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ABSTRACT

In this paper, we investigate the effect of local disturbances in European airports over the global
delay characteristics of the air traffic network with and without optimized ground holding pro-
gram. Network models are constructed in order to simulate balancing the demand and capacity
and delay propagation across the network under disruptive events. These models, which are
stochastic Queuing Network Models (QNM), are used to run in different scenarios where the
capacities of airports are reduced to simulate local disturbances (e.g. heavy rain in the airport
areas, air traffic controller strikes, etc.). The impact of a local capacity reduction in the air-
ports to the European network are analyzed, and performances of these models, with and without
optimized ground holding implementation (i.e. QNM and QNM-OptGH), are compared.

INTRODUCTION

It is foreseen that the number of commercial 
ights will grow almost double and 16 trillion passenger-
kilometer will be 
own by 2035, which is almost %150 of what is 
own by airlines today [Airbus,
2015]. The total number of new deliveries for both passenger and freighter aircraft are expected to
be close to 33,074, while 12,834 passenger aircraft will be retired or converted to freighter [Airbus,
2015]. However, the airspace have almost a �xed amount of capacity, due to the regulations and
safety aspects, and the number of airports and new hubs to be built will be not large enough to
accommodate such increase in the demand. Therefore, the Air Tra�c Management (ATM) system
must go under an operational transformation to increase its e�ciency to deal with this challenge, yet
introducing radical change into the system is often di�cult since it needs to take into account the
many tight interdependencies that exist across the subsystems together. Meeting the capacity demand
and minimizing arrival 
ight delays are among the most critical challenges of Flight Path 2050 [ICAO,
2011].

New procedures and concepts that are being developed in SESAR and NextGen are leading to a global
paradigm shift from air tra�c "control" to e�cient air tra�c "management" fashion, which requires
redesigning the ATM system. The �rst step to redesign such a complex system is to perform rigorous
analysis through the existing information. Once we have the parametric model on the network, then
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one can add stochastic behavioral dynamics to catch the sporadic e�ects on the system. Airports of
the air tra�c network are most fragile components of the system as the most in
uential events to
the tra�c 
ow occur in there. Therefore, focusing on the airports on model construction is the most
common in such studies.

Several researchers focus on di�erent approaches to model the air transportation network. MITRE
Corporation focused on network modeling to mimic local delay propagation and developed two di�erent
models to simulate of delay propagation on the nationwide airport and airspace network in the United
States. The Detailed Policy Assessment Tool { DPAT [Wieland, 1997], which is the successor of the
NASPAC, is able to propagate delays across the network when the capacity of an airport is reduced due
to external events, but it does not utilize the information regarding aircraft itineraries, which might
lead to unreliable predictions. There are also agent-based simulation models for delay propagation,
such as FACET tool [Bilimoria et al. , 2001]. LMINET and LMINET2 [Long and Hasan, 2009]
are national queuing network models that are model the airports as M(t)/Ek(t)/1 queues. The
Approximate Network Delays (AND) model is another popular model that is designed by [Pyrgiotis,
2012; Pyrgiotis, Malone, and Odoni , 2013]. The modeling approach in AND and LMINET2 are
similar. However, calculating strategies of the local queuing delays are di�erent. The advantages of
this approach are that it is computationally cheap, and it can model both deterministic and stochastic
e�ects.

In this work, we have constructed data analytic approach to model the European ATM Network Flow to
quantify the dynamics of delay propagation across the network and balance the demand and capacity.
Speci�cally, we have constructed two di�erent ATM network models allow us to propagate induced
delays, which are airport-based queuing network model (QNM) and airport-based queuing network
model with optimal ground-holding application (QNM-OptGH) and compared their behaviors under
disruptive events (e.g. heavy rain, crew strike) leading airports to mandatory capacity reduction. A
case study is performed to apply demand and capacity balancing in airports.

