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ABSTRACT 

In this paper we present the results of the dynamic stability analysis of a flexible spinning 
aerospace vehicle subjected to thrust load. In order to model the vehicle, we choose a thin-
walled composite beam with circular cross-section featuring bending-bending-shear coupled 
motion. In the presence of gyroscopic forces, we find the divergence and/or the flutter 
instabilities and plot the stability boundaries of the spinning beam. The solution is provided 
by the extended Galerkin method (EGM) and the results are plotted to show the effects of ply 
angle and transverse shear on the dynamic stability of beam. We observe that both ply angle 
and transverse shear significantly affect the stability behavior of the aerospace vehicle and 
must be carefully addressed in the design process.  

 

INTRODUCTION 
The dynamic stability problem of flexible spinning aerospace vehicles has increasingly 
attracted attention since early development of space flights. In order to eliminate the 
instabilities in the design of vehicles, the potential sources have to be clearly identified. One 
possible cause is the static and/or the dynamic compressive loads acting on these vehicles, 
which will yield the structure to buckle. For instance, aerospace vehicles may feature 
dynamic instabilities due to the thrust force acting along their longitudinal axis. This thrust 
force has a huge impact on vehicle's dynamical characteristics. Besides, the gyroscopic 
forces, which are generated as soon as the spin starts, may also cause the vehicles to 
exhibit divergence and flutter instabilities. 

The instability problem of aerospace vehicles in flight is generally solved by using a free-free 
beam subjected to a follower force. Many of studies conducted so far have utilized Euler-
Bernoulli and Timoshenko beam theories to establish the model of flexible aerospace 
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vehicles. Starting with the work by Beal [Beal, 1965], he studied the stability of a flexible 
missile under constant and pulsating thrust and the effect of periodically varying thrust 
perturbations on the stability of the vehicle. Also, Park and Mote [Park and Mote, 1985] 
inspected the maximum controlled follower force on a free-free beam carrying a concentrated 
mass. Besides, Platus [Platus, 1992] investigated the aeroelastic stability of slender, spinning 
missiles and the spin effect on vehicle instability. Lastly, an experimental study on the flutter 
of visco-elastic cantilevers subjected to a tangential follower force has been conducted by 
Sugiyama [Sugiyama et al., 1995; Sugiyama et al., 1995]. In his studies, he described the 
effect of an intermediate concentrated mass on the dynamic stability of cantilevered columns 
subjected to a rocket thrust and showed comparing with theoretical predictions.  

There are also many studies that have solved the problem of dynamical instability of space 
vehicle using Timoshenko beam theory. For instance, Park [Park, 1987] introduced the 
influence of rotary inertia and shear deformation parameters on the stability of a free-free 
beam with a controlled follower force. In another work by Yoon and Kim [Yoon and Kim, 
2002], they examined the dynamic stability of a spinning unconstrained beam with a 
concentrated mass at an arbitrary location and considering pulsating follower force. Abbas et 
al. [Abbas et al., 2013] also performed transfer matrix method to determine the natural 
vibration characteristics of realistic thrusting multistage launch vehicle.  

Besides Euler, Timoshenko beam theories, in recent years thin-walled beam structures have 
been widely adopted as primary structural components in aerospace vehicles. Particularly, 
the applications of these structures in advanced space vehicles has been greatly increased 
by the advent of fibrous composite materials that provide high strength-to-weight ratios, 
higher resistance to corrosion and superior fatigue life compared to the traditional materials. 
In the light of many pioneering and rigorous studies [Song et al., 2001; Song et al., 2002; 
Song et al., 2000], detailed investigations of thin-walled composite beams have been 
reported focusing on the vibration and stability of elastically tailored structures. 

Thin-walled composite beam theory stands a superior one to establish the model of 
aerospace vehicles, as it accommodates a number of theoretical issues due to various non-
classical effects such as material anisotropy, transverse shear deformation which are 
inherently present in this kind of structures. Within this context we introduce the thin-walled 
composite beam with circular cross-section to study the dynamic stability analysis of a 
flexible spinning aerospace vehicle subjected to thrust force. We mainly aim to find 
divergence and flutter instabilities and establish the stability boundaries of the spinning 
beam. For both shearable and unshearable beam models, the eigenvalue problem is solved 
by the extended Galerkin method (EGM). We present the results addressing the effects of 
spin speed, axial load, ply angle and transverse shear on the dynamic stability of beam. 

