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ABSTRACT 

Various critical plane methods were proposed and developed since Findley introduced the 
idea of using critical plane concept for estimation of high cycle fatigue life. However, still 
basic equivalent stress methods are used for industrial applications. Aim of this paper is to 
compare several equivalent stress and critical plane criteria regarding their performance in 
predicting fatigue life under in-phase and out-of-phase bending (or axial)-torsion loadings 
that are obtained from the literature. In the present study special attention is given to mean 
stress effect. To that end, we transform the multiaxial stress state into uniaxial fully reversed 
stress history by inclusion of well-known mean stress corrections such as Soderberg, 
Goodman etc. On the other hand, for critical plane methods, stress state is transformed into 
a damage parameter which is calculated for all material planes. Statistical analysis of 
estimations is made for comparison of methods. 

 
INTRODUCTION 

Multiaxial fatigue is an important failure mode that is experienced by many engineering parts 

such as crankshafts, turbine blades, pressure vessels and fasteners. Such engineering parts, 

usually designed in accordance with safe life methodology for high cycle fatigue, operate 

under multiaxial cyclic loading which is the main cause of this fatigue failure. For several 

decades, different methods are proposed and developed in order to estimate fatigue life of 

components. However, none of those methods are universally accepted and applicable to all 

material types and loading scenarios. Therefore, a good knowledge of methods is required 

for accurate life estimations.    

Multiaxial fatigue problem was first investigated by Lanza when he performed combined 

rotating bending/torsion experiments [Lanza, 1886]. Later, several researchers such as 

Mason, Haigh, Nishiara and Kawamoto and Gough et al. correlated multiaxial test results 

with empirical relations [Mason, 1917; Haigh, 1923; Nishiara and Kawamoto, 1941 and 

Gough, 1951]. However, since testing a material under all combination of complex loading is 
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not feasible, methods that describe multiaxial fatigue behavior with simple uniaxial test 

results are required. Therefore, investigators attempted to adapt static yield criteria such as 

maximum normal stress and maximum octahedral stress theory to multiaxial fatigue problem. 

These methods are called equivalent stress methods and the basic idea of equivalent stress 

methods is to transform the multiaxial stress state into a uniaxial stress history. Then, by 

comparing the alternating equivalent stress with uniaxial test endurance limits, life of the 

component is estimated. Although such criteria are successful in estimation of fatigue life for 

in-phase loading without mean stresses, their accuracy drops with increase in phase 

difference of load channels as shown by Engin and Coker and Papuga et al. [Engin and 

Coker. 2017; Papuga et al., 2012]. Critical plane methods, first introduced by Findley, are 

developed in order to solve those problems stated above [Findley, 1957]. Multiaxial stress 

state is transformed into a damage parameter and this calculation is made for all material 

planes in order to find the critical plane that experiences the maximum damage. Usually 

shear stress amplitude, which is assumed to be the main cause of crack initiation, and 

normal stress, which is considered as the main reason of crack opening, is included into 

damage parameters.  

Most of the engineering parts experience not only cyclic stresses but also mean stresses as 

a result of deadweight of the structure, pre-tension on fasteners and residual stresses 

induced by several machining processes. It is well known that mean stresses decrease 

fatigue life. As a result multiaxial fatigue models should be capable of predicting the adverse 

effects of mean stresses. Mean stress effect is included in equivalent stress and critical plane 

methods differently. For equivalent stress methods, if equivalent stress history has mean 

component, a mean stress correction (Soderberg, Goodman, etc.) is performed for obtaining 

the fully reversed history [Soderberg, 1939 and Goodman, 1899]. For critical plane methods 

however, in order to take into account the mean stress effects, several parameters such as 

maximum normal stress (𝜎𝑛,𝑚𝑎𝑥 ), maximum hydrostatic stress (𝜎𝐻𝑛,𝑚𝑎𝑥 ), mean normal 

stress (𝜎𝑛,𝑚 ) and mean shear stress (𝜏𝑛,𝑚 ) are added to damage parameters. Several 

authors (Smith and Sines) stated that mean torsion has little effect on fatigue life, thus most 

of the critical plane models do not include mean shear stress component [Smith, 1942 and 

Sines, 1959]. However it was shown by Krgo et al., Kallmeyer et al., Kluger and Lagoda and 

Niesłony et al. that mean torsion (shear) stress adversely effects fatigue life [Krgo et al., 

2000; Kallmeyer et al. 2001, Kluger and Lagoda, 2014 and Niesłony et al. 2014]. As a result 

new critical plane methods include mean shear stress in their damage parameters. 

