac{\partial \boldsymbol{U}^{*}}{\partial \tau_{f}} + \tilde{\omega} \boldsymbol{D} \boldsymbol{U}^{*} + \frac{\partial \boldsymbol{F}^{*}}{\partial x} + \frac{\partial \boldsymbol{G}^{*}}{\partial y} + \frac{\partial \boldsymbol{H}^{*}}{\partial z} = \boldsymbol{S}^{*}$$

$$\frac{\partial \boldsymbol{U}}{\partial \tau_{f}} + \mathcal{R}_{f} \left(M_{\infty}, Re_{\infty}, \boldsymbol{\eta}(\bar{q}_{r}, \phi_{r}, r \in [1, R]), \tilde{\omega} \right) = \boldsymbol{0}$$
Fixed parameters

Structure Dynamics

$$rac{\partial oldsymbol{\eta}^*}{\partial au_s} + ilde{\omega} oldsymbol{D} oldsymbol{\eta}^* + oldsymbol{A}^* oldsymbol{\eta}^* + oldsymbol{R}^* oldsymbol{\eta}^* + oldsymbol{R}^* oldsymbol{f}^* oldsymbol{H}^* oldsymbol{H}^* = oldsymbol{0}$$
 $rac{\partial oldsymbol{\eta}}{\partial au_s} + \mathcal{R}_s \left(oldsymbol{M}, oldsymbol{T}, oldsymbol{K}, \mu, oldsymbol{f}(oldsymbol{U}), ilde{V}, ilde{\omega}
ight) = oldsymbol{0}$
Fixed parameters

Compact form:
$$\mathcal{F}\left(f, \eta(\bar{q}_r, \phi_r, r \in [1, R]), \tilde{V}, \tilde{\omega}\right) = \mathbf{0}$$

Assume both flow and structural vibrations share the same frequency, i.e. frequency "lock-in"

Flowchart of the One-Shot Method

Computational Aeroelasticity Results

1-DOF VIV 2-DOF Pitch-Plunge Airfoils AGARD 445.6 Wing

One-Shot Aeroelastic Results

1-DOF Vortex Induced Vibration (VIV)

Elastically Supported Circular Cylinder in Two-Dimensional Laminar Cross-Flow

Anagnostopoulos and Bearman (1996)

- > Vortex shedding remains 2D and laminar $Re_{\infty} < 180$
- Strouhal frequency is used

 $St = \tilde{\omega}/2\pi$

> Constant damping and linear elasticity

$$m_{h}\ddot{h} + T_{h}\dot{h} + K_{h}h = q_{\infty}DsC_{l}$$

$$\tilde{h}'' + \zeta_{h}\frac{4\pi}{\kappa Re}\tilde{h}' + \frac{4\pi^{2}}{\kappa^{2}Re_{\infty}^{2}}\tilde{h} = \frac{2}{\pi\mu}C_{l} \quad (\zeta_{h} = 0.00136; \quad \kappa = 0.049772; \quad \mu = 149.0913)$$

Nondimensionalized in terms of *Reynolds number* which functions similarly to the reduced velocity

 257×129

(Carlson et al., 2005; Besem et al., 2016)

One-Shot Aeroelastic Results

1-DOF Vortex Induced Vibration (VIV)

- **Case 1:** $Re_{\infty} = 110$
- Sweep over the Reynolds number and determine the LCO conditions (amplitude/frequency) of the system using the one-shot approach

2-DOF Pitch-Plunge Airfoil

Static equation:

 $K_{\alpha}(\alpha_0 - \alpha_{e0}) = q_{\infty}c^2 s C_{m0}$

Unsteady equations:

$$m_h \ddot{h} + S_\alpha \ddot{\alpha} + T_h \dot{h} + K_h h = -q_\infty csC_l$$
$$S_\alpha \ddot{h} + I_\alpha \ddot{\alpha} + T_\alpha \dot{\alpha} + K_\alpha \alpha = q_\infty c^2 sC_m$$