 

FORMULATION 
Displacement Field 
In this study, we consider the case of a untwisted slender aerospace vehicle having a length 
of L and its sketch can be found in Figure 1(a). To obtain the dynamical instability 
characteristics of the aerospace vehicle we use the model of a thin-walled composite beam 
with a circular cross-section. This beam is fixed at one end, z=0 and free at other end, z=L. 
As seen from Figure 1(a), a thrust force acts to the free end of the beam. This thrust force 
denoted by P is considered to be caused by the rocket motor at the tip of the beam and it is 
known the compressive axial load. In this case the beam is also spinning along its 
longitudinal z-axis at a constant rate Ω. 
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Figure 1: (a) Beam geometry before and after deformation (b) Cross-sectional geometry and 
kinematic variables 

Figure 1(a) also depicts the beam geometry before and after deformation. Point O, which is 
the pole point, moves to point Oʹ′; while point S, which is located in the mid-cross-section, 
goes to point Sʹ′ by the translations u, v and w in x-, y- and z- directions, respectively, and 
rotates by φ. Figure 1(b) also demonstrates the deformation of the middle contour of the 
cross-section. We lastly adopt a number of kinematic and static assumptions adopted to 
develop the theory of thin-walled beam with a single-cell cross-section, which can be found in 
Reference [Eken and Kaya, 2015]. 

Under these assumptions, the displacement field of a thin-walled beam that undergoes 
extension, vertical bending, lateral bending and torsion is derived in terms of the translations 
of pole point: 

𝑢 𝑥, 𝑦, 𝑧, 𝑡 = 𝑢! 𝑧, 𝑡 − 𝑦𝜙 𝑧, 𝑡  

𝑣 𝑥, 𝑦, 𝑧, 𝑡 = 𝑣! 𝑧, 𝑡 − 𝑥𝜙 𝑧, 𝑡  

For closed cross-section beams the expression of the axial displacement accounting both for 
primary and secondary warping is given by [Meitrovich,1997] 

𝑤 𝑥, 𝑦, 𝑧, 𝑡 = 𝑤! 𝑧, 𝑡 + 𝑦 − 𝑛
𝑑𝑦
𝑑𝑠

𝜃! 𝑧, 𝑡 + 𝑥 − 𝑛
𝑑𝑥
𝑑𝑠

𝜃! 𝑧, 𝑡 − 𝐹! 𝑠 − 𝑛𝑟! 𝑠 𝜙!(𝑧, 𝑡) 

The position vector of Point S located on the mid-contour which is shown in Figure 1(b): 

𝑹 𝑥, 𝑦, 𝑧, 𝑡 = 𝑥 + 𝑢 𝒊 + 𝑦 + 𝑣 𝒋 + 𝑧 + 𝑤 𝒌 
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Energy expressions 
The energy expression of the beam, by using the application of Hamilton's principle is 
elaborated. For a detailed derivation of the energy expressions for both shearable and 
unshearable beams, one should refer to Reference [Eken and Kaya, 2015; Qin and Librescu, 
2002]. 

The Governing System of Equations 
By the Hamilton’s principle, for the thin-walled composite beams featuring CUS configuration, 
the governing equations of motion are presented in the following [Librescu and Song, 2006]: 

𝛿𝑢!:                                        𝑎!"𝜃!!! + 𝑎!! 𝑢!!! + 𝜃!! − 𝑃𝑢!!! = 𝑏!𝑢! − 2𝑏!Ω𝑣! − 𝑏!𝑢!Ω! 

𝛿𝑣!:                                          𝑎!"𝜃!!! + 𝑎!! 𝑣!!! + 𝜃!! − 𝑃𝑣!!! = 𝑏!𝑣! − 2𝑏!Ω𝑢! − 𝑏!𝑣!Ω! 

𝛿𝜃!:                                          𝑎!!𝜃!!! + 𝑎!" 𝑢!!! + 𝜃!! − 𝑎!! 𝑣!! + 𝜃! − 𝑎!"𝜃!! = 𝑏! − 𝑏!" 𝜃! 

