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ABSTRACT 

In this study, we design a high gain observer to estimate the unmeasured system states based 
on the nominal system of a quadrotor aircraft. The desired closed-loop performance is 
described with a reference model. Using the observed unmeasured states, the attitude 
controller that gives the desired reference model performance is designed. The findings are 
illustrated with simulation results.  
 

INTRODUCTION 
Due to their broad field of applications, such as near field surveillance, exploration and survey, 
wind turbine and building inspection, quadrotor Unmanned Aerial Vehicles (UAVs) have been 
studied both in civil and military applications, indoor and outdoor environments. Quadrotor 
UAVs are preferred because they have ability to hover, simple mechanical structure, 
maneuverable and indoor flights, and cancellation of torque due to the reverse turning of 
neighboring rotors. In recent years, studies on design and control of quadrotors have been 
increasing [Achtelik (2010), Bouabdallah (2007), Cutler (2014), Hoffmann (2007), Kaya (2016). 
Kushleyev (2013)].  

As in the many real-life applications, the full state measurement may not be available for the 
quadrotor platforms. In this case, the state observers can be designed to estimate the 
unmeasured system states as long as they are observable. These unmeasured states are 
estimated based on the nominal model of the actual system. However, inaccuracies in these 
nominal models may adversely affect the state estimations which may result in instabilities in 
the system. Therefore, in this study, we design a high-gain observer to estimate the 
unmeasured system states. By means of the high gain employment in the observer design, 
the effects of the model inaccuracies are rejected in the observations. However, the high gain 
observers suffer from the peaking phenomenon when the initial conditions of the observer and 
the actual system do not coincide. To eliminate this deficiency, the observed states are 
saturated at the boundaries of the sufficiently large compact set that we are interested in 
keeping the system states inside.  
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METHOD 

In this section, we give the basics of the quadrotor dynamics. Furthermore, we explain the 
specific input structure that we use in the controller design. This input structure allows us to 
assess the responses to the selected inputs, clearly. We also show that the unique input set 
is available that conforms to the specific input structure.  

Having described the equations of motion of a quadrotor in the inertial frame, we give the 
methodology for the attitude controller design in the presence of unmeasured system states. 
First, we design a high-gain observer to access the unmeasured states. Then, the full-state 
feedback controller is employed based on the state estimations using a reference model that 
gives the desired closed-loop characteristics for each attitude channel.  

 

Quadrotor Dynamics 

Assumption 1. All the structures of the quadrotor are rigid. Furthermore, the center of gravity 
and the origin of the body-fixed frame are coincident.  

 
Coordinate systems used in the derivation of equations of motion are body-fixed frame and 
earth-fixed frame. The use of body-fixed frame, Figure 1, is practical because inertia matrix is 
time-invariant and rotor and body aerodynamic forces can be expressed with respect to the 
body. Besides, it is easy to convert body-fixed frame to Earth frame, Figure 2. 

                      

       Figure 1. Body-fixed reference frame          Figure 2. Earth-fixed reference frame 

 

Equations of motion of a quadrotor in the body-fixed frame can be given as [Kaya (2015)]: 

 

 u̇ =
(−∑ Hi

4
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2  SCX cos βV2
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4
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 ṗ =
(T4 − T2)l − h(∑ Hi

4
i=1 ) sinβ + (∑ (−1)i+1Ri

4
i=1 ) cosβ + Jzqr

Ixx
 + qr

(Iyy − Izz)

Ixx
  

 q̇ =
(T1 − T3)l + h(∑ Hi

4
i=1 ) cosβ + (∑ (−1)i+1Ri

4
i=1 ) sin β − Jzpr

Iyy
+ pr

(Izz − Ixx)

Iyy
 (2) 

 ṙ =
∑ ((−1)iQi)

4
i=1 + l(H2 − H4) cos β + l(H3 − H1) sinβ

Izz
+ pq

(Ixx − Iyy)

Izz
+

Jżr

Izz
  

Assumption 2. Hub forces 𝐻𝑖 and the rolling moments 𝑅𝑖 are negligible.  