Equivalent stress methods are still preferred in industrial applications for high cycle fatigue 

life estimations instead of critical plane methods since these methods are simple and fast. 

Aim of this paper is to determine performance of several equivalent stress methods such as 

Absolute Maximum Principal and Signed von Mises Stress and several critical plane criteria 

namely Findley and Matake under bending/torsion loading with mean stresses obtained from 

literature. Furthermore, for equivalent stress criteria mean stress inclusion methods are 

studied to determine which correlates the experimental data better.                

 

Loading Type 

A good understanding of loading type is important for multiaxial fatigue. Therefore, in this 

section brief information is given about loading types that causes multiaxial fatigue. Multiaxial 

loading can be classified as proportional and non-proportional. The main difference between 

two types of loading is the principal stress directions. During proportional loading, principal 
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stress directions remain constant with time while for non-proportional loading opposite is 

true. A loading with two channels both having normal stresses, is always proportional since 

principal stress directions remain fixed in time. However, loading with normal and shear 

stresses is proportional only if there is no phase or frequency difference and mean stresses. 

In this work, mean stress effect is investigated for in-phase and out-of-phase bending (or 

axial)-torsion loadings. Figure 1 shows several loading histories and stress paths 

investigated in this study.  

 

Figure 1 Multiaxial Loading Histories and related Stress Paths 

 
METHOD 

Equivalent Stress Methods 

Absolute Maximum Principal Stress Criterion 

Absolute Maximum Principal Stress method is an adapted version of the static failure 

criterion; maximum normal stress theory, to multiaxial fatigue problem. Multiaxial stress state 

is transformed into an equivalent uniaxial stress history from principal stresses and a signing 

procedure, in which the sign of equivalent stress at a time is the sign of absolute maximum 

principal stress, is applied. 

𝜎𝑒𝑞 = 𝑠𝑖𝑔𝑛 ∗ 𝜎𝐴𝑀𝑃           (1) 

where σAMP is the absolute maximum principal stress.  

Signed von Mises Stress Criterion  

The idea of Signed von Mises Stress method is similar to Absolute Maximum Principal Stress 

method. However, this time principal stresses are replaced with von Mises stress at a time. 

Like in Absolute Maximum Principal Stress method a signing procedure is needed in order to 

correctly simulate the real load spectrum. Several authors proposed different signings. 

Bishop claims sign should be the sign of absolute maximum principal stress and Papuga et 

al. suggests that signing should be applied according to the sign of the first invariant (I1) 

[Bishop, 2000, Papuga et al. 2012]. In this study we implemented the suggestion of Bishop’s. 

Signed von Mises stress at a time can be formulated in terms of principal stresses as follows: 
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𝜎𝑒𝑞 = 𝑠𝑖𝑔𝑛 ∗
1

√2
√(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2     (2) 

 
Inclusion of Mean Stress 

Once the equivalent stress history is obtained, a transformation of the history to a fully 

reversed loading is required if mean stresses are non-zero. For this purpose several criteria 

were introduced. Soderberg and Goodman are often accepted since those give conservative 

results while there is a common belief that most of the experimental data lie between 

Goodman and Gerber curves. According to Dowling and Papuga, Goodman criterion is 

highly conservative and Smith, Watson and Topper (SWT) or Walker formulations should be 

implemented for mean stress correction [Dowling, 2004 and Papuga, 2005]. For comparing 

their performances, all criteria mentioned above are used in mean stress correction. 