𝛿𝜃!:                                          𝑎!!𝜃!!! + 𝑎!" 𝑣!!! + 𝜃!! − 𝑎!! 𝑢!! + 𝜃! − 𝑎!"𝜃!! = 𝑏! − 𝑏!" 𝜃! 

with the fixed-free boundary conditions at z=0 and z=L, respectively: 

𝛿𝑢!:                          𝑢! = 0                    𝑎𝑛𝑑                𝑎!"𝜃!! + 𝑎!! 𝑢!! + 𝜃! − 𝑃𝑢!! = 0 

𝛿𝑣!:                          𝑣! = 0                    𝑎𝑛𝑑                𝑎!"𝜃!! + 𝑎!! 𝑣!! + 𝜃! − 𝑃𝑣!! = 0 

𝛿𝜃!:                          𝜃! = 0                    𝑎𝑛𝑑                𝑎!!𝜃!! + 𝑎!" 𝑢!! + 𝜃! = 0 

𝛿𝜃!:                          𝜃! = 0                    𝑎𝑛𝑑                𝑎!!𝜃!! + 𝑎!" 𝑣!! + 𝜃! = 0 

As a special case, unshearable thin-walled beam model is examined and the governing 
equations of motion are presented in the following: 

𝛿𝑢!:                      𝑎!!𝑢!!!!! + 𝑃𝑢!!! + 𝑏!𝑢! − 𝑏! + 𝑏!" 𝑢!!! − 2𝑏!Ω𝑣! − 𝑏!𝑢!Ω! =0 

𝛿𝑣!:                        𝑎!!𝑣!!!!! + 𝑃𝑣!!! + 𝑏!𝑣! − 𝑏! + 𝑏!" 𝑣!!! + 2𝑏!Ω𝑢! − 𝑏!𝑣!Ω! =0 

with the fixed-free boundary conditions at z=0 and z=L, respectively: 

𝛿𝑢!:                        𝑢! = 0                    𝑎𝑛𝑑                𝑎!!𝑢!!!! + 𝑃𝑢!! − 𝑏! + 𝑏!" 𝑢!! = 0 

𝛿𝑣:                            𝑣! = 0                    𝑎𝑛𝑑                𝑎!!𝑣!!!! + 𝑃𝑣!! − 𝑏! + 𝑏!" 𝑣!! = 0 

𝛿𝑢!! :                        𝑢!! = 0                    𝑎𝑛𝑑                𝑎!!𝑢!!! = 0 

𝛿𝑣!! :                        𝑣!! = 0                    𝑎𝑛𝑑                𝑎!!𝑣!!! = 0 

Solution Methodology 
As explained previously, the governing system of equations as well as the pertinent 
boundary conditions involve the elastic couplings of vertical bending-torsion-(lateral) 
transverse shear. Obtaining exact solution to these equations is very challenging, besides 
static boundary conditions are quite complicated. Due to these challenges, the extended 
Galerkin method, which is based on selecting the weighting functions only by fulfilling the 
geometric boundary conditions, is used to solve the eigenvalue problem [Librescu and Song, 
2006]. This method is proven to be a very powerful tool to obtain accurate and convergent 
results [Eken and Kaya, 2015]. 
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Initially, the equations of motion are discretized in terms of the following displacements u0, v0, 
θx and θy which are assumed as [Qin and Librescu, 2002]: 

𝑢! 𝑧, 𝑡 = 𝑁!! 𝑧   𝑞! 𝑡  

𝑣! 𝑧, 𝑡 = 𝑁!! 𝑧   𝑞! 𝑡  

𝜃! 𝑧, 𝑡 = 𝑁!! 𝑧   𝑞! 𝑡  

𝜃! 𝑧, 𝑡 = 𝑁!! 𝑧   𝑞! 𝑡  

Here, the trial functions are represented by Nu, Nv, Nx and Ny, which are also called shape 
functions with the dimension Nx1, while qu, qv, qx and qy are the vectors of the generalized 
coordinates. The shape functions used for shearable beams are expressed in following 
polynomial form: 

𝑁!! 𝑧 = 𝑧                𝑧!             …                 𝑧!    

𝑁!! 𝑧 = 𝑧                𝑧!             …                 𝑧!    

𝑁!! 𝑧 = 𝑧                𝑧!             …                 𝑧!    

