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ABSTRACT 

With advances in flight control systems, augmented stability aircraft became a reality, since 
they provide superior flight performance in terms of drag reduction. However, augmented 
stability aircraft need to be designed very carefully so that it remains controllable throughout 
its intended flight envelope. Thus, during conceptual and preliminary design phases, some 
guidelines are needed for the design to evolve in a controllable fashion. The relation between 
static stability and controllability is well discussed in the literature, and for fighter aircraft many 
studies are available. This paper investigates the “pitch stiffness coefficient” and its relation to 
longitudinal stability derivative and “pitch recovery moment” based allowable instability level.  

 

DEFINITIONS & ABBREVIATIONS 
𝑎𝑁𝐵 Body normal acceleration component (along body negative z-axis direction) 

𝑐̿ Reference length (mean aerodynamic chord) 

𝐶𝐿𝛼 Lift curve slope 

𝐶𝑚𝛼 Longitudinal stability derivative 

𝐼𝑌𝑌 Moment of inertia of aircraft around y axis 

𝑚 Aircraft mass 

𝑀 Mach number 

𝑀𝛼  Pitching moment slope – Dimensional stability derivative in longitudinal axis 

𝑀𝑦 Destabilizing moment in y axis 

𝑀𝑦𝑐  Control moment in y axis 

𝑀𝛼 𝐼𝑌𝑌⁄  Pitch Stiffness Coefficient – PSC 

�̇� Body pitch angular acceleration 

𝑆 Reference area of aircraft 

𝑇2 Time to double amplitude 

𝑈0 Speed in body x direction 

𝑉𝑇 True airspeed 

𝛼 Angle of attack 
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𝜂, 𝛿𝑒 Actuator deflection angle 

�̇�, �̇�𝑒 Actuator build up rate 

𝜌 Air density 

𝜏𝑎 Actuator time constant 

𝜁𝑎 Actuator damping ratio 

𝜔𝑎 Actuator natural frequency 

 

INTRODUCTION 

For fighter aircraft of the future, mission systems such as advanced radars, targeting systems, 
counter measures, as well as low signatures play a crucial role. However, like any aircraft, 
future fighters must have a well-balanced aerodynamic design which yields excellent handling 
qualities. From the flight performance point of view, an unstable basic airframe is essential. 
During airframe optimization for flight performance, a crucial question then arises: “how 
unstable can the aircraft be?” This question need to be answered by flight mechanics and flight 
control engineers. An unstable basic airframe will not be possible to fly without the continuous 
intervention of the Flight Control System (FCS). Thus, closed loop responses of the airframe 
and FCS need to be analyzed in detail to fully assess stability and controllability. This requires 
a high accuracy, medium to high fidelity aerodynamic model, actuator model and flight control 
algorithm. Also, for an air vehicle with a redundant set of control surfaces (such as differential 
flaps, all moving differential horizontal tail, low profile vertical tails, etc.) a control 
allocation/blending/prioritization algorithm is needed to be identified. 

 

However, during early design stages of an air vehicle development program, the number of 
design alternatives is sometimes quite high for aerodynamics engineers to provide high 
accuracy and medium to high fidelity data. Furthermore, a need for alternative configurations 
to evolve rather quickly exists and, as a result, most of the design decisions are based on lower 
fidelity and accuracy models, analytical relations and rules of thumb. Thus, a very basic rule 
of thumb needs to be identified by flight mechanics and flight control engineers for the open-
loop basic airframe instability level, so that aerodynamics and configuration development 
engineers can work on their designs knowing that it will be controllable in the end. 

 

This paper presents a methodology that is devised in order to identify the basic stability 
constraint, which can be imposed as a constraint on air-vehicle sizing and design. 
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FLIGHT CONTROL SYSTEMS PERPECTIVE OF AIRCRAFT INSTABILITY LIMIT 

The well-known short period approximation of the linearized equations of motion can be written 
as in Eq. 1 by considering 

 Trimmed flight with wings level condition, and 

 Worst-case analysis by neglecting dynamic damping derivatives in 𝐶𝐿 and 𝐶𝑚 (𝐶𝐿�̇�, 𝐶𝐿𝑞, 

𝐶𝑚�̇�
, 𝐶𝑚𝑞

) in order to stay on the “safe side” during conceptual design phase. 