Formulations of Soderberg, Goodman, Gerber, SWT and Walker are as follows: 

𝜎𝑎,𝑆𝑜𝑑𝑒𝑟𝑏𝑒𝑟𝑔 =
𝜎𝑎

1−𝜎𝑚/𝑆𝑦
          (3) 

𝜎𝑎,𝐺𝑜𝑜𝑑𝑚𝑎𝑛 =
𝜎𝑎

1−𝜎𝑚/𝑆𝑢
          (4) 

𝜎𝑎,𝐺𝑒𝑟𝑏𝑒𝑟 =
𝜎𝑎

1−(𝜎𝑚 𝑆𝑢⁄ )2          (5) 

𝜎𝑎,𝑆𝑊𝑇 = √𝜎𝑎 ∗ (𝜎𝑎 + 𝜎𝑚)         (6) 

𝜎𝑊𝑎𝑙𝑘𝑒𝑟 = 𝜎𝑎
𝛾

∗ (𝜎𝑎 + 𝜎𝑚)1−𝛾         (7) 

where Sy and Su are yield and ultimate strengths, 𝜎𝑎 and 𝜎𝑚 are alternating and mean 

stresses experienced by the component respectively while γ is a material constant that 

adjusts the sensitivity of the material to mean stress. As seen from formulations SWT does 

not include any material constant; however, Dowling states that the criterion gives fairly 

accurate results [Dowling, 2009]. Walker involves a material constant γ which makes SWT 

and Walker dissimilar and Walker criterion superior. An important thing to mention is that 

Walker reduces to SWT if γ=0.5.  Dowling in his paper proposes an equation for estimations 

of material constant γ as:  

𝛾 = −0.0002000 ∗ 𝑆𝑢 + 0.8818        (8) 

where Su is in MPa [Dowling, 2009]. Thus, this equation will be used for γ estimations in 

Walker formulation.  

Critical Plane Methods  

Findley Criterion 

Findley proposed a shear-stress based critical plane damage and assumed both shear and 

normal stress contribute to fatigue failure. Therefore, Findley damage parameter is a 

combination of shear stress amplitude and maximum normal stress acting on the critical 

plane. Furthermore, effect of maximum normal stress is assumed to be different for each 

material type (ductile, brittle etc.); consequently maximum normal stress is multiplied with a 

material constant k that is to be calibrated with at least two uniaxial fatigue tests. Critical 

plane is defined as the material plane, which can be identified with two Euler angles 𝜃 and𝜑, 

that experiences the maximum damage. Findley damage parameter is as follows:  

𝑚𝑎𝑥𝜃,𝜑(𝜏𝑎 + 𝑘 ∗ 𝜎𝑛,𝑚𝑎𝑥) = 𝑓         (9) 
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In equation 9, k and f are material constants that can be found from fully reversed bending 

(or axial) and fully reversed torsion endurance limits as follows: 

𝑘 =
2−𝜎−1 𝜏−1⁄

2√(𝜎−1 𝜏−1⁄ )−1
; 𝑓 =

1

2
𝜎−1

1

√(𝜎−1 𝜏−1⁄ )−1
         (10) 

where 𝜎−1 and 𝜏−1 are fully reversed bending (or axial) and fully reversed torsion endurance 

limits.   

Matake Criterion 

Damage parameter proposed by Matake is similar to Findley criterion. Same formulation is 

used; however, critical plane is defined as the material plane that encounters the maximum 

shear stress amplitude. Formulation is as follows:  

 𝑚𝑎𝑥𝜃,𝜑(𝜏𝑎) + 𝑘 ∗ 𝜎𝑛,𝑚𝑎𝑥 = 𝑓         (11) 

Material parameters are again shown with k and f, but their values differ due to the difference 

in critical plane definition. For fully reversed bending (or axial) and torsion, material 

parameters can be obtained from: 

𝑘 =
2−𝜎−1 𝜏−1⁄

𝜎−1 𝜏−1⁄
 ; 𝑓 = 𝜏−1         (12) 

There are several material parameter calibration and shear stress amplitude calculation 

methods. Different combination of those methods for Findley and Matake is investigated in 

Engin and Coker and it is concluded that for both methods using fully reversed bending (or 

axial) and torsion endurance limits for calibration of k and f and calculating shear stress 

amplitude by Maximum Rectangular Hull (MRH) method gives the best overall results.[Engin 

and Coker, 2017] Therefore, those are implemented in this study.  

