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ABSTRACT

An arbitrary Lagrangian Eulerian (ALE) framework is presented to solve incompressible mul-
tiphase fluid flow problems with exact mass conservation. The incompressible Navier-Stokes
equations are discretized using the stable side-centered unstructured finite volume method where
the continuity equation is satisfied exactly within each element (div-stable discretization). The
pressure field is treated to be discontinuous across the interface with the discontinuous treatment
of density and viscosity. The surface tension term is considered as a force tangent to the inter-
face and computed by utilizing cubic Legendre polynomials. For the application of the interface
kinematic boundary condition, a special attention is given to satisfy both local and global discrete
geometric conservation law (DGCL) in order to conserve the total mass of both species at ma-
chine precision. The mesh vertices are deformed due to the normal displacement of interface by
solving the linear elasticity equations. The resulting algebraic equations are solved in a fully cou-
pled manner and a one-level restricted additive Schwarz preconditioner with a block-incomplete
factorization is utilized within each partitioned sub-domain. The method is validated by simulat-
ing a single rising bubble in a viscous fluid due to buoyancy in two-dimensions. The mass of the
bubble is conserved at machine precision and discontinuous pressure field is obtained in order to
avoid errors due to the incompressibility condition in the vicinity of the interface.

INTRODUCTION

Multiphase uid ows are one of the important applications of moving boundary problems and they
are often encountered in nature and industrial applications such as melting and solidi�cation, �ber
coating, targeted drug delivery, drop formation, food processing, glass and metal forming processes,
etc. The interfacial dynamics plays an important role in these processes and determines the outcome.
Nevertheless, the numerical simulation of multiphase ows still poses a major research challenge. One
of the main di�culties of two immiscible uids is that the material properties such as density, viscosity,
etc. are discontinuous across the interface and the location of the interface is not a priori known. In
addition, there is a need to take into account the surface tension. It should be noted that the pressure
jump is not only a consequence of the surface tension, but also occurs due to the viscosity jump with
non-zero normal derivative of the normal velocity component [Idelsohn et al., 2010].
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The early numerical methods to solve multiphase uid ows are based on �xed Cartesian grids such
as the Marker-and-Cell (MAC) method [Harlow and Welch, 1965], the volume of uid (VOF) method
[Hirt and Nichols, 1981], the level set (LS) method [Osher and Sethian, 1988] and the moment-of-
uid (MOF) method [Dyadechko and Shashkov, 2005]. In these approaches, the density and viscosity
jumps and the surface tension at the interface are smoothed across the interface in order to avoid
numerical instabilities near the interface [Sussman et al., 1994]. Therefore, the interface is no longer
sharp, but has a �nite thickness. However, this approximation smears out the sharp interface and is
only about �rst order accurate. In addition, the smoothing must be over a few grid cells, resulting in a
relatively �ne mesh or dynamic adaptive mesh re�nement (AMR). Furthermore, the large variations in
the transport properties across the uid-uid interface lead to relatively sti� linear algebraic equations
[Uzgoren et al., 2007]. In order to overcome the limitations of high mesh resolution within the �nite
element framework, eXtended Finite Element Method (XFEM) is employed that naturally allows to
handle interfacial discontinuities by using discontinuous shape functions across the interface [Mo�es
et al., 1999]. More recent numerical algorithms for multiphase uid ows include the Lattice Boltzmann
method (LBM)[Gunstensen et al., 1991], the smoothed particle hydrodynamics (SPH) [Monaghan,
1994], etc.