 

�̇� = 𝑞 −
1

𝑚𝑉𝑇
(𝐿𝛼𝛼 + 𝐿𝛿𝑒𝛿𝑒)

�̇� =
1

𝐼𝑌𝑌
(𝑀𝛼𝛼 +𝑀𝛿𝑒𝛿𝑒)

𝑎𝑁𝐵 =
1

𝑚
(𝐿𝛼𝛼 + 𝐿𝛿𝑒𝛿𝑒) }

  
 

  
 

 Eq. 1 

 

Dimensional stability derivatives in Eq. 1 are expressed as: 

 

𝐿𝛼 = �̅�𝑆𝐶𝑍𝛼 , 𝐿𝛿𝑒 = �̅�𝑆𝐶𝐿𝛿𝑒 , 𝑀𝛼 = �̅�𝑆𝑐̿𝐶𝑚𝛼
, 𝑀𝛿𝑒 = �̅�𝑆𝑐̿𝐶𝑚𝛿𝑒

 Eq. 2 

 

The following equation also follows easily from Eq. 1: 

 

�̇�𝑁𝐵 =
1

𝑚
(𝐿𝛼𝑞 −

𝐿𝛼
𝑉𝑇
𝑎𝑁𝐵 + 𝐿𝛿𝑒�̇�𝑒)

�̇� =
1

𝐼𝑌𝑌
[
𝑀𝛼
𝐿𝛼
𝑚𝑎𝑁𝐵 + (𝑀𝛿𝑒 −

𝑀𝛼
𝐿𝛼
𝐿𝛿𝑒) 𝛿𝑒]}

 

 

 Eq. 3 

 

Actuator build up rate of Eq. 3 can be modeled as a first order linear differential equation (Eq. 
4), so that the actuator dynamics is also included in the flight control algorithm design. 

 

�̇�𝑒 =
1

𝜏𝑎
(𝛿𝑒𝑐𝑜𝑚 − 𝛿𝑒), 𝜏𝑎 =

1

𝜁𝑎𝜔𝑎
 Eq. 4 

 

In Eq. 4, 𝜏𝑎 is the actuator time constant, 𝜁𝑎 is the damping ratio, and 𝜔𝑎 is its natural frequency. 
Now the short period approximation can be represented in state-space form as Eq. 5 or 
equivalently as Eq. 6.  

 

[

�̇�
�̇�

�̇�𝑒

]

⏟
�̇�

=

[
 
 
 
 
 −

𝐿𝛼
𝑚𝑉𝑇

1 −
𝐿𝛿𝑒
𝑚𝑉𝑇

𝑀𝛼
𝐼𝑌𝑌

0
𝑀𝛿𝑒
𝐼𝑌𝑌

0 0 −𝜁𝑎𝜔𝑎]
 
 
 
 
 

⏟              
𝑨

[

𝛼
𝑞
𝛿𝑒
]

⏟
𝒙

+ [
0
0

𝜁𝑎𝜔𝑎

]
⏟    

𝑩

𝛿𝑒𝑐𝑜𝑚⏟  
𝑢

 

Eq. 5 

𝑎𝑁𝐵⏟
𝑦

= [𝐿𝛼 𝑚⁄ 0 𝐿𝛿𝑒 𝑚⁄ ]⏟            
𝑪

[

𝛼
𝑞
𝛿𝑒
]

⏟
𝒙
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[

�̇�𝑁𝐵
�̇�

�̇�𝑒

]

⏟  
�̇�

=

[
 
 
 
 
 −

𝐿𝛼
𝑚𝑉𝑇

𝐿𝛼
𝑚

−
𝐿𝛿𝑒
𝑚
𝜁𝑎𝜔𝑎

𝑚

𝐼𝑌𝑌

𝑀𝛼
𝐿𝛼

0
1

𝐼𝑌𝑌
(𝑀𝛿𝑒 −

𝑀𝛼
𝐿𝛼
𝐿𝛿𝑒)

0 0 −𝜁𝑎𝜔𝑎 ]
 
 
 
 
 

⏟                      
𝑨

[

𝑎𝑁𝐵
𝑞
𝛿𝑒
]

⏟  
𝒙

+ [

𝐿𝛿𝑒
𝑚
𝜁𝑎𝜔𝑎

0
𝜁𝑎𝜔𝑎

]

⏟      
𝑩

𝛿𝑒𝑐𝑜𝑚⏟  
𝑢

 

Eq. 6 

𝑎𝑍𝐵⏟
𝑦

= [1 0 0]⏟      
𝑪

[

𝑎𝑍𝐵
𝑞
𝛿𝑒
]

⏟  
𝒙

 

 

Figure 1 shows the schematic of an integral (type 1) servomechanism control architecture. 