DATA-DRIVEN NETWORK MODEL WITH/WITHOUT

OPTIMAL GROUND HOLDING POLICY

In this section, we have constructed two di�erent models, which are Queuing Network Model (QNM)
and Queuing Network Model with Optimal Ground-Holding (QNM-OptGH), to analyze their delay,
demand and capacity balancing characteristics through European air tra�c network 
ow. Both of them
are stochastic models, whereas second one is combined with deterministic ground holding procedures.
Note that, stochasticity on the queueing models inherently re
ects uncertain behaviors of the system.
One can also construct pure deterministic models by following very similar data-driven approach as
well.

Airport-Based Queuing Network Model (QNM)

The airport-based queuing network model consists of mainly two components, which are the local
queuing delay calculator (LQDC) and the global delay propagation algorithm. This approach is a re-
cursive process to construct such network model and utilized very similar recursive approach presented
in [Pyrgiotis, 2012; Pyrgiotis, Malone, and Odoni , 2013].

LQDC generates local delays according to First Come First Served (FCFS) procedure. During the delay
generation process, each airport is modeled as a single server that serves both arrival and departure

ights. Airports can be modeled as D(t)/D(t)/1, which represents the deterministic arrival and
service times, or M(t)/Ek(t)/1, which represents the aircraft arrival times distributed according to
an Exponential distribution and airport service times distributed according to an Erlang distribution.
Parameters of these distributions are inferred from the 
ight data and capacity declarations of airports.
LQDC calculates local delays for each airport separately, and the global e�ects of local delays are
calculated through the propagation algorithm (Algorithm 1).

LQDC considers demand pro�les for each airport. These pro�les have a discrete structure: one day is
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Algorithm 1: Algorithm of Queuing Network Model

Input: Flight Information of All Flights (F), Capacity Profiles of each Airport
Output: Final Departure and Arrival Times of All Flights

1 Assign AD(f) as SD(f) and AA(f) as SA(f) ∀f ∈ F
2 Calculate Demand Profiles using AD(f) and AA(f) ∀f ∈ F
3 Calculate Wa(t) ∀a ∈ A by using Demand Profiles and Capacity Profiles with LQDC
4 Determine ”significant” delays
5 while any ”significant” delay exists do
6 Update AD(f) and AA(f) ∀f ∈ F according to:
7 AD(f) = max[SD(f), SD(f) + (AA(f ′)− SA(f ′)) +Wd(f ′)(AA(f ′))− slack(f ′, f)]

8 AA(f) = max[SA(f), AD(f) +Wo(f)(AD(f)) + (flight time from o(f) to d(f))]

9 Calculate Demand Profiles using AD(f) and AA(f) ∀f ∈ F
10 Calculate Wa(t) ∀a ∈ A by using Demand Profiles and Capacity Profiles with LQDC
11 Determine ”significant” delays

12 ∀f ∈ F assign Final Departure Time(f) = AD(f) +Wo(f)(AD(f))

13 ∀f ∈ F assign Final Arrival Time(f) = AA(f) +Wd(f)(AA(f))

split into 15 minutes time windows. µa(h) represents demand in an airport a at time window h. It is
the total number of 
ight for both take-o� and landing. The other input is λa(h), which represents
the service rate. Through these inputs, LQDC generatesWa(t) local delay function dependent to time
in airport a.

In global propagation level, the algorithm uses Wa(t) sequences, connected 
ights, scheduled and
adjusted departure-arrival times of each 
ights. f represents the current 
ight while f ′ represents the
predecessor 
ight of the same aircraft. At the beginning of the propagation algorithm, delay situations
are determined. The delay is accepted as "signi�cant" if the departure or arrival time of f needs to
be adjusted, such as shifting to other slots is essential because of its predecessor 
ight f ′. Departure
and arrival times of all 
ights are regulated through propagation algorithm and evaluated with the
following equations:

AD(f) =max[SD(f), SD(f) + (AA(f ′)− SA(f ′)) +Wd(f ′)(AA(f ′))− slack(f ′, f)] (1)

AA(f) =max[SA(f), AD(f) +Wo(f)(AD(f)) + (flight time from o(f) to d(f))] (2)

