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ABSTRACT 

Natural vibrations and aeroelastic stability of realistic launch vehicles are investigated in this 
paper. Firstly, a discrete mass system is developed for determining the equations of motions 
of free-free unsymmetrical beams. Natural frequencies, mode shapes and mode slopes, also 
bending moments are obtained for three-staged launch vehicle. Secondly, to figure out 
aeroelastic behavior of launch vehicles, dynamic divergence pressure and generalized static 
margin of launch vehicle are considered. Considering realistic launch vehicles that using 
NASA research at early space flight investigations, numerical results are represented for 
both cases.  
 

INTRODUCTION 
The dynamic and aeroelastic stabilities of launch vehicle have great importance in space 
flights. Stability analysis of a slender flexible aerospace vehicle is a crucial point in structural 
design, control systems, targeting, and carrying payload. Static and dynamic instability of 
aerospace vehicle is related natural vibration characteristics and forces acting to the 
structure. According to the altitude, a rocket or missile is subjected thrust and aerodynamic 
force that classified non-conservative forces. Vibration characteristics and dynamic-
aeroelastic stabilities of realistic rockets have been carried out rigorously in many papers and 
NASA technical reports from early studies of space history that mentioned in following 
paragraphs.  

Alley and Gerringer [Alley and Gerringer, 1962] reported a matrix method for the 
determination of the natural vibrations of free-free unsymmetrical beams with application to 
launch vehicles. They applied discrete-mass system to evaluate vibrational characteristics of 
the system, and also deflections, slopes and moments by considering influence coefficients. 
They illustrated numerical results in the application of three-staged typical launch vehicle, 
besides accounted effect of joints to obtain realistic results. In another study, Alley and 
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Gerringer [Alley and Gerringer, 1966] developed a discrete-mass method to analyze the 
aeroelastic divergence behavior of unguided launch vehicles. They considered stability 
criteria according to both generalized static margin and divergence dynamic pressure for 
rigid and flexible vehicles. A generic rocket body is used to demonstrate numerical results on 
the effect of aeroelasticity by considering variations in fin-lift characteristics.  

Young [Young, 1968] presented the analysis of the aeroelastic divergence of two 
experimental unguided launch vehicles. He examined the theoretical analysis of these 
vehicles that have failed because of aeroelastic divergence and compared flight results and 
analytical results. Another study that declared by Young [Young, 1967] showed us a 
numerical method to determine the aeroelastic divergence characteristics of unguided, 
slender-body, multistage launch vehicles. In this study, a matrix recurrence solution to the 
system equations based on a finite difference method yields the stability boundaries because 
of aeroelastic divergence. On the other hand, Nakano [Nakano, 1971] inspected the 
application of transfer matrix method to the structural dynamics of rocket vehicles. He 
showed that axial force or aerodynamic lift force could be incorporated to the rocket system 
and found the distribution of displacement, slope and aeroelastic divergence pressure of 
selected rocket vehicles.   

Abbas et al. [Abbas et al., 2013] performed transfer matrix method to determine the natural 
vibration characteristics of realistic thrusting multistage launch vehicle. They calculated the 
frequencies and mode shapes of non-uniform free-free Timoshenko beam also described 
slope and rotation angle, mode moments, and mode shears. Joshi [Joshi, 1995] dealt with 
free vibration characteristics of variable mass rockets having large axial thrust/ acceleration. 
There are also numerous studies in the literature that on the dynamic and aeroelastic 
instabilities of general or realistic launch vehicles [Cihan and Kaya, 2015; Beal, 1965; Wu, 
1975; Wu, 1976; Yoon and Kim, 2002;  Trikha et al. 2010; Duan and Wang, 2014]. 

In this paper, we mainly aim to find the natural vibration and aeroelastic stability of realistic 
launch vehicles. Launch vehicles are modeled as free-free unsymmetrical beams and 
equations of motion are obtained by using discrete-mass systems for both analysis. For 
selected research launch vehicles from NASA technical reports, free vibration analysis and 
stability analysis of the system are carried out and numerical results are compered with the 
previous papers. 