Another class of numerical methods for multiphase uids is based on the arbitrary Lagrangian Eulerian
(ALE) approach [Hirt et al., 1974]. In the ALE method, the mesh follows the interface between the two
uids and the governing equations are discretized on unstructured moving meshes. Therefore, the ALE
formulation allows an accurate representation of surface forces like surface tension, membrane e�ects,
etc. and the interface is sharply de�ned. However, the exact mass conservation for the ALE based
multiphase uid simulations is a rather di�cul challenge to overcome. As far as the authors' knowledge
go, we are not aware of any ALE algorithm with the exact mass conservation for incompressible
multiphase uid ows (see, for example, [Walkley et al., 2005; Perot and Nallapati, 2003]), which
is critical for the accuracy of long-term numerical simulation of multiphase problems. In this paper,
a novel ALE framework with exact mass conservation is proposed for the numerical simulation of
multiphase ows. The incompressible Navier-Stokes equations are discretized using the stable side-
centered unstructured �nite volume method [Erzincanli and Sahin, 2013]. The continuity equation is
satis�ed within each element and the summation of the continuity equations can be exactly reduced to
the domain/sub-domain boundary, which is important for the local and global mass conservation. In
addition, a special attention is given to satisfy the both local and global discrete geometric conservation
law (DGCL) at machine precision. Hence, the mass of the bubble and exterior uid are conserved
at machine precision, which is the main contribution of the current paper. The pressure �eld is
also treated to be discontinuous across the interface with the discontinuous treatment of density and
viscosity in order to avoid errors due to the incompressibility condition in the vicinity of the interface.
The surface tension term at the interface is treated as a force tangent to the interface and computed
by utilizing cubic Legendre polynomials [Tryggvason et al., 2001]. The displacement of mesh vertices
within the uid domain and the tangential displacement on the interface are solved by utilizing the
linear elasticity equations. The resulting algebraic equations are solved in a fully coupled manner
(monolithic approach) since the mesh deformation algorithm may lead to inadmissible small elements,
which require an extremely small time step due to the CFL restriction. In this paper, the original
system of equations is preconditioned with an upper triangular right preconditioner, which results
in a scaled discrete Laplacian instead of a zero block in the original system due to the divergence-
free constraint. Then, a one-level restricted additive Schwarz preconditioner with a block-incomplete
factorization within each partitioned sub-domain is utilized for the resulting fully coupled system.
The implementation of the preconditioned Krylov subspace algorithm, matrix-matrix multiplication
and the restricted additive Schwarz preconditioner are carried out using the PETSc software package
developed at the Argonne National Laboratories in order to improve the parallel performance. The
computational domain is decomposed into a set of sub-domains using the METIS library.
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NUMERICAL RESULTS

In this section, the ALE algorithm is applied to the two-dimensional [Hysing et al., 2009] rising bubble
benchmark problem in order to assess the accuracy of the proposed approach. All the time dependent
numerical calculations are carried out using the second-order backward di�erence (BDF2) with a time
step of 0.0025 on the meshes M1-M4. The approximate mesh sizes are 1/40, 1/80, 1/160 and 1/320.
Physical parameters and dimensionless numbers are taken from the work of Hysing et al. [2009] and
the values are provided in Table 1. It should be mentioned that the surface tension force is computed
by utilizing cubic Legendre polynomials [Tryggvason et al., 2001]. At the uid-uid interface, the
discrete form of the local geometric conservation law (DGCL) is enforced for the kinematic boundary
condition in the normal direction, which leads to an exact mass conservation when it is combined with
the div-stable discretization. In the tangential direction, the linear elasticity equation is solved.

Table 1: Physical parameters and dimensionless numbers.

ρ1 ρ2 µ1 µ2 g σ Re Eo ρ1/ρ2 µ1/µ2

1000 100 10 1 0.98 24.5 35 10 10 10

For the present test case, a circular bubble with a radius of 0.25 is placed in a rectangular domain
[0, 1]× [0, 2]. Initially the bubble is stationary and then it is allowed to rise by the buoyancy force. The
time evaluation of the bubble shape is provided on mesh M1 in Figure 1 with the mesh deformation up
to t=3. The contours shows the velocity vector magnitude. The �nal bubble geometry on mesh M4
is compared with the results of TP2D and MooNMD codes provided in [Hysing et al., 2009] in Figure
2-[a] and the comparison shows very good agreement. In addition, the time variation of the bubble
area is compared with the result of TP2D in Figure 2-[b]. Although the result of TP2D shows high
frequency oscillations in the bubble area due to the employed level set method, the present approach
exactly conserves the bubble area at machine precision, which is independent from mesh resolution
and time step.

[a] [b] [c] [d]

Figure 1: Mesh deformation on mesh M1 at time levels t=0 [a], t=1 [b], t=2 [c] and t=3 [d]
with velocity magnitude contours.
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[b] [a]

Figure 2: Comparison of bubble shapes on mesh M4 with TP2D (red) and MooNMD (blue) at
t=3 [a] and the comparison of the bubble area time variation with the result of TP2D [b].
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