In these equations, AD(f) is the regulated departure time of 
ight f . AA is the regulated arrival time,
SD is the scheduled departure time and SA is the scheduled arrival time. o(f) is the origin airport of

ight f and d(f) is the destination airport. Let turn(f ′, f) be the turnaround time, which is evaluated
as turn(f ′, f) = SD(f) − SA(f ′). Let minturn(f ′, f) be minimum time to handle the ground
services of 
ight f . The slack(f ′, f) can be given as slack(f ′, f) = turn(f ′, f) −minturn(f ′, f).
Once we have the regulated departure and arrival times, demand pro�les are updated for each airport.
This recursive process between LQDC and propagation algorithm repeats until the any signi�cant
delay not to stay in the network. This process is given in Algorithm 1.

Airport Based Queuing Network Model with Optimal Ground-Holding Program (QNM-
OptGH)

In QNM, delays are equally distributed to departure and arrival tra�c through FCFS procedure in
LQDC stage. This approach simply assumes that if a departing aircraft takes x minutes delay, the
following arrival aircraft, which is served in the same runway, will take approximately the same amount
of delay. Considering the ground delay is preferred to airborne delay, a ground-holding mechanism
is integrated into QNM. The pseudo-code of Airport Based Queuing Network Model with Optimal
Ground-Holding Program is given as Algorithm 2. In this algorithm, problematic airports are identi�ed
at the beginning of algorithm. A problematic airport is de�ned as the airport that has local delays
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greater than 15 minutes. If any problematic airport exist then ground holding procedure is activated.
We use an optimization based ground holding mechanism. We have chosen to use Mathematical
programming [Bertsimas et al. , 2011; Peterson et al. , 2012] to generate the ground delays by
minimizing de�ned cost function.

Algorithm 2: Algorithm of Queuing Network Model with Optimal Ground-Holding

Input: Flight Information of All Flights (F), Capacity Profiles of each Airport
Output: Final Departure and Arrival Times of All Flights

1 Assign AD(f) as SD(f) and AA(f) as SA(f) ∀f ∈ F
2 Calculate Demand Profiles using AD(f) and AA(f) ∀f ∈ F
3 Calculate Wa(t) ∀a ∈ A by using Demand Profiles and Capacity Profiles with LQDC
4 Assign SDrev(f) as SD(f) and SArev(f) as SA(f) ∀f ∈ F
5 Determine problematic airports (a ∈ A) that ensure the condition of max(Wa(t)) > 15
6 if any problematic airport exist then
7 Generate Ground Delays using binary integer programming formulation
8 Update SDrev(f) and SArev(f) ∀f ∈ F according to ground delays

9 Determine ”significant” delays
10 while any ”significant” delay exists do
11 Update AD(f) and AA(f) ∀f ∈ F according to:
12 AD(f) =

max[SDrev(f), SDrev(f) + (AA(f ′)− SArev(f ′)) +Wd(f ′)(AA(f ′))− slack(f ′, f)]

13 AA(f) = max[SArev(f), AD(f) +Wo(f)(AD(f)) + (flight time from o(f) to d(f))]

14 Calculate Demand Profiles using AD(f) and AA(f) ∀f ∈ F
15 Calculate Wa(t) ∀a ∈ A by using Demand Profiles and Capacity Profiles with LQDC
16 Determine ”significant” delays

17 ∀f ∈ F assign Final Departure Time(f) = AD(f) +Wo(f)(AD(f))

18 ∀f ∈ F assign Final Arrival Time(f) = AA(f) +Wd(f)(AA(f))