	LCO, Schewe and Deyhle (1996)	Flutter, Isogai (1979,1981)
airfoil geometry	supercritical NLR 7301	symmetric NACA 64A010
plunging mass-wing mass ratio, m_h/m_0	5.729	1.0
elastic axis position, e	0.25	-0.5
airfoil static unbalance, x_{α}	0.555	1.8
radius of gyration (squared), r_{α}^2	0.822	3.48
natural frequency ratio, ω_h/ω_{α}	1.83	1.0
plunge damping coefficient, ζ_h	0.0175	0.0
pitch damping coefficient, ζ_{α}	0.00411	0.0
mass ratio, μ	172.0	60.0
freestream Mach number, Ma_{∞}	0.75	multiple Mach numbers
flow condition	viscous & turbulent	inviscid

2-DOF NLR 7301 Airfoil

3.5

Computational Efficiency

2-DOF NLR 7301 Airfoil

 \blacktriangleright Stable LCO condition $\tilde{V} = 3.2$

2

Time-accurate, $\Delta t = 0.05$

2-DOF NACA 64A010 Airfoil

 257×129 inviscid mesh

Flutter Prediction for AGARD 445.6 Wing

Mode 1 (first bending) - 9.6 Hz

Mode 2 (first torsion) - 38.1 Hz

Mode 4 (second torsion) - 98.5 Hz

Yates (1963, 1985)

Mode 3 (second bending) - 50.7 Hz

Flutter Prediction for AGARD 445.6 Wing

Flutter Prediction for AGARD 445.6 Wing

Comparison of Inviscid and Viscous Surface Pressure Distributions

Flutter Prediction for AGARD 445.6 Wing

LCO response $M_{\infty} = 0.960, \ \bar{q}_1 = 0.01$

Aerodynamic Design Optimization Introduction

Aerodynamic Design Optimization

Computational Fluid Dynamics (CFD):

- Low-Fidelity: Blade-Element-Momentum
- Moderate-Fidelity: Euler and Navier-Stokes Solvers
- High-Fidelity: (U)RANS Solvers, DES, LES, DNS

Design Optimization:

Non-Gradient-Based

- Evolution Strategies, Genetic Algorithms, Random Search
 - Repeated cost function evaluations

"evolved antenna" for 2006 NASA ST5 spacecraft designed using an evolutionary algorithm

"gradient descent" approach

• Gradient-Based

- Iterative solution of nonlinear programming problems
 - Faster convergence (less design cycles)
 - Sensitivity (gradient) information is required

Aerodynamic Design Optimization

- Grid-Transparent Unstructured Parallel Solver
- Reynolds-Averaged Navier-Stokes (RANS) Eqn's +
- S-A Turbulence and B-C Transition Models
- Steady, Time-Accurate, Time-Periodic (HB)

- Fast and Fully-Automated Discrete Adjoint Sensitivity Analysis
- Operator-Overloading Technique with OOP
- Computationally and Memory Efficient
- Easy Implementation into any Solver

UNPAC Design Optimization Framework

UNPAC-DOF

1) UNPAC Solver

Governing Equations

Reynolds-Averaged Navier-Stokes Equations:

$$\frac{\partial}{\partial t} \int_{\mathcal{V}} \vec{U} \, d\mathcal{V} + \oint_{\partial \mathcal{V}} \left[\vec{F}_c - \vec{F}_v \right] \, dS = \int_{\mathcal{V}} \vec{Q} \, d\mathcal{V}$$

where $\vec{U} = [\rho, \rho \vec{v}, \rho E, \rho \vec{v}]^{T}$ $\vec{F}_{c} = \begin{bmatrix} \rho V \\ \rho u V + p n_{x} \\ \rho v V + p n_{y} \\ \rho w V + p n_{z} \\ \rho H V \\ \rho \vec{v} V \end{bmatrix}$ $\vec{F}_{v} = \begin{bmatrix} 0 \\ \vec{\tau}_{x_{1}} \cdot \vec{n} \\ \vec{\tau}_{x_{2}} \cdot \vec{n} \\ \vec{\tau}_{x_{3}} \cdot \vec{n} \\ \vec{\sigma} \cdot \vec{n} \\ \vec{\tau}_{x_{3}} \cdot \vec{n} \\ \vec{\sigma} \cdot \vec{n} \\ \vec{\tau}_{x_{n}} \cdot \vec{n} \\ \vec{\sigma} \cdot \vec{n} \\ \vec{\tau}_{x_{n}} \cdot \vec{n} \\ \vec{\sigma} \cdot \vec{n} \\ \vec{\tau}_{x_{n}} \cdot \vec{n} \\ \vec{\sigma} \cdot \vec{n}$