𝑁!! 𝑧 = 𝑧                𝑧!             …                 𝑧!    

For unshearable beams the shape function of the bending displacement is different than in 
shearable counterpart, which is given as: 

𝑁!! 𝑧 = 𝑧!                𝑧!             …                 𝑧!!!    

𝑁!! 𝑧 = 𝑧!                𝑧!             …                 𝑧!!!    

Inserting 𝑢!, 𝑣, 𝜃! , 𝜃!   into the governing equations of motion, multiplying with the pertinent 
shape functions (trial functions) and integrating along the spanwise coordinate, we have the 
free vibration problem as follows: 

𝑴𝑞 𝑡 + 𝑪𝑞 𝑡 + 𝑲𝑞 𝑡 = 0 

Here, [M], [C] and [K] represent the mass, damping and the stiffness matrices. In order to 
solve this system, we represent above equation in state-space form as 𝑋 𝑡 = 𝐴𝑋(𝑡). Here, 
𝑋 = 𝒒! 𝒒! ! and 

𝐴 = 𝟎 𝑰
−𝑴!𝟏𝑲 −𝑴!𝟏𝑪  

Assuming X(t) in the form of 𝑋(𝑡) = 𝑋𝑒(!"), the solution of 𝑋 𝑡 = 𝐴𝑋(𝑡) is solved for 
eigenvalues λj and eigenvectors Xj,  

𝜆𝑰 − 𝑨 𝑋 = 0 

  

 RESULT AND DISCUSSION 
In this section we present the results of dynamic stability analysis of a slender aerospace 
vehicle modeled as a thin walled composite beam. For the numerical simulations we chose 
the beam with circular cross-section whose material and geometrical properties can be found 
in Table 1 [Song et al., 2001]. The influences of the axial load, spin speed, ply angle and 
transverse shear on the dynamical characteristics of the beam are investigated and 
numerous results regarding these effects are concluded. 

The non-zero stiffness coefficients considered in CUS lay-up are a22, a33, a44, a55, a25 and a34 
which represent the stiffness’s of horizontal bending, vertical bending, horizontal transverse 
shear, vertical transverse shear, horizontal bending-transverse shear coupling and vertical 
bending-transverse shear coupling, respectively. In order to assess of the dynamical 
behavior of the thin-walled beam with this configuration, these elastic coefficients are plotted 
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with respect to ply-angle in Figure 2. Clearly from this figure, due to the circular cross-section 
we first see that a22 perfectly overlaps with a33, and also a44 with a55. Secondly, the curve of 
a25 is symmetrical to a34 along 𝜃 = 90°. 

Table 1: Material and geometrical properties of the rocket 
Material Properties 
E11 206.8 GPa 
E22 = E33 5.17 GPa 
G12 3.10 GPa 
G13 = G23 2.55 GPa 
ν12 = ν31 0.00625 
ν32 0.25 
Density, ρ 1528 kg/m3 

Geometrical Properties 
Radius, R (m) 0.127 
Total thickness, h (m) 0.01016 
Length, L (m) 2.023 
Number of layers, N 6 
Lay-ups [θ]N 

 

Moreover, the curves of a22 and a33 with respect to ply-angle reach a peak value at 𝜃 = 90°, 
while a44 and a55 have their local maximums at 𝜃 ≈ 75°and at 𝜃 ≈ 105°.  We lastly observe 
that the most dominant stiffness coefficients are computed as a44 and a55, while a22 and a33 
are the least dominant coefficients compared with others. 