For both Findley and Matake criteria, only the effect of normal mean stress is considered as 

the term 𝜎𝑛𝑚𝑎𝑥 is the summation of mean and alternating values of normal stress on critical 

plane, and effect of mean torsion stresses are not included in their damage parameters. 

  
RESULTS 

In order to evaluate the results, fatigue index error (FIE) is introduced that shows the 

deviation of estimations from experimental results. FIE for equivalent stress methods is 

defined as: 

𝐹𝐼𝐸 (%) =
𝜎𝑒𝑞,𝑎−𝜎−1

𝜎−1
∗ 100         (13) 

where 𝜎𝑒𝑞,𝑎 is the alternating equivalent stress obtained after mean stress correction and 𝜎−1 

is the fully reversed bending (or axial) endurance limit. For critical plane criteria, FIE is as 

follows: 

𝐹𝐼𝐸 (%) =
𝐷𝑃−𝑓

𝑓
∗ 100           (14) 

where DP is the damage parameter obtained by Findley or Matake criterion and f is the 

material allowable. Since experiments show the loading combinations for which specimens 

fail, negative value of FIE means that method predicted no failure, although it actually 

occurred in reality. As a result, positive values of FIE are desired for a multiaxial criteria to be 

conservative.  
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Test data is obtained from several resources [Zenner et al., 1985; Froustey and Lasserre, 

1989; Froustey et al., 1989 and Gough, 1950]. Experimental data contains 72 tests which are 

resulted from constant amplitude in-phase/out-of-phase loading with mean stresses 

conducted on un-notched smooth specimens. Details of experiments investigated are shown 

in Table 1. 

Table 1 Details of experiments investigated 

Referance Material Tested Test Type 
Number of 

tests 

Zenner et al., 1985 42CrMo4 Plain bending-torsion 5 

Zenner et al., 1985 34Cr4 Plain bending-torsion 8 

Froustey and Lasserre, 1989 30NCD16 Plain bending-torsion 8 

Froustey et al., 1989 30NCD16 
Axial, Plane bending, 

Plane bending-torsion  
22 

Gough, 1950 S65A Plane bending-torsion 29 

 

Equivalent Stress Methods – Soderberg vs. Goodman vs. Gerber vs. SWT vs. Walker  

For equivalent stress criteria, performance of mean stress correction methods is 

investigated. For that end, experimental data is regrouped according to phase difference as 

in-phase and out-of-phase. 

In-phase (IP) Loading with Normal and Shear Mean Stresses 

Figure 2 and Figure 3 shows mean, range and standard deviation of FIE (%) for Absolute 

Maximum Principal Stress (AMP) and Signed von Mises (SVM) criteria for in-phase loading 

with mean stresses (normal, shear or combination of both) respectively. For both methods, 

results obtained by Soderberg and Goodman seem to be highly conservative with high mean 

and range values. However, mean values for AMP is more acceptable. Results obtained by 

Gerber are conservative for SVM while for AMP mean value becomes negative with a value 

of -7.8 % which is actually tolerable as the error is less than 10 %. Again range and standard 

deviations are high for both methods. Estimations made by SWT are in 10 % for both 

methods. However, SVM gave much better predictions with a mean value of 4.2 % while 

AMP gave non-conservative results with a mean of -5.5 %. Both methods resulted in similar 

range (~100) and standard deviation (~25 %) values for SWT calculation. Predictions made 

by Walker method are similar for SVM but for AMP results are more non-conservative.  