$$\frac{\partial \mathcal{V}_i \vec{U_i}}{\partial t} + \vec{R_i} = 0$$

semi-discretized RANS equations

Minimal changes need to be made in order to convert the primal code to the adjoint code:

Pseudo-code: Nozzle Flow Solver (primal code)

```
1 call start_up
2 call mesh
3 call flow_initialization
4
5 do iter = 1,max_iter
6 call one_iteration
7 end do
8
9 call cost_function
```

Pseudo-code: Nozzle Flow Solver (adjoint code)

Implementation

FDOT Toolbox Module:

- Module is included in source codes
- Real variables are replaced by **AReal** type
- Nominal solver is run and the "fully-converged" solution is used to initiate the adjoint solver
- Using a "*checkpointing*" function, the iterative part of the tape is marked
- Iterative variables are flagged
- Adjoint of the cost function is set to unity with all others initialized by zero
- "Tape evaluation" function is called

 Djeddi, R., and Ekici, K.. "FDOT: A Fast, memory-efficient and automated approach for Discrete adjoint sensitivity analysis using the Operator overloading Technique." *Aerospace Science and Technology 91 (2019): 159-174.*

3) UNPAC-DOF

UNPAC-AD

- UNPAC Adjoint Solver:
 - UNPAC solver coupled with the FDOT toolbox

UNPAC-OPT

Optimizer Program:

- Unbounded and Bound Constrained Optimization
- L-BFGS-B Optimizer:

 $\label{eq:min} \begin{array}{l} \min \, f(\vec{x}) \\ \mbox{subject to} \quad \vec{l} \leq \vec{x} \leq \vec{u} \end{array}$

- <u>Objectives:</u>
 Drag (Minimize)
 Lift (Maximize)
 - Lift/Drag (Maximize)

 $B_p^n(s) = C_p^n s^p (1-s)^{n-p}$

Shape Deformation/Parameterization

- Surface Grid Points:
 - <u>Smoothing</u> process applied to surface perturbations
- Free-Form Deformation (FFD) Box:

$$\mathbf{x}_{s} = \sum_{i=0}^{\text{NI}} \sum_{j=0}^{\text{NJ}} \sum_{k=0}^{\text{NK}} B_{i}^{\text{NI}}(\xi_{s}) \ B_{j}^{\text{NJ}}(\eta_{s}) \ B_{k}^{\text{NK}}(\zeta_{s}) \ \mathbf{x}_{\text{cp}}$$

$$\Delta x_i = x_i^{n+1} - x_i^n$$
S
$$\Delta x_i^* + \sum_{j=1}^{\operatorname{Ngb}_i} \epsilon \left[\Delta x_i^* - \Delta x_j\right] = \Delta x_i$$

$$\vec{x}^{n+1} = \vec{x}^n + \vec{\Delta x}^*$$

3) UNPAC-DOF

UNPAC-DOF

- Wrapper Program:
 - Couples the UNPAC, UNPAC-AD, and UNPAC-OPT programs
 - Written in Modern Fortran
 - Uses "bash scripting" to organize solution files and folders at each design cycle
 - Applies a pseudo-Laplacian to smooth surface perturbations

Aerodynamic Design Optimization Results

NACA0012 Airfoil ONERA M6 Wing

NACA0012 Airfoil Subject to Inviscid Transonic Flow

Drag Minimization:

- M = 0.8, AoA = 1.25 deg Ο
- "Surface Points" used as DV's for deformation Ο

12

1.4

1.3 1.2

1.1 1 0.9

0.8 0.7 0.6

NACA0012 Airfoil Subject to Inviscid Transonic Flow

Drag Minimization:

- M = 0.8, AoA = 1.25 deg
- "2D FFD Box" used for shape parameterization

NACA0012 Airfoil Subject to Inviscid Transonic Flow

Drag Minimization:

- M = 0.8, AoA = 1.25 deg
- Comparison of Shape Parameterization Results

NACA0012 Airfoil Subject to Inviscid Transonic Flow

Drag Minimization:

- M = 0.8, AoA = 1.25 deg
- Comparison of Shape Parameterization Results

Geometry	C_D	Reduction	$t_{\rm max}/c$	Reduction
Original	2.1638E-2	-	0.120	-
Optimized (Surface Points)	9.1755E-4	95.7%	0.093	22.5%
Optimized (FFD Box)	8.7265E-4	95.9%	0.115	4.2%

Memory Footprint:

Adjoint Solver -> <u>800</u> Mbytes

Normalized CPU Time:

ONERA M6 Wing

- Drag Minimization:
 - Based on ONERA D airfoil section (10% t/c)
 - \circ 30 degree sweep angle
 - Aspect Ratio = 3.8, Taper Ratio = 0.562
 - M = 0.8395, AoA = 3.06 deg

NASA TMR: Schmitt and Charpin (1979)

ONERA M6 Wing

Drag Minimization:

• M = 0.8395, AoA = 3.06 deg

ONERA M6 Wing

Drag Minimization:

• M = 0.8395, AoA = 3.06 deg

ONERA M6 Wing

• M = 0.8395, AoA = 3.06 deg

Geometry	C_D	Reduction
Original	1.1734E-2	-
Optimized	8.4601E-3	27.9%

Memory Footprint:

Adjoint Solver -> <u>14.1</u> Gbytes

Normalized CPU Time:

Machine Learning and Neural Networks For Unsteady Flow Predictions

Machine Learning (ML) Artificial Neural Networks (ANN)

Artificial Intelligence Based on ML/ANN

Machine Learning (ML) Artificial Neural Networks (ANN)

Artificial Intelligence Based on ML/ANN

Problem Formulation:

Governing Eqn's:

$$\frac{\partial\omega}{\partial t} + J(\frac{\partial\psi}{\partial\eta}\frac{\partial\omega}{\partial\xi} - \frac{\partial\psi}{\partial\xi}\frac{\partial\omega}{\partial\eta}) = \frac{1}{R_e}(\alpha\frac{\partial^2\omega}{\partial\xi^2} + 2\gamma\frac{\partial^2\omega}{\partial\xi\partial\eta} + \beta\frac{\partial^2\omega}{\partial\eta^2} + P\frac{\partial\omega}{\partial\xi} + Q\frac{\partial\omega}{\partial\eta})$$
$$\alpha\frac{\partial^2\psi}{\partial\xi^2} + 2\gamma\frac{\partial^2\psi}{\partial\xi\partial\eta} + \beta\frac{\partial^2\psi}{\partial\eta^2} + P\frac{\partial\psi}{\partial\xi} + Q\frac{\partial\psi}{\partial\eta} = -\omega$$

Rotationally oscillating cylinder in cross-flow:

Machine Leanner, Artificial Neural Networks (1) Based on ML/ANN

Flow Prediction Results:

"Lock-in case"

"Non-Lock-in case"

Lock-In and Non-Lock-In Regions **Predicted Using ML**

Conclusion

Summary Future Works

Summary: Computational Aeroelasticity

A novel dynamic aeroelastic solution approach, called the One-shot method, is developed, which features the following advantages:

$\ensuremath{\boxdot}$ High efficiency and robustness

Both flow and structure solvers converge simultaneously, and numerical convergence is ensured for a wide range of initial guesses

☑ DOF-independent computational cost

☑ Free from time-synchronization

Both flow and structure solvers preserve relative independence while being coupled in pseudo-time, which greatly improves the efficiency