Linearized equations of motion subject to assumption 2 for the hover flight regime are 
expressed in the inertial frame as: 

̇, θ̇, ̇, , θ, = 0  

U2, U3, U4,r = 0,     U1 = mg  

̈ =
(T4 − T2)l

Ixx
  

θ̈ =
(T3 − T1)l

Iyy
 (2) 

̈ =
∑ ((−1)i+1Qi)

4
i=1

Izz
  

z̈ = g −
∑ Ti

4
i=1

m
  

Thrust Ti and rotor torque Qi are modeled as proportional to square of the angular velocity of 
rotor: 

 Ti = bi
2,        Qi = di

2 (4) 

The inputs for system are chosen as the total thrust and the three torques as follows: 

 U1 ≜ b(1
2 +2

2 +3
2 +4

2) 

(5) 

 U2 ≜ lb(4
2 −2

2) 

 U3 ≜ lb(3
2 −1

2) 

 U4 ≜ d(−1
2 +2

2 −3

2
+4

2) 
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Remark 1. Having obtained the control inputs 𝑼𝒊, we need to be able to compute the angular 
velocities of each rotor. Further, these computed velocities should be unique. Gather the 
equation (5) to form a system of linear equations as follows: 

 
 

[

1 1 1 1
0 −1 0 1

−1 0 1 0
−1 1 −1 1

]

[
 
 
 
 
Ω1

2

Ω2
2

Ω3
2

Ω4
2]
 
 
 
 

= [

U1

U2

U3

U4

] ,           G ≜ [

1 1 1 1
0 −1 0 1

−1 0 1 0
−1 1 −1 1

],   Ω̅ ≜

[
 
 
 
 
Ω1

2

Ω2
2

Ω3
2

Ω4
2]
 
 
 
 

 (6) 

Realize that the range space of the matrix 𝐆 is 𝓡(𝐆) = 𝐑𝟒. Hence, there exists at least one 

solution for the vector �̅�. Furthermore, the null space of the matrix 𝐆 is 𝓝(𝐆) = {𝟎} which 

implies the uniqueness of the solution �̅�. Once the unique solution is obtained, taking its 
element-wise square root yields the inputs for all the rotors.  

 

Controller Design 

In this study, we consider the linearized dynamics of the quadrotor UAV which is described in 
previous section. The goal is to design an attitude controller such that the quadrotor can 
maintain the desired attitude commands satisfactorily.  

The system states are chosen as: 
 x = [ϕ ϕ̇ θ θ̇ ψ ψ̇ z ż]T 

y = [ϕ θ ψ z]T 
(7) 

Then, the linear model of the quadrotor can be written in state-space form as: 

 
 ẋ(t) = Ax(t) + Bu(t)  

y(t) = Cx(t) 
(8) 

where the control input is 𝐮(𝐭) = [𝐔𝟏 𝐔𝟐 𝐔𝟑 𝐔𝟒]
𝐓. The system matrix 𝐀, and the input 

matrix 𝐁 are given as: 

 
 

A =

[
 
 
 
 
 
 
 
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 

 ,      B =

[
 
 
 
 
 
 
 
 
 

0 0 0 0

0 1
Ixx

⁄ 0 0

0 0 0 0

0 0 1
Iyy

⁄ 0

0 0 0 0

0 0 0 1
Izz

⁄

0 0 0 0
−1

m⁄ 0 0 0 ]
 
 
 
 
 
 
 
 
 

 (9) 

The output matrix 𝐂 ∈ 𝐑𝟒×𝟖 can be obtained accordingly from the Eqn. (8).  

The control objective is to achieve the desired tracking response at each channel (roll, pitch, 
yaw, altitude) with the natural frequency of 𝛚𝐧, and the damping ratio of 𝛏. Hence, the reference 
model that characterizes the desired response is given by: 
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Ar =

[
 
 
 
 
 
 
 

0 1 0 0 0 0 0 0
−ωn

2 −2ξωn 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −ωn

2 −2ξωn 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −ωn

2 −2ξωn 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −ωn

2 −2ξωn]
 
 
 
 
 
 
 

 ,   (10) 

Hence, the controller gain for the feedback controller 𝐮(𝐭) = −𝐊𝐱𝐱(𝐭) is obtained as follows: 

 
 Kx = B†(A − Ar) (11) 

where 𝐁† denotes the left pseudo-inverse of the input matrix 𝐁.  