   

Figure 2 Comparison of Equivalent Stress Methods using AMP criterion under IP Loading 
with Normal and Shear Mean Stresses (1 Soderberg, 2 Goodman, 3 Gerber, 4 SWT, 5 

Walker) 
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Figure 3 Comparison of Equivalent Stress Methods using SVM criterion under IP Loading 
with Normal and Shear Mean Stresses (1 Soderberg, 2 Goodman, 3 Gerber, 4 SWT, 5 

Walker) 

 Out-of-phase (OP) Loading with Normal and Shear Mean Stresses 

Figure 4 and Figure 5 shows mean, range and standard deviation of FIE (%) of AMP and 

SVM criteria for out-of-phase loading with mean stresses (normal, shear or combination of 

both) respectively. For both methods, results obtained by Soderberg seem to be 

conservative with mean values below 20 %. Results obtained by Goodman are promising 

with mean values below 10 % (-2 % for AMP, 8 % for SVM), much lower ranges (71 % for 

AMP and % 63 for SVM) and standard deviation (19 % for AMP and 15 % for SVM). Best 

results for SVM are obtained by SWT mean stress correction with mean value of 3 %, range 

of 62 % and standard deviation of 11 %. SWT calculation gives better range and standard 

deviation for AMP while mean value become more non-conservative (-7 %) but still lower 

than 10 % which is acceptable.  

   

Figure 4 Comparison of Equivalent Stress Methods using AMP criterion under OP Loading 
with Normal and Shear Mean Stresses (1 Soderberg, 2 Goodman, 3 Gerber, 4 SWT, 5 

Walker) 

 

   
 

Figure 5 Comparison of Equivalent Stress Methods using SVM criterion under OP Loading 
with Normal and Shear Mean Stresses (1 Soderberg, 2 Goodman, 3 Gerber, 4 SWT, 5 

Walker) 

 

For in-phase and out-of-phase loading with mean stresses, results obtained by SWT mean 

stress correction seem to give the minimum positive mean value with least range and 

standard deviation. Therefore, for comparison of equivalent stress and critical plane 

methods, results with SWT for AMP and SVM methods would be preferred.  
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Equivalent Stress Methods (AMP-SWT, SVM-SWT) vs. Critical Plane Criteria (Findley, 

Matake) 

For evaluation of equivalent stress and critical plane criteria experimental data is regrouped 

according to phase difference and mean stresses. Six different cases are investigated which 

are listed below: 

1. IP,M : In-phase loading with means stresses (only normal, only shear or both) 

2. IP,oNM : In-phase loading with only normal stresses 

3. IP,oSM : In-phase loading with only shear stresses 

4. OP,M : Out-of-phase loading with means stresses (only normal, only shear or both) 

5. OP,oNM : Out-of-phase loading with only normal stresses 

6. OP,oSM : Out-of-phase loading with only shear stresses 

 

IP, M (50) 

Figure 6 shows mean, range and standard deviation of FIE (%) for equivalent stress and 

critical plane criteria for in-phase loading with mean stresses. All methods give mean values 

below 15 %; however, equivalent stress methods resulted in almost twice in values for range 

and standard deviation of FIE (%). Critical plane methods, Findley and Matake resulted in 

similar ranges (~40) and standard deviations (~10) which is quite well while mean value 

obtained by Matake is 1.9 % and it is the best among all other methods.   

   

Figure 6 Comparison of Equivalent Stress Methods (AMP-SWT and SVM-SWT) with  Critical 
Plane Methods (Findley and Matake) under IP Loading with Normal and Shear Mean 

Stresses (1 AMP-SWT, 2 SVM-SWT, 3 Findley, 4 Matake) 

IP, oNM (29) 

Figure 7 shows mean, range and standard deviation of FIE (%) for equivalent stress and 

critical plane criteria for in-phase loading with only normal mean stresses. From figures it is 

clear that equivalent stress methods give non-conservative estimations; however, mean 

values of both equivalent stress and critical plane criteria are in the range of ±15%. Range 

(~85%) and standard deviation (~27%) of equivalent stress methods are again high while 

range of critical plane methods are close to 35% and their standard deviation is below 10%. 

For this loading case, Matake gave the least mean value of 2%. 
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Figure 7 Comparison of Equivalent Stress Methods (AMP-SWT and SVM-SWT) with  Critical 
Plane Methods (Findley and Matake) under IP Loading with only Normal Mean Stresses (1 

AMP-SWT, 2 SVM-SWT, 3 Findley, 4 Matake) 

 

IP, oSM (6) 

Figure 8 shows mean, range and standard deviation of FIE (%) for equivalent stress and 

critical plane criteria for in-phase loading with only shear mean stresses. Mean values except 

SVM is below 10% and for all methods ranges are below 35 % and standard deviations are 

below12%. Least range (17%) and standard deviation (6%) is obtained by Findley method; 

however, Matake resulted in the least mean value of 0.35.   