☑ Flexible inputs

Prescribe either aerodynamic parameter (velocity) or structure parameter (amplitude) as the input; Capacity of resolving both benign and detrimental types of LCO, and flutter onset point using one solver

Summary: Computational Aeroelasticity

☑ Frequency (and Velocity) search procedure

Determine self-excited flutter and LCO;

☑ Implicit CSD solver

Significantly reduces the artificial energy at interface of CFD and CSD solvers, and stabilizes the coupled aeroelastic solver;

☑ Easy implementation

Partitioned code-coupling can be done based on off-the-shelf standalone solvers; No dynamic mesh technique is needed, and no Jacobian terms are involved;

The One-shot method has been applied to model various aeroelastic systems. Numerical results show that this new approach can rapidly predict flutter boundary and different types of LCO responses, offering a promising tool to solve dynamic aeroelasticity problems

Future Works: Computational Aeroelasticity

Summary: Aerodynamic Design Optimization

 Grid-transparent unstructured 2D and 3D compressible RANS solver UNstructured PArallel Compressible (UNPAC)

- Fast automatic Differentiation using Operator-overloading Technique (FDOT)
- Efficient and fully-automated; requiring minimal changes to the primal solver
- Memory efficient (manageable memory footprint for 2D and 3D cases)
- Computationally efficient (Adjoint/Primal normalized CPU time ~ 2 5x

UNPAC Design Optimization Framework

- Design Optimization Framework UNPAC-DOF Wrapper Program
 - Performs Gradient-Based Design Optimization
 - Uses L-BFGS-B Optimizer Program
 - Unbounded and Bound Constrained Optimization
 - Surface Points (2D) & FFD Box for Shape Parameterization/Deformation

echnia

Future Works: Aerodynamic Design Optimization

- Improving the Memory and Computational Efficiency:
 - Optimizing the tape recording process for the expression tree
 - Use of recursive patterns for reducing tape size (will require more changes to be made to the original solver)
 - using directive functions to automize tape recording without requiring a significant amount of user intervention

One-Shot Method for simultaneous solution of "Primal", "Adjoint", and "Design" problems

Thank You!

Q & A

THE UNIVERSITY OF TENNESSEE KNOXVILLE BIG ORANGE. BIG IDEAS.®

Backup Slides

COMPUTATIONAL FLUID DYNAMICS LABORATORY

RAE "A" Wing-Body Configuration

1-DOF Vortex Induced Vibration (VIV)

Sweep over *Reynolds number*

0.8

0.7

x x Anagnostopoulos and Bearman, Exp. (1973)

Besem et al., HB/LCO (2016)

RAE "A" Wing-Body Configuration (AGARD-AR-138, Case 6)

M = 0.9, AoA = 1.0 deg

RAE "A" Wing:

- A.R. = 5.5
- \circ L.E. Sweep Angle = 36.7 deg
- \circ T.E. Sweep Angle = 22.3 deg
- \circ Taper ratio = 0.375
- RAE 101 symmetrical airfoils (untwisted)

Unstructured Grid, ~460K tetrahedra, exte

RAE "A" Wing-Body Configuration (AGARD-AR-138, Case 6)

Mach number and Pressure Contours

RAE "A" Wing-Body Configuration (AGARD-AR-138, Case 6)

Pressure Coefficients at Various Spanwise Location Along the Wing

RAE "A" Wing-Body Configuration (AGARD-AR-138, Case 6)

Pressure Coefficients Distributions for 2 Longitudinal Sections along the body

ROM-Based Convergence Acceleration

ROM-Based Convergence Acceleration

 $\vec{U}^{n+1} = \vec{U}^n + \vec{R}(\vec{U})$

ROM-Based Convergence Acceleration

Model Reduction:

Undata formula:

 \triangleright

$$\frac{d\vec{U}}{dt} + \mathcal{N}(\vec{U}) = 0 \quad \text{where} \quad \Phi^T \frac{d}{dt} \left(\Phi \vec{\xi} \right) + \Phi^T \mathcal{N} \left(\Phi \vec{\xi} \right) = 0 \quad \text{where} \quad \vec{U} \cong \Phi \vec{\xi}$$