Here, the tracking command 𝑟, is the desired acceleration in body 𝑍-axis direction, 𝑎𝑍𝐵 . Then 

the error, 𝑒 is given by Eq. 7. 

 

𝑒 = 𝑟 − 𝑦 Eq. 7 

 

 

Figure 1: Integral servomechanism control architecture 

 

Now an “augmented” state-space model can be constructed as in Eq. 8.  

 

�̇� = �̃�𝐳 + �̃�𝑢 Eq. 8 

with  

 

𝑢 = 𝛿𝑒𝑐𝑜𝑚 , 𝐳 = [∫ 𝑒
𝐱
] , �̃� = [

0 −𝐂
𝟎3×1 𝐀

] , �̃� = [
0
𝐁
] Eq. 9 

 

where 𝐳 ∈ ℝ4 is the new augmented state vector, with �̃� ∈ ℝ4×4 and �̃� ∈ ℝ4×1. Using the 
augmented state vector 𝐳, a full-state feedback control law is formed as in Eq. 10, 

 

𝑢 = −𝐊𝐳 Eq. 10 

where 𝐊 ∈ ℝ1×4 is the state feedback gain matrix, which is partitioned in the same way as the 

augmented state vector 𝐳 as in Eq. 11 

 

K(s) G(s) 

 
 

KI  
 

  
 

 C 
 

B 

A 

x 
y r e u 

Kx 
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𝑢 = [𝐾𝐼 𝐊𝑥] Eq. 11 

 

with 𝐾𝐼 ∈ ℝ and 𝐊𝑥 ∈ ℝ
1×3, giving 

 

𝑢 = −𝐊𝐳 = −𝐾𝐼∫ 𝑒 − 𝐊𝑥𝐱 Eq. 12 

 

This controller mechanization is frequently used in aerospace in the design of flight control 
systems. The integral servomechanism control architecture consists of two parts, with 

 a servo tracking controller for command following, and 

 a state feedback component for stabilization. 

The desired integral control action on the tracking (command) error provides zero steady-state 
tracking (command following) error to a step input, through the use of the integrator and its 

gain −𝐾𝐼, whereas the state feedback term −𝐊𝑥𝐱 enforces closed-loop stability of the system, 
requiring that the state vector 𝐱 also be available for feedback, which would otherwise require 
an estimator such as a Kalman filter or observer. 

 

By substitution, the closed-loop system dynamics becomes as in Eq. 13. 

 

[
𝑒
�̇�
] = [

0 −𝐂
𝐁𝐾𝐼 𝐀 − 𝐁𝐊𝑥

]
⏟          

𝑨𝑪𝑳

[∫ 𝑒
𝐱
] + [

1
𝟎3×1

] 𝑟 Eq. 13 

 

Linear-quadratic (LQ) optimal control for command tracking is arguably the most widely used 
modern control design method in aerospace, due to its excellent properties of performance, 
robustness, and minimal control usage. When LQ optimal control theory is applied to the 
integral servomechanism control architecture given in Figure 1, the resulting closed-loop 
design using state feedback is guaranteed to be globally exponentially stable, forcing the 
regulated output to track the command signal 𝑟 = 𝑎𝑍𝐵  with zero steady-state error to a step 

input, additionally providing a control system design with predictable and robust performance. 

 

For single-input systems, LQ optimal control ensures that the Nyquist locus never enters the 
unit circle centered about the (−1, 𝑗0) point in the complex plane. This guarantees a gain 
margin (GM) of 

 

𝐺𝑀 = [
1

2
,+∞] = [−6,+∞] 𝑑𝐵 Eq. 14 

 

and a phase margin (PM) of at least 60°, 

 

𝑃𝑀 ≥ 60° Eq. 15 

 

Such excellent frequency-domain properties of gain and phase margins make LQ optimal 
controllers very attractive in industrial applications (in addition to generating a minimizing 
control and command error, provided that the LQ optimal control problem is well posed). 