 

FORMULATION 
Structural Model 
A rocket, which modeled as a discrete mass system, is demonstrated in Figure 1. The beam 
is considered as fixed at 𝑥 = 0, free at 𝑥 = 𝐿. Here, p is the number of discrete masses in the 
system; r is the station of discrete mass. y0 and θ0 are deflection and slope at the 0th station, 
respectively. The deflection of the rth station is defined as,  

 
Figure 1: Discrete mass system 

 



 
AIAC-2017-202                                Cihan & Kaya 
 

3 
Ankara International Aerospace Conference 

 
 

𝑦! = 𝐹!𝜎!,!

!!!

!!!

+   𝜃!𝑥! + 𝑦! 

𝜎!,! is total deflection influence coefficient accounting bending and joint effects at 𝑥 = 𝑥!    
because of unit load applying at 𝑥 = 𝑥!. According to the laws of conservation of linear and 
angular momentum, we can drive the following equations:   

𝐹!

!!!

!!!

= 0              ,                 𝐹!

!!!

!!!

𝑥! = 0                ,              𝐹! =   𝑚!𝜔!𝑦!   

Here, ω is the frequency of the beam. After necessary regulation, we can set the deflection 
and slope at the 0th station in the case of starting at 𝑛 = 1, as;  

𝜃! =   
𝜔!𝑚
𝑥

𝑥!

𝑟!
1 −

𝑥!
𝑥

𝑚!

𝑚
𝜎!,!

𝑚!

𝑚
𝑦!  

𝑦! = −𝜔!𝑚 1 +
𝑥!

𝑟!
−
𝑥!

𝑟!
𝑥!
𝑥

𝑚!

𝑚
𝜎!,!

𝑚!

𝑚
𝑦!  

Here, 𝑥 is the distance of center of gravity to the origin, and 𝑟 is the radius of gyration of total 
mass about the center of gravity of the beam. By substituting 𝜃! and 𝑦! into the equation of 
total deflection 𝑦!, we can obtain equations of motion in matrix form as;  

 

1
𝜔!𝑚

𝑦! = 1 +   
𝑥!

𝑟!
  
𝑥!
𝑥

1 −
𝑥!
𝑥

− 1 1 +
𝑥!

𝑟!
−   
𝑥!

𝑟!
𝑥!
𝑥

𝑚!

𝑚
𝜎!,!

𝑚!

𝑚
𝑦!  

𝑛 = 1, 2,3… 𝑝 − 1  

𝑟 = 1, 2, 3… 𝑝 − 1  

The solution of the above equation is classical eigenvalue problem. We can obtain natural 
frequencies and mode shapes of the system by generating the following equation. 

𝜆! 𝑦!(𝑠) =    𝐴 𝑦!(𝑠)  

In the discrete mass system, mode slopes and mode moments can be expressed 
respectively as following,   

𝜃! =   𝜔!𝑚
𝑥
𝑟!

1    1 −
𝑥!
𝑥

𝑚!

𝑚
𝜎!,! + 𝜌!,!

𝑚!

𝑚
𝑦!  

𝑀! =   𝜔!𝑚 𝑥! − 𝑥! − 𝑥! 1
𝑚!

𝑚
𝑦!  

Influence Coefficients 
Total deflections and slopes of the stations will be stated as influence coefficients. Total 
influence coefficients consist of two parts; one of them is due to elementary beam flexure 
and the other one is due to elastic rotation of joints. 

Total deflection influence coefficients  

𝜎!,! is total deflection influence coefficient accounting bending and joint effects at 𝑥 = 𝑥! 
because of unit load applying at 𝑥 = 𝑥!. Total deflection influence coefficient is consist of 𝛼!,! 
and 𝛿!,!. The number of joints denotes v.  
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𝜎!,! =    𝛼!,! +    𝛿!,!
(!) + 𝛿!,!

(!) +⋯+ 𝛿!,!
(!)  

𝜎!,! =    𝜎!,!  

𝛼!,! is the deflection influence coefficient due to elementary beam flexure, deflection at 
𝑥 = 𝑥! because of unit load applying at 𝑥 = 𝑥!.  

𝜂! =   
1
𝐸𝐼
  𝑑𝑥

!!

!
, 𝜇! =   

𝑥
𝐸𝐼
  𝑑𝑥

!!