 
Figure 2: The variation of the stiffness quantities with respect to ply-angle 

In this part of results we come to specify the boundaries of divergence and flutter instabilities. 
This analysis that shows the Ω-P plane for selected ply angles, 𝜃 =   0°, 30°, 60°, 90° in 
Figures 3-6. In Figure 3, for ply angle 𝜃 = 0°, the boundaries/regions are marked with D, F 
and S denoting the divergence boundary, flutter region and stability region, respectively, and 
yet we note that in the absence of both axial load and spin speed, the system is defined as 
stable. The region on the right side of black curve represents the flutter instability F, while the 
left represents the flutter stable region FS. The divergence instability occurs only on the gray 
curve, in other words there is no region of divergence instability, and the bottom region of this 
curve shows the divergent stable region DS. 
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As we carefully inspect Figures 3-6, we have obtained numerous important results regarding 
the instability boundaries. First of all, we have observed that stability regions of both 
regarding flutter and divergence instabilities expand with the increase of ply angle. Secondly, 
we see that the black lines that represent flutter stable/unstable regions form nearly straight 
line for higher ply angles, whereas for lower ply angles these lines take a relatively curved 
form. Lastly and importantly, we see that the transverse shear has a profound effect on the 
regions of divergence and flutter instabilities. For ply angles 𝜃 ≥ 45° the boundary of 
divergence instability expands, while for ply angles 𝜃 ≤ 45°, transverse shear has an 
insignificant effect on the divergence boundary. Nevertheless, the boundary of flutter 
instability moves forward for ply angles  𝜃 ≤ 30°, as we observe a slight difference of the 
results with the inclusion of transverse shear for ply angles  𝜃 ≥ 30°. We lastly conclude that 
for both divergence and flutter stability regions the deviation of the results of the shearable 
theory from the unshearable theory becomes very large at ply angle of 𝜃 = 60°. 

We further calculate the divergence and flutter instabilities for selected spin speeds and ply 
angles. Pdiv and Pflutter values are computed for both shearable and unshearable beams and 
tabulated in Table 2. This table also shows a comparison of the instabilities with a previous 
study of Reference [Song et al., 2002] [*]. As seen, for various spin speeds and ply angle 
configurations, there is an excellent agreement between the present and published results. 

 
Figure 3: Divergence and flutter instability boundaries in P-Ω plane for θ=0° 

 
Figure 4: Divergence and flutter instability boundaries in P-Ω plane for θ=30° 
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Figure 5: Divergence and flutter instability boundaries in P-Ω plane for θ=60° 

 
Figure 6: Divergence and flutter instability boundaries in P-Ω plane for θ=90° 

 

 CONCLUSION 
We have presented the results of dynamic stability analysis of thin-walled composite spinning 
beam model. Boundaries of divergence and flutter instabilities are established for a wide 
range of parameters. The major conclusions drawn from this study are listed with no 
particular order as below: 

• In the presence of axial load and for nonzero spin speed we observe that the critical 
axial loads profoundly increase as the ply angle increases. Besides, the effect of spin 
speed rate on the critical divergence axial load diminishes for higher ply angles. 

• In the presence of axial load and for nonzero spin speed we have also seen that 
stability regions of both regarding flutter and divergence instabilities expand with the 
increase of ply angle. 
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• Lastly, we have reported that the transverse shear has a profound effect in all of the 
findings listed above and has to be addressed carefully in order to accurately 
determine the dynamical instabilities of the beams. 

 

Table 2: The boundaries of divergence and flutter instabilities for selected spin speeds 
and ply-angles 

0° 
 Shearable Unshearable 
Ω Pdiv Pflutter Pdiv Pflutter 
0 2.47(2.444[*]) - 2.47 - 
1 - 2.44(2.421[*]) - 2.47 
2 - 2.37(2.353[*]) - 2.40 
3 - 2.24(2.238[*]) - 2.27 
4 - 2.08(2.078[*]) - 2.10 
5 - 1.88(1.872[*]) - 1.88 

45° 
 Shearable Unshearable 
Ω Pdiv Pflutter Pdiv Pflutter 
0 4.08(4.056[*]) - 5.64 - 
1 1.75(1.713[*]) 4.05(4.033[*]) 3.30 5.64 
2 - 4.02(3.965[*]) - 5.52 
3 - 3.90(3.852[*]) - 5.40 
4 - 3.72(3.692[*]) - 5.28 
5 - 3.48(3.488[*]) - 5.04 

90° 
 Shearable Unshearable 
Ω Pdiv Pflutter Pdiv Pflutter 
0 72.00(71.44[*]) - 99.00 - 
1 69.00(69.19[*]) 72.00(71.43[*]) 96.00 99.00 
2 62.00(62.02[*]) 72.00(71.39[*]) 90.00 99.00 
3 48.50(48.61[*]) 72.00(71.33[*]) 78.00 99.00 
4 27.00(26.90[*]) 72.00(71.34[*]) 62.00 99.00 
5 - 71.00(71.13[*]) 41.00 99.00 
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