 



 
AIAC-2017-166                         Kutluay, Çimen & Parlak 

 

6 
 Ankara International Aerospace Conference  
 

The plant transfer function 𝐺(𝑠) ∈ ℝ of the integral servomechanism is given by 

 

𝐺(𝑠) = (𝑠𝐈4×4 − �̃�)
−1
�̃� Eq. 16 

 

The loop gain for this system, with controller transfer function 𝐾(𝑠) ∈ ℝ, can be calculated by 
breaking the loop at the control generation point (plant input), indicated with a cross in Figure 
1. With the loop break-point taken at the plant input, the loop gain of the integral 

servomechanism, represented by the loop-transfer function (LTF) 𝐿(𝑠) ∈ ℝ, becomes 

 

𝐿(𝑠) = 𝐾(𝑠)𝐺(𝑠) Eq. 17 

 

Since it is a SISO system, the gain of the LTF is determined by computing the magnitude of 
this complex-valued transfer function versus frequency. Absolute stability is then easily 
established by examining the poles of the closed-loop transfer function of Eq. 18 

 

𝑇(𝑠) =
𝐿(𝑠)

1 + 𝐿(𝑠)
 Eq. 18 

 

Equivalently, the eigenvalues of the closed-loop dynamics matrix 𝐀𝐶𝐿 can also be examined. 
For relative stability, on the other hand, classical stability margin analyses is pursued by 
manipulating the loop transfer function of the system to derive typical measures of GM and PM 
using frequency-response methods (such as Bode, Nichols and/or Nyquist). In addition, the 
PM leads to a time-delay margin (DM), corresponding to the minimum time delay at plant input 
such that the closed-loop system becomes unstable, which can be computed from 

 

𝐷𝑀 =
𝑃𝑀

𝜔𝑐
 Eq. 19 

 

where 𝜔𝑐 is the loop gain crossover frequency (LGCF), which corresponds to the frequency at 
which the magnitude of the LTF (at plant input) crosses 1 (0 dB), that is, |𝐿(𝑗𝜔)| = 1. 

 

FCS design of air vehicles dictates stringent requirements as robustness criteria, in the form 
of gain and phase margins, in that they must be simultaneously satisfied by ensuring that the 

loop transfer function 𝐿(𝑠) does not intersect (remains outside) the boundary depicted in Figure 
2 and defined by (see, for example, [Mangold, 1990], [MIL-HDBK-1797, 1997] and [SAE AS 
94900, 2007]): 

 

 ±6 𝑑𝐵 gain @ ∡𝐿(𝑗𝜔) = −180° (min𝐺𝑀 < −6 𝑑𝐵 and max𝐺𝑀 > 6 𝑑𝐵), 

 ±3 𝑑𝐵 gain @ ∡𝐿(𝑗𝜔) = −145°, and 

 𝑃𝑀 ≥ 45° 

 

These criteria must be met in the presence of total time delays (lags) due to: 

 feedback sensors, such as air-data sensors and inertial measurement units 
(gyroscopes and accelerometers), 

 flight control computer (computation, voting and transport delays) 

 filtering (noise and structural coupling filters). 
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It is recommended that the total time-delay assumption due to these factors should be at least 
(>) 20 milliseconds, [Mangold, 1990]. 

 

To wrap up the ongoing discussion, the following model parameters are assumed for all flight 
control algorithm designs: 

 

1

𝑚
𝐿𝛼 = 500 𝑚𝑠

−2,
1

𝑚
𝐿𝛿𝑒 = 50 𝑚𝑠

−2,
1

𝐼𝑌𝑌
𝑀𝛿𝑒 = −

1

𝐼𝑌𝑌
𝑀𝛼  (

𝛼

𝛿𝑒
= −1) Eq. 20 

 

Three cases are now presented for different values of 𝑀𝛼 𝐼𝑌𝑌⁄  taken as 

 

1

𝐼𝑌𝑌
𝑀𝛼 =

1

𝐼𝑌𝑌
�̅�𝑆𝑐̿𝐶𝑚𝛼

= [15, 30, 45] 𝑠−2 Eq. 21 

 

which directly affects air vehicle (in)stability. In each case, maximum allowable time-delay, 

max 𝑡𝑑, the presence of which still satisfies the abovementioned robustness conditions, is 
determined. The results are graphically depicted in Figure 2. The limits achieved are 
summarized as follows: 

 

 𝑀𝛼 𝐼𝑌𝑌⁄ = 15 𝑠−2⟹max 𝑡𝑑 = 40 𝑚𝑠 

 𝑀𝛼 𝐼𝑌𝑌⁄ = 30 𝑠−2⟹max 𝑡𝑑 = 30 𝑚𝑠 

 𝑀𝛼 𝐼𝑌𝑌⁄ = 45 𝑠−2⟹max 𝑡𝑑 = 20 𝑚𝑠 

 

All three cases satisfy 𝑃𝑀 > 45°, min𝐺𝑀 < −6 𝑑𝐵 and max𝐺𝑀 > 12 𝑑𝐵. 