!
,          𝛽! =   

𝑥!

𝐸𝐼
  𝑑𝑥

!!

!
   

 

𝛼!,! =   𝛽! − 𝑥! +   𝑥! 𝜇! +   𝑥!𝑥!𝜂!                                   (𝑤ℎ𝑒𝑛  𝑛 ≥ 𝑟) 

 

𝛼!,! =    𝛽! −    𝑥! 𝜇! 1 +    𝑥! 𝜂! − 𝜇!       𝑥!  

𝛼!,! = 𝛼!,! 

𝛿!,! is the deflection influence coefficient due to elastic rotation of joints, deflection at 𝑥 = 𝑥! 
because of unit load applying at 𝑥 = 𝑥!. This coefficient is taken into account for each joint of 
beam and added to total deflection influence coefficient.  The joint location on the beam is 
demonstrated in Figure 2. Here, 𝜅! is joint rotation constant for joint u and 𝑐! is coordinate of 
joint u.  

𝛿!,!
(!) =   𝜅! 𝑥! −   𝑐! 1 𝑥! −   𝑐! 1

!
 

𝛿!,!
(!) ≠ 0                          (𝑤ℎ𝑒𝑛  𝑥! , 𝑥! > 𝑐!)   

𝛿!,!
(!) = 0                          (𝑤ℎ𝑒𝑛  𝑥! , 𝑥! ≤ 𝑐!)   

 

Figure 2: Joint location on the beam 

Total slope influence coefficients  

𝜌!,! is total slope influence coefficient accounting bending and joint effects at 𝑥 = 𝑥! because 
of unit load applying at 𝑥 = 𝑥!. Total slope influence coefficient is consist of 𝜈!,! and 𝜉!,!. 

𝜌!,! =    𝜈!,! +    𝜉!,!
(!) + 𝜉!,!

(!) +⋯+ 𝜉!,!
(!)  

𝜈!,! is the slope influence coefficient due to elementary beam flexure, slope at 𝑥 = 𝑥! 
because of unit load applying at 𝑥 = 𝑥!.  

𝜈!,! =   𝑥!𝜂! − 𝜇!                                                                 (𝑟 ≤ 𝑛) 

𝜈!,! = 𝜈!,! =   𝑥!𝜂! − 𝜇!                                      (𝑟 > 𝑛) 
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𝜉!,! is the slope influence coefficient due to elastic rotation of joints, slope at 𝑥 = 𝑥! because 
of unit load applying at 𝑥 = 𝑥!. This coefficient is taken into account for each joint of beam 
and added to total slope influence coefficient.   

𝜉!,!
(!) =   𝜅! 1 𝑥! −   𝑐! 1

!                         (𝑤ℎ𝑒𝑛    𝑥! , 𝑥! > 𝑐!) 

𝜉!,!
! = 0                                                                                                               𝑤ℎ𝑒𝑛    𝑥! , 𝑥! ≤ 𝑐!  

 
Stability Criteria 
In this section, aeroelastic stability of an unguided launch vehicle that subjected to 
aerodynamic loads will be discussed. In order to determine the stability of flexible system 
under aerodynamic loads, obtaining the aeroelastic divergence of system is necessary but 
not adequate. In this context, the static margin of the system should be figured out. To define 
the stability of the system, both aeroelastic divergence and static margin should be 
considered in the case of following statements that mentioned before Reference [Alley and 
Gerringer, 1966] as, 

𝑞
𝑞!"#

≤
1
2

 

𝐿
15

≤ 𝑥!",!"# ≥ 𝐷!"# 

Divergence Dynamic Pressure 

The discrete mass system is used to figure out aeroelastic divergence of beam. A discrete 
element r subjected to aerodynamic and inertia forces and its coordinate system are 
demonstrated in Figure 3. 

 
Figure 3: A discrete element of deflected beam that subjected to forces 

 

The total transverse force 𝐹!, the local angle of attack 𝛼! at the rth element and some 
regulations can be described as,  

𝐹! = 𝑚!𝑢𝛾 − 𝑞𝐶!!   𝑆!𝛼! 

𝛼!   ≈   
𝑣
𝑢
−

𝑑𝑦
𝑑𝑥 !

