
1 
 Ankara International Aerospace Conference  

 
9th ANKARA INTERNATIONAL AEROSPACE CONFERENCE                      AIAC-2017-105 
20-22 September 2017 - METU, Ankara TURKEY 
 

DEVELOPMENT OF A BLADE TO BLADE SOLVER FOR AXIAL 
TURBOMACHINERY 

Mustafa BİLGİÇ1  
Middle East Technical University 

Ankara, Turkey 

M Halûk AKSEL2 
Middle East Technical University  

Ankara, Turkey 

ABSTRACT 

 

The blade to blade streamsurface, one of the stream surfaces defined by [Wu, 1952], models 
the flow in m-rθ plane assuming that flow is axisymmetric. Two different approaches are 
used for the solution of the two dimensional Euler equations through blade to blade 
streamsurface. The first one includes the solution of the steady form of the Euler equations. 
Artificial compressibility concept is added to cover transonic flow. The resultant system of 
equations is solved using modified tri diagonal matrix algorithm. The second method includes 
the solution of the unsteady form of the Euler equations. The face fluxes are evaluated using 
upwind approach. At the inlet and outlet, characteristic boundary conditions are applied. On 
the solid wall, slip conditions are imposed. Periodic boundary conditions are applied 
upstream and downstream of the blade passage. Flow variables are integrated in time 
explicitly.  
 

INTRODUCTION 
Compressor and turbine are the two major components of a typical gas turbine because work 
addition and extraction occurs within these components. Since the compressor adjusts the 
pressure ratio and mass flow, it has great influence on the characteristics of a gas turbine. 
The turbine extracts work from high pressure and high temperature air flow. The design 
process of the compressor and turbine starts with the cycle analysis. The output of the cycle 
analysis is used in the mean-line design in order to determine the initial sizing of the gas path 
and number of stages. The output of the mean-line analysis feeds the detailed airfoil design 
procedure. The design of blade is highly complicated process because of the presence of 
extremely complex flows. These complex flow structures include three dimensional boundary 
layers, mixture of different types of flows, hub and tip boundary layers, wakes, secondary 
flow vortices and unsteadiness. Therefore, fast but accurate blade design tools which could 
handle all of these flow types are needed. In the gas turbine industry, these design 
methodologies highly depend on two or/and three dimensional CFD analysis. 

The application of the first numerical methods in the turbomachinery was seen in 1940s. The 
very first solution of turbomachinery flow was the solution of the three dimensional potential 
equation [Wu, 1952]. However, the potential equation does not include rotationality, non-
uniformity in enthalpy and entropy generation across the shock waves. Some of these 
difficulties were eliminated with introduction of S1 and S2 streamsurfaces by [Wu, 1952]. The 
problem was formulated using the definition of the streamfunction on the streamsurfaces for 
both absolute and relative frames of reference. The equation of continuity and momentum for 
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fluid flow are combined into one principal equation. The characteristic of the principal 
equation depends on the local Mach number. Definition of two stream surfaces, which are 
blade to blade (S1) and through flow (S2) streamsurfaces, was regarded as the complete 
three dimensional solution of the problem (Q3D-Quasi Three Dimensional Flow). In this 
model, there are some assumptions to simplify the problem further. As the first and main 
assumption, flow field has periodic unsteadiness leading to steady flow analysis in both 
absolute and relative frames of reference. Also, the flow through the S2 plane is assumed to 
be axisymmetric and S1 streamsurface is assumed as the surface of revolution. Since some 
assumptions are included, it is necessary to check the accuracy of the method with the 
experimental results. The Q3D method is quite fast as compared to the complete three 
dimensional analysis.  

 

Newton Solver 
In this study, two different approaches are used for the solution of the blade to blade flow. 
The first one is the steady solution of two dimensional Euler equations [Giles, 1985]. Integral 
form of the two dimensional Euler equations in a rotating frame of reference are solved by 
using cell centered finite volume method. The flow domain is discretized on the intrinsic 
streamline grid. Initially Euler equation is discretized as x and y momentum equations. After 
some manipulation, the streamwise and normal momentum equations are obtained from 
momentum equations in x and y directions. For transonic flow solution, the artificial 
compressibility is implemented and shocks are captured accurately. After the discretization is 
completed, the Newton-Raphson method is applied to the discrete flow equations. Together 
with the linearization, some manipulation is applied using continuity and energy equations in 
order to reduce the number of unknowns to two. After the linearization is applied to all 
discrete control volumes, a huge set of linear system of equations is formed. For the solution 
of linear system of equations, a direct approach, which is the solution of the resultant linear 
system of equations using modified tri-diagonal algorithm [Thomas, 1949], is used. The 
density and nodal coordinates are updated for the next iteration level using under relaxation. 
The relaxation factor is used in order to prevent excessive changes in density and nodal 
coordinates. 
 

Time Marching Solver 
The second approach for the solution of the Euler equation is the time marching finite volume 
method. The integral form of the unsteady Euler equations are discretized on a polyhedral 
control volume. The flow variables are stored at the centers of the control volumes (cell 
centered scheme). Fluxes are evaluated at the faces of the each cell considering the left and 
right states of the faces. The left and right states of the faces are determined using MUSCL 
approach with modified Van Albada Limiter function [Blazek, 2001]. In order to calculate face 
flux values, upwind discretization is used. The time integration is carried out explicitly by 
using the Runge-Kutta time integration [Hirsh, 1988]. In order to accelerate the convergence, 
local time stepping is applied.  
 
 

COMPUTATIONAL DOMAIN AND SOLUTION METHODS 

In this section, details of the blade to blade computational domain is described. Generation of 
the computational domain, discretization, description of the source terms and applied 
boundary conditions are presented. 

 

Generation of Computational