 

 

Figure 2: Nichols plot of the delayed system 
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As can be seen, maximum allowable time delay 𝑡𝑑 is inversely proportional with 𝑀𝛼 𝐼𝑌𝑌⁄ , and 
the level of air-vehicle instability must be limited according to the time-delay budget for sensor 
hardware, FCS processing and structural coupling & noise filters. 

 

FLIGHT MECHANICS PERPECTIVE OF AIRCRAFT INSTABILITY LIMIT 

Once the basic requirement on instability level from a control design perspective is identified, 
the relation between longitudinal stability derivative and Mach number, altitude, angle of attack 

and moment of inertia of the aircraft can be sought. The quantity 𝑀𝛼 𝐼𝑌𝑌⁄  in Eq. 21, from now 
on referred as “pitch stiffness coefficient – PSC”, can be re-written in following form of Eq. 22: 

 

𝑃𝑆𝐶 =
𝑀𝛼
𝐼𝑌𝑌

=
𝜌𝑉𝑇

2𝑆𝑐̿𝐶𝑚𝛼

2𝐼𝑌𝑌
 Eq. 22 

 

Now, dimensionless longitudinal stability derivative 𝐶𝑚𝛼
 becomes: 

 

𝐶𝑚𝛼
=
2(
𝑀𝛼
𝐼𝑌𝑌
) 𝐼𝑦𝑦

𝜌𝑉𝑇
2𝑆𝑐̿

=
2 ∙ PSC ∙ 𝐼𝑌𝑌

𝜌𝑉𝑇
2𝑆𝑐̿

 
Eq. 23 

 

Now, for a given limited PSC value, Eq. 23 can be solved over Mach number and altitude to 
obtain the maximum allowed longitudinal stability derivative, depicted by the contour surface 
in Figure 3. 

 

Figure 3: Variation of maximum allowable longitudinal stability derivative with Mach and 

altitude for PSC < 45 s2  
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Note that, as dynamic pressure increases, the limit on the longitudinal stability derivative 
decreases. Also, lowering the PSC limit has a similar effect on maximum allowable longitudinal 
stability derivative value. Figure 3 demonstrates an interesting trend for longitudinal stability 
derivative. At first glance, it can be deduced that, even for a high level of instability, the aircraft 
can be controlled by FCS in low subsonic flight. However, the PSC metric, does not take into 
account the available control power, but it rather assumes that, the required control power is 
available at all times, Eq. 20. Since PSC is dimensional, it is affected from dynamic pressure, 
and the relative importance of longitudinal stability derivative seems to diminish with 
decreasing dynamic pressure. However, since the available control power also decreases with 
decreasing dynamic pressure, a very careful control power assessment analysis is needed for 
low subsonic flight conditions before reaching a conclusive remark.  

 

Of all the dynamic stability parameters, time to double amplitude is of significant importance, 
because it provides crucial information about the controllability of aircraft, [Mangold, 1990]. 

Time to double amplitude, 𝑇2, is the time required for a controls-fixed aircraft, to double its 
angle of attack in response to a gust input. Figure 4 shows a simplified plot for the relation of 
𝑇2 with controllability. Once an unstable aircraft flying at wings level trimmed flight is suddenly 
disturbed by a gust, a destabilizing moment starts to build up. It is essential to counteract this 
moment by stabilizing control input. However, total delay in FCS and actuator, actuator build 
up rate (𝑀�̇�), as well as maximum attainable control moment all play a crucial role in stabilizing 

the aircraft. 

 

 

Figure 4: Allowable instability level schematic [Mangold, 1990]. 

 

To carry out the control-fixed 𝑇2 analysis over the entire flight envelope (𝑀 and altitude), short-
period approximation of longitudinal equation of motion given in Eq. 1 can be re-written as Eq. 
24, [Pamadi, 1998], with one additional assumption: 

 The magnitude of gust depends on gust penetration speed and flight altitude, [MIL-
HDBK-1797, 1997]. 