 

𝑑𝑦
𝑑𝑥 !

=    𝜌!,!

!!!

!!!

𝐹! 

𝐹! = 𝑚!𝑢𝛾 − 𝑞𝐶!!𝑆!
𝑣
𝑢
− 𝜌!,!

!!!

!!!

𝐹!  
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After some regulations for angle of attack, equation of motion in the matrix form can be 
defined as,  

𝐹! = 𝑢𝛾 𝑚! − 𝑞
𝑣
𝑢
𝐶!!𝑆! 1 +   𝑞 𝐶!!𝑆! 𝜌!,! 𝐹!  

r, n = 1,2,3,… , p − 1 

According to law of conservation of linear and angular momentum, following two 
relationships can be generated,  

1 𝐹! +   𝐹! = 0 

𝑥! 𝐹! = 0 

Where,  

𝑀 = 1 𝑚! +   𝑚! 

𝑀𝑥!" = 𝑥! 𝑚!  

𝐶!!𝑆 = 1 𝐶!!𝑆! 1 + 𝐶!!𝑆! 

𝑥!"𝐶!!𝑆 = 𝑥! 𝐶!!𝑆! 1  

By using above equations and after necessary regulation, the equation of the motion of the 
system can be stated as, 

𝐹! = 𝑞𝐶!!𝑆 1 +
𝑚!

𝑀
𝑥!" − 𝑥!
𝑥!" − 𝑥!"

+
𝐶!!𝑆!
𝐶!!𝑆

1
𝑥! − 𝑥!"
𝑥!" − 𝑥!"

𝐶!!𝑆!
𝐶!!𝑆

𝜌!,! 𝐹!  

The solution of this equation is a classical eigenvalue problem and also we can find the 
natural frequencies of the system and divergence dynamic pressure that given as,   

1
𝑞𝐶!!𝑆

𝐹! = 𝐴 𝐹!                             (∗) 

q!"# =   
1

𝐶!!𝑆  𝜆
 

Static Margin 

The static margin is used to determine the stability of rigid structures, which is meant by the 
distance from the center of gravity to the center of aerodynamic center. For rigid vehicles, 
static margin is independent from the dynamic pressure. For the vehicles that elastically 
deformed, the static margin is expressed as, 1st mode 

𝑥!" = 𝑥!" −   
𝑥! 𝐶!!𝑆! 𝛼!

1 𝐶!!𝑆! 𝛼! + 𝐶!!𝑆!𝛼!
 

 
RESULTS 

For the first part of numerical results, a three-staged realistic rocket that is given in NASA’s 
technical report [Alley and Gerringer, 1962] is used and demonstrated in Figure 4. Discrete 
masses, locations, and stations are showed in this figure elaborately. In this configuration the 
rocket has 22 discrete masses and 9 joint rotations that are indicated black and blue dots in 
the figure, respectively. Flexural stiffness coefficients EI and joint rotation constants 𝜅!are 
given in [Alley and Gerringer, 1962]. According to above equations, natural frequencies and 
mode shapes of the system are figured out by using discrete mass system.  Moreover, for 
the first three mode of the system, deflection 𝑦!, slope 𝜃!, and the bending moment 𝑀! of the 
rocket are calculated.  
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Natural frequencies and mode shapes, mode slopes and bending moments for first three 
natural modes of three-staged launch vehicle is demonstrated in Figure 5-7, respectively. 
Here, the results are perfectly matched up with the reference paper.  

In the second part of the analysis, NASA research vehicle RAM III is used for the numerical 
considerations. Flexural stiffness coefficients EI, joint rotation constants 𝜅!, weight 
distribution, basic trajectory parameters and distribution of 𝐶!!𝑆! for RAM III vehicle 
according to selected stations are given in [Alley and Gerringer, 1966]. 

In this part of analysis the stability of the vehicle is carried out. Dynamic divergence pressure 
qdiv and static margin 𝑥!"   of the rocket is needed to determine the stability criteria. In this 
regard, the rate of dynamic pressure of the airstream to dynamic divergence pressure q/qdiv 
with respect to 𝐶!!𝑆! is showed in Figure 8. On the other hand, static margin of the system 
𝑥!"   according to 𝐶!!𝑆! is demonstrated in Figure 9. 