 

High-Gain Observer Design 

Since the full-state information is not available, we design a state observer so that the full-state 
feedback control is applied as 𝐮(𝐭) = −𝐊𝐱�̂�(𝐭) where �̂�(𝐭) is the estimated state. The linear 
system may deviate from the actual nonlinear system due to assumptions made in modeling. 
It is known that the high-gain observers (HGO) can suppress the modeling errors effectively. 
Hence, in this study, we design a HGO to obtain the state estimations. The model for HGO is: 

 
 ẋ̂(t) = A0x̂(t) + Bϕ0(x̂, u) + H(y − Cx̂),     ϕ0(x̂, u) = u(t) (12) 

where the nominal model 𝛟𝟎(�̂�, 𝐮) is locally Lipschitz in its arguments. If the nominal model 

information 𝛟𝟎(�̂�, 𝐮) is not available, then it can be assumed to be zero; i.e. 𝛟𝟎(�̂�, 𝐮) = 𝟎. In 
such a case, the observer becomes a linear HGO. Here, the matrix 𝐀𝟎 differs from the system 

matrix 𝐀 as it only contains the derivative chain information of the system states. In our 
linearized model, these two matrices coincide 𝐀 = 𝐀𝟎. For more information, see the Ref. 
[Atassi (1999)].  

The observation matrix 𝐇 is given by: 

 
 

H =

[
 
 
 
 
 
 
 
 
 
 
 
α1

ε⁄ 0 ⋯ 0
α2

ε2⁄ 0

0
α1

ε⁄ ⋱
α2

ε2⁄ 0 ⋮

⋮ 0
α1

ε⁄

⋱
α2

ε2⁄ 0

0
α1

ε⁄

0 ⋯ 0
α2

ε2⁄ ]
 
 
 
 
 
 
 
 
 
 
 

 (13) 

where 𝛆  is sufficiently small positive constant, and the positive constants 𝛂𝟏 and 𝛂𝟐 are chosen 
such that the roots of the following polynomial lie in the left half plane: 

 
 s2 + α1s + α2 = 0 (14) 
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SIMULATION RESULTS 

In this section, we give the preliminary results of the designed attitude controller. The identified 
system parameters for the quadrotor are as follows: 

 
 Ixx = 0.060535602 kg ⋅ m2,       Iyy = 0.060547676 kg ⋅ m2,       Izz = 0.109745533 kg ⋅ m2 

Jz = 3.1 × 10−5 kg ⋅ m2,      m = 4 kg,      l = 0.4 m,       b = 5.38 × 10−7,      d = 1.05 × 10−8 
 

The desired response is characterized by the damping ratio of 𝛏 = 𝟏. 𝟒 and the natural 

frequency of 𝛚𝐧 = 𝟐. 𝟒.  

For the observer design, we choose the design parameters as: 𝛆 = 𝟎. 𝟎𝟓, 𝛂𝟏 = 𝟖,   𝛂𝟐 = 𝟏𝟓 so 

that the roots of the polynomial in Eqn. (14) become 𝐬𝟏 = −𝟓 and 𝐬𝟐 = −𝟑.  

 

The state observer estimations and the tracking performance for the roll attitude command are 
illustrated in Figure 3.   

 

Figure 3. The State Observer Performance and the Roll Command Tracking Performance  

 

Similarly, the pitch and yaw command tracking performances with the observed states are 
given in Figure 4 and Figure 5, respectively.  

 

CONCLUSION & FUTURE DIRECTIONS 

In this paper, we summarized the works on the attitude controller for a quadrotor UAV. In the 
absence of full state measurements, a high gain observer (HGO) is designed based on the 
nominal model of the quadrotor. Although the nominal model has limited information about the 
quadrotor dynamics, satisfactorily state estimations are achieved with HGO. Using these state 
estimations, the full-state feedback controller is constructed, and the preliminary results are 
illustrated. In the future studies, this controller will be extended to full control of the quadrotor 
UAV including trajectory tracking. Furthermore, to attenuate the effects of mismatched points 
between the nominal model and the actual system, an adaptive input will be designed. Finally, 
all these works will be implemented on the quadrotor, and the flight tests will be performed.   
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Figure 4. The State Observer Performance and the Pitch Command Tracking Performance 

 
 

 

Figure 5. The State Observer Performance and the Yaw Command Tracking Performance 
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