 



 
AIAC-2017-166                         Kutluay, Çimen & Parlak 

 

10 
 Ankara International Aerospace Conference  
 

[
Δ�̇�
�̇�
] =  

[
 
 
 
𝐶𝐿𝛼𝜌𝑈0𝑆

2𝑚
1

2𝐶𝑚𝛼
𝜌𝑈2𝑆𝑐̿

𝐼𝑌𝑌
0
]
 
 
 

[
Δ𝛼
𝑞
] + 

[
 
 
 
 
𝐶𝐿𝛿𝑒𝜌𝑈0𝑆

2𝑚
2𝐶𝑚𝛿𝑒

𝜌𝑈2𝑆𝑐̿

𝐼𝑌𝑌 ]
 
 
 
 

Δ𝛿𝑒 Eq. 24 

 

The aerodynamic data is generated with NS CFD simulations for the conditions given in Table 
1. A polynomial model is fit on the aerodynamic database to obtain a global model.  

 

Table 1: CFD Solution Nodes 

Mach AoA [°] Elevator deflection [°] 

0.3 

[-10, -5, 0, 5, 10, 15, 20] [-25, -15, 0, 15, 25] 

0.8 

0.9 

1.2 

1.4 

 

 

Figure 5: Nodes of the aerodynamic database 

 

Aerodynamics is modeled as a polynomial function of Mach, angle of attack and elevator 
deflection angle. Although the statistics of the models have some deficiencies (Figure 6 – 
Figure 8), they are still considered as feasible models for the purpose of this study. 
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Figure 6: Model fit statistics for CX 

 

 

Figure 7: Model fit statistics for CZ 
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Figure 8: Model fit statistics for Cm 

 

The entire flight envelope in Mach and altitude is swept and for each trimmed flight condition 
(trim angle of attack corresponding to the selected Mach and altitude node), severe gusts [MIL-
HDBK-1797, 1997] are applied and the control surfaces fixed response of the simplified short-
period mode is obtained. Actuator dynamics is modeled with a delay time and maximum rate, 
and it is assumed that the pilot applies full control power, as soon as the gust ends. Figure 9 
and Figure 10 show the instability level schematic for uncontrollable and controllable cases, 

respectively. One important thing to notice is the 𝑇2 values of uncontrollable and controllable 
cases; uncontrollable case has a higher 𝑇2 than the controllable one! The root reason of this 
behavior is something to be explored, but it could very well be due to the low fidelity nature of 
aerodynamic database. 

 

To better capture the extent of controllable and uncontrollable flight regimes, a simple metric 
is devised to compare the attainable control power with destabilizing moment induced by 
external disturbance. Named as “Control Power Metric – CPM”, the mathematical expression 
is provided in Eq. 25, where 𝑀𝑦𝑐(𝑡) denotes the control moment and 𝑀𝑦(𝑡) is the destabilizing 

moment in y axis. It is obvious that, for a controllable unstable aircraft, CPM must be greater 
than zero for all flight cases. 

 

𝐶𝑃𝑀 = 
∫ 𝑀𝑦𝑐(𝑡)𝑑𝑡
𝑇2
𝑇𝑑

− ∫ 𝑀𝑦(𝑡)𝑑𝑡
𝑇2
0

∫ 𝑀𝑦𝑐(𝑡)𝑑𝑡
𝑇2
𝑇𝑑

 > 0 Eq. 25 

 

Figure 11 and Figure 12 show CPM and variation of longitudinal stability derivative with angle 
of attack and Mach number for a generic augmented stability fighter aircraft with conventional 
wing-tail configuration. CPM value falls below zero around 0.6 M, almost regardless of altitude. 
When the contour plot of Figure 12 is examined, it is seen that longitudinal stability derivative 
exceeds 0.4 value around 0.6 M and stays above 0.4 for all M < 0.6. 
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Figure 9: Uncontrollable case plot 

 

 

Figure 10: Controllable case plot 
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Figure 11: CPM Variation with Altitude and Mach 

 

 

Figure 12: Longitudinal stability derivative variation with Mach and angle of attack 
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CONCLUSION 

This paper demonstrated the applicability of longitudinal controllability methods found in the 
literature to unstable basic airframe of an aircraft. From a flight control engineering perspective, 
PSC seems to be most important parameter in stating an allowable instability level in 
conceptual and early preliminary design. The longitudinal stability derivative values 
corresponding to a fixed PSC limit is investigated over the flight envelope and it is seen that, 
dynamic pressure has dominance over the limiting values. However, without the inclusion of 
available control power assessment, pure PSC based instability level limitation might be 
somewhat incomplete. So, allowable instability level schematic is utilized and the findings are 
in parallel to the values suggested in literature for longitudinal stability derivative. 
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