Primarily, to obtain divergence dynamic pressure we need to solve Equation (*) that 
containing mass and aerodynamic characteristic of rocket. These characteristics are 
captured for a specific flight time and Mach number. All data in Reference [Alley and 
Gerringer, 1966] are given at Mach 4 for RAM III because of the fact that the maximum 
dynamic pressure is comprised in this flight condition. 𝐶!!𝑆! is zeroth station aerodynamic 
coefficient, which is consisted both body and fin contributions but fin contribution has a 
superior effect relatively. For this reason, we consider the stability index 𝑞 𝑞!"# with changing 
𝐶!!𝑆! values in Figure 8. 

For flexible vehicles when the stability index is equal to one 𝑞
𝑞!"# = 1 , aeroelastic 

divergence occurs and the divergence normal force coefficient at zeroth station is depicts as 
𝐶!!𝑆!"#. As seen in the figure, the value of 𝐶!!𝑆!"# is 0.85m2/radian where 𝑞 𝑞!"# = 1. Further 
result from the figure we show, which is the nominal aerodynamic coefficient, is 𝐶!!𝑆! =
1.59  𝑚!/𝑟𝑎𝑑𝑖𝑎𝑛   seen with red dot line on the curve. As mentioned before, 𝑞 𝑞!"# should be 
less and equal to 1/2 for nominal design to set stability criteria. Here, we can say that 
nominal design of RAM III vehicle is compatible by considering stability index that refer to 
aeroelastic divergence stability of rocket. 

Second criteria for stability of a rocket is static margin that used for rigid structures. In Figure 
9, it is apparently seen that when the 𝐶!!𝑆! increases the static margin also increases. On 
the other hand, the crucial point is 𝐶!!𝑆! = 0.85  𝑚!/𝑟𝑎𝑑𝑖𝑎𝑛 where aeroelastic divergence 
occurs at 𝑞 𝑞!"# = 1. In this point, the static margin value is found as 𝑥!"   = 0.23𝑚. 

For both analyses we can say that the result of the q/qdiv and 𝒙𝒔𝒎  are compared with the 
reference paper [Alley and Gerringer, 1962] and our results are overlapped with given. 

Stability criteria of launch vehicles is determined according to flexibility and rigidity of 
structures. For flexible structures, it is necessary criteria that obtaining the aeroelastic 
divergence, 𝑞 𝑞!"# ≤

1
2. In addition to this, for the rigid structures, static margin of the 

vehicle should be determined, as mentioned previous section. 

For the RAM III vehicle, when nominal design value is considered as 𝐶!!𝑆! = 1.59  𝑚!/
𝑟𝑎𝑑𝑖𝑎𝑛, 𝑞 𝑞!"# = 0.4754. This value is smaller than the limit value according to aeroelastic 
divergence criteria. Furthermore, the static margin of the RAM III 𝑥!"  , considering rigid body 
approximation is bigger than the maximum diameter of the vehicle, also bigger than the one 
fifteenth of the length of the vehicle (𝐿 = 12.58𝑚). In this context, we can say that the RAM 
III vehicle is stable for both stability criteria. 
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Figure 4: Discrete mass representation of a typical three-staged launch vehicle 

 
Figure 5: Natural frequencies and mode shapes for the first three modes of generic launch 

vehicle 
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Figure 6: Mode slopes for the first three modes of generic launch vehicle 

 
Figure 7: Moment curves for the first three modes of generic launch vehicle 

 
Figure 8:Variation of q/qdiv with zeroth panel normal force coefficient for the RAM-III vehicle 
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Figure 9: Static margin of the RAM-III vehicle 

 CONCLUSION 
Natural vibrations and aeroelastic stability criteria are studied in this paper. The numerical 
solutions are obtained by implemented of discrete mass systems. Natural frequencies and 
mode shapes by considering deflections, slopes and bending moments of the launch vehicle, 
are figured out. Additionally, static margin and dynamic divergence pressure of a generic 
launch vehicle that subjected to aerodynamic forces are calculated. For both analysis two 
different generic launch vehicles, which experienced in NASA research, are used to verify 
our results. In conclusion, we achieved perfect match with literature for our results.  
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