OProjection

Correlation-Based Approach

 $\vec{R}(\vec{U}) \approx \mathbf{A}\vec{U} - \vec{b}$

Assumption

$$\boldsymbol{\Phi} = \begin{bmatrix} | & | & | \\ \vec{U}_1 & \vec{U}_2 & \dots & \vec{U}_M \\ | & | & | \end{bmatrix}_{N \times M}$$

$$ec{U}_{ ext{projected}} = \sum_{i=1}^M ec{U}_i \xi_i = \mathbf{\Phi} \, oldsymbol{\xi}$$

Covariance-Based Approach

$$\hat{\Phi} = \begin{bmatrix} | & | & | \\ \vec{U}_1 - \vec{U} & \vec{U}_2 - \vec{U} & \dots & \vec{U}_M - \vec{U} \\ | & | & | \end{bmatrix}_{N \times M} \vec{U}_{\text{projected}} = \hat{\Phi} \vec{\xi} + \vec{U} \qquad \quad \vec{U} = \frac{1}{M} \sum_{i=1}^M \vec{U}_i$$

.2 Norm

 $\vec{R}(\vec{U}_{\text{projection}}) \rightarrow 0$

ROM-Based Convergence

Acceleration Inviscid Transonic Flow Past NACA0012 Airfoil

- ROM-Based Convergence Acceleration:
 - Covariance-based approach
 - 10, 20, 40, and 80 solution snapshots used for projections (over a span of 2000 iterations)
 - Process lagged by 1000 iterations (2 orders of magnitude drop in residual)

^a 10 snapshots every 200 iterations during a cycle of 2,000 itrs. and lagged by 1,000 itrs.

r-Adaptive Mesh Redistribution (AMR)

Inviscid Transonic Flow Past NACA0012 Airfoil

- r-Adaptive Mesh Redistribution (AMR):
 - Convergence and Errors

Case Settings

 $\alpha = 1.25 \deg$

 $M_{\infty} = 0.8$

Lift and Drag Predictions

Grid	C_L	Error	Error (relative)	C_D	Error	Error (rel.)
Yano & Darmofal [217]	0.35169	-	+	0.02262		-
Fully-Refined	0.35096	0.20%	. Contraction	0.02349	3.84%	
Baseline	0.34820	0.99%	1.64%	0.02445	8.09%	4.08%
r-adapted (AMR)	0.35024	0.41%	0.20%	0.02302	1.76%	2.00%

Computational Cost

Grid	CPU Time (s)	Normalized CPU Time
Baseline	215.58	1.00
Fully-Refined	2037.60	9.45
r-adapted (AMR)	306.27	1.42

AGARD-702 CT5 Case

- Inviscid Periodic Flow:
 - Unstructured Grid: Nodes = 5,233
 Cells = 10,216
 - Harmonic Balance Method

Computational Fluid Dynamics Lab, MABE Department

Case Settings

 $\alpha_0 = 0.016 \, \deg$

 $M_{\infty} = 0.755$

AGARD-702 CT5 Case

- Baseline grid: Nodes = 1,837
 - Colle = 2 E 42
 - Cells = 3,542
- Fully-refined grid: Nodes = 5,233
 Cells = 10,216

Baseline Grid

Case Settings

 $M_{\infty} = 0.755$ $\alpha_0 = 0.016 \text{ deg}$ $\alpha_p = 2.51 \text{ deg}$ k = 0.0814

r-Adapted Grid at various sub-time levels

Fully-refined Grid

Computational Fluid Dynamics Lab, MABE Department

AGARD-702 CT5 Case

- r-Adaptive Mesh Redistribution (AMR):
 - Significant improvements in numerical accuracy at a fraction of the computational cost

L2 Norm of Errors in C_{L} and C_{M}

THE UNIVERSITY OF

Computational Cost Comparison

Grid	CPU Time (s)	Normalized CPU Time
Baseline	1,749.1	1.00
Fully-Refined	12,671.2	7.24
r-adapted (AMR)	2,207.2	1.26

Computational Fluid Dynamics Lab, MABE Department