Let F = {f1, f2, ..., fn} be the set of 
ights during time period T = {t1, t2, ..., tm} and A =
{a1, a2, ..., al} be the set of airports in network. Then, Ca,t be mixed capacity of airport a during
sub-period t. Let the scheduled departure time period of 
ight f become df and scheduled arrival
time period become ef . Then, two new sets are de�ned to present the possible departure and arrival
time periods for 
ight f as Df = {df , df + 1, df + 2, df + 3} and Ef = {ef , ef + 1, ef + 2, ef + 3},
respectively. Ground delay is restricted with 3 sub-periods, which is 45 minutes in our model, Df

and Ef are generated according to this restriction. Let xf,t and yf,t be binary decision variables for
departure and arrival, and:

xf,t =

{
1 if flight f ∈ F departs at time t ∈ T
0 otherwise

yf,t =

{
1 if flight f ∈ F arrives at time t ∈ T
0 otherwise

the summation of all xf,t variables for 
ight f must be equal to 1 and it is also true for yf,t because
of the fact that a 
ight only departs at a speci�c time window and arrives also at a speci�c time
window, so others must be equal to 0. Let fdep and farr symbolize the origin and destination airports
of 
ight f. Flight duration and minimum turnaround time of 
ight f are symbolized by fduration and
fminTurn, respectively. Let f

′
be predecessor 
ight of 
ight f. Then, the binary integer programming

formulation become:
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min
∑
f∈F

(
∑
t∈Df

txf,t)− df (3)

subject to ∑
f :fdep=a

xf,t +
∑

f :farr=a

yf,t ≤ Ca,t (t, a) ∈ T ×A (4)

∑
t∈Ef

tyf,t −
∑
t∈Df

txf,t = fduration ∀f ∈ F (5)

∑
t∈Ef ′

tyf ′,t −
∑
t∈Df

txf,t ≤ −fminTurn ∀f ′ ∈ F (6)

∑
t∈Df

xf,t = 1 ∀f ∈ F (7)

∑
t∈Ef

yf,t = 1 ∀f ∈ F (8)

xf,t ∈ {0, 1}, yf,t ∈ {0, 1} (9)

The cost function (3) corresponds to total ground delays taken by all 
ights in the network, and the
aim is to minimize this total delay. Constraints (4) consist of capacity restriction of airports and mixed
capacity approach is used to generate these constraints. Constraints (5) are about 
ight duration and
there exist an approach that 
ights do not take any airborne delays. The optimization problem is
designed to determine the ground delays, so mainly e�ects of ground delays are investigated without
airborne delays. Delay propagation due to consecutive 
ights performed by the same aircraft is taken
into account by constraints (6). Constraints (7) and (8) are necessary to assign departure time of a

ight to only one-time window and arrival time, respectively. And, constraints (9) declare the binary
values of decision variables.

The solution of binary integer programming formulation gives the ground delays that is seen from line
6 to 9 in Algorithm 2. At the beginning of problem, df and ef in optimization are taken as SD(f)
and SA(f) for each 
ight f ∈ F, then SDrev(f) and SArev(f) are updated according to outcomes
of optimization.

SIMULATION RESULTS

To build a proper air tra�c network for Europe, we have utilized historical 
ight data. It is known
the fact that an airport generates delays when it reaches its capacity limit. Airports that operate
far from its limit do not mostly generate a delay into the network. Because of this reason, minor
airports in Europe are grouped into an aggregated airport that has in�nite capacity. Moreover, non-
European airports are also grouped into same aggregated airport. Using this approach, the total
number of airports in European Air Tra�c Network is reduced into 103 airports, which includes 102
major European airports and a single aggregated airport to construct reduced dimensional model of
large-scale European air tra�c network.

For an implementation purpose, real 
ight tra�c data for a speci�c day (i.e. May 30, 2016) is
used, where 30% and 45% capacity reduction in EHAM (Amsterdam Schiphol) from 05:00 to 12:00
and from 17:00 to 20:00, 10% capacity reduction in EGLL (London Heathrow) from 07:30 to 12:30
and 25% capacity reduction in EDDF (Frankfurt) from 07:45 to 09:30 are applied. These reduction
rates are generated comparing planned and real demand pro�les of airports. As an example, demand
pro�les in EHAM are presented in Figure 1. When planned and real demands are compared, it is
observed that real throughput is smaller than planned demand from 05:00 to 12:00 and from 17:00
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(a) Planned Demand
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(b) Real Demand