   

Figure 8 Comparison of Equivalent Stress Methods (AMP-SWT and SVM-SWT) with  Critical 
Plane Methods (Findley and Matake) under IP Loading with only Shear Mean Stresses (1 

AMP-SWT, 2 SVM-SWT, 3 Findley, 4 Matake) 

OP, M (22) 

Figure 9 shows mean, range and standard deviation of FIE (%) for equivalent stress and 

critical plane criteria for out-of-phase loading with mean stresses. For all methods mean 

values are below 10%; however, AMP overestimates the fatigue life with a negative mean of 

-6.6%. Ranges are close to 55% for equivalent stress methods while for critical plane 

methods range value is approximately 35%. Standard deviations are close to 15% for 

equivalent stress methods while for critical plane methods its value is below 10%. Lowest 

mean value is obtained by SVM, but Matake resulted in a very close value (4.3%).    

   

Figure 9 Comparison of Equivalent Stress Methods (AMP-SWT and SVM-SWT) with  Critical 
Plane Methods (Findley and Matake) under OP Loading with Normal and Shear Mean 

Stresses (1 AMP-SWT, 2 SVM-SWT, 3 Findley, 4 Matake) 

 

OP, oNM (17) 

Figure 10 shows mean, range and standard deviation of FIE (%) for equivalent stress and 

critical plane criteria for out-of-phase loading with only normal mean stresses. As seen from 

the figure mean values are below 10% for all methods, but equivalent stress methods give 

non-conservative results. Standard deviations are below 14% for equivalent stress methods, 

while for critical plane criteria it is below 10%.  
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Figure 10 Comparison of Equivalent Stress Methods (AMP-SWT and SVM-SWT) with  
Critical Plane Methods (Findley and Matake) under OP Loading with only Normal Mean 

Stresses (1 AMP-SWT, 2 SVM-SWT, 3 Findley, 4 Matake) 

 

OP, oSM (4) 

Figure 11 shows mean, range and standard deviation of FIE (%) for equivalent stress and 

critical plane criteria for out-of-phase loading with only shear mean stresses. All methods 

except SVM resulted in mean values below 5%. Lowest mean value is again obtained by 

Matake (-0.5 %).   

   

Figure 11 Comparison of Equivalent Stress Methods (AMP-SWT and SVM-SWT) with  
Critical Plane Methods (Findley and Matake) under OP Loading with only Shear Mean 

Stresses (1 AMP-SWT, 2 SVM-SWT, 3 Findley, 4 Matake) 

 

DISCUSSION and CONCLUSION 

Several equivalent stress and critical plane criteria are compared in this study. Special 

attention is given to mean stress effect, thus experimental data which include loadings with 

mean stresses are obtained from literature. For equivalent stress methods, Absolute 

Maximum Principal Stress and Signed von Mises criteria are chosen as they interest 

industrial community due to their simplicity and speed. Furthermore, different mean stress 

inclusion methods are investigated for obtaining the best performance of equivalent stress 

methods. Findley and Matake criteria are studied for critical plane methods as their 

formulations are same but they differ in critical plane definitions. Therefore, both effect of 

critical plane definition and mean stress could be examined.  

 For equivalent stress methods, estimations obtained from Soderberg are 

conservative, but with high range and standard deviations while other methods may 

shift to non-conservative side.  

 Mean stress correction with SWT gives the best overall results for equivalent stress 

methods.  

 Signed von Mises criterion resulted in tolerable mean FIE (%), range and standard 

deviation compared to Absolute Maximum Principal criterion which tends to give high 

mean values and standard deviation with wide ranges.  
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 Critical plane methods, Findley and Matake resulted in estimations with low mean 

values, range and standard deviation of FIE (%) for all cases. However, Matake 

method gave the best predictions with mean values of FIE (%) less than 6% and 

standard deviation below 10%.     
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