Figure 1: Demand Profiles for EHAM
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(b) Results of QNM

0 10 20 30 40 50 60 70 80 90

t me w ndow (∆ t = 15m n)

0

20

40

60

80

g
ro

u
n

d
 d

e
la

y
 (

m
n

)

mean

dev at on

dev at on

0 10 20 30 40 50 60 70 80 90

t me w ndow (∆ t = 15m n)

-20

0

20

40

60

a
rb

o
rn

e
 d

e
la

y
 (

m
n

)

EHAM

(c) Results of QNM-OptGH

Figure 2: Delays in Real Situation and Simulation Results for EHAM through QNM and
QNM-OptGH

to 20:00. By comparing the planned and real demands, real throughput is generated, and capacity
reduction rates are calculated as 30% and 45%, respectively. Demand pro�les of only eight busiest
airports are analyzed to generate the capacity reduction of these airports for this speci�c day, and only
three of them have regulated. These reduction rates and 
ight plans are used as inputs to network
models, and simulation results are presented in the rest of this section. The performances of network
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models are analyzed and compared according to simulation results. The models are compared to
stochastic network models, so 100 di�erent simulations are executed for each model to understand
the performance of them by comparing the means and deviations and show the impacts of stochasticity
on the network.

In Figure 2, total ground and airborne delays within the hourly time windows in EHAM are shown
to give the comparison calculated delays with the real situation. From the Figure 2b and 2c, it is
observed ground delays in QNM-OptGH is greater than in QNM, while QNM-OptGH has smaller
airborne delays. Ground delay policy in QNM-OptGH causes to shift delays from airborne to ground
when compared with QNM.
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(a) Balanced Capacity-Demand according to QNM
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(b) Balanced Capacity-Demand according to
QNM-OptGH

Figure 3: Balanced Capacity-Demand Profiles for EHAM
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(a) Balanced Capacity-Demand according to QNM
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(b) Balanced Capacity-Demand according to
QNM-OptGH

Figure 4: Balanced Capacity-Demand Profiles for EDDF

Under capacity reduction, demand and real throughput pro�les for the results of QNM and QNM-
OptGH are shown in Figure 3 and Figure 4 for EHAM and EDDF. These �gures are generated through
100 simulation run for each model, and deviations from average demand trend are also shown with
light blue bars while average demand trend is shown with dark blue bars. Considering average demand
pro�le, it can be said that demand and capacity are in balance, however, capacity excesses are seen
due to stochastic nature of the models. Moreover, it can be seen that QNM-OptGH outperforms
QNM in demand capacity balancing. In Figure 4a and 4b, it is realized that capacity excess due to
stochasticity in QNM is more than in QNM-OptGH when mean demand pro�les is compared.
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Figure 5: Box-plots of Total Delays in Network through QNM and QNM-OptGH

To understand the global impacts of models, the box-plots of total delays in network for these models
are presented in Figure 5. The �gures show that QNM model generates smallest total ground delay,
while QNM-OptGH generates highest total ground delay. And, vice versa is correct for airborne
delays. This is a natural result of shifting strategy of delays from airborne to ground in ground holding
programs.

CONCLUSION

This paper presented two di�erent network models to simulate the delay propagation and balance
the demand and capacity in case of capacity reduction at certain airports in the European air trans-
portation network. Design principles and algorithms of these models were explained and presented
throughout of the paper. Then, these models were compared in balancing demand/capacity with
several simulations through real air tra�c data of certain days that disrupted by capacity reductions
issues. The comparison results were given, also provides validation for the models.

Through these simulations, It was observed that ground delay policy integrated into QNM shifts the
delays from arrival to departure tra�c to prevent the costly airborne delays. It was also seen that
QNM-OptGH has e�cient than QNM from perspective of demand and capacity balancing. The future
work will be to add air sector and trans-sector queues into the network in order to capture demand
and capacity balancing in en-route sectors, which will enable to centrally control tra�c 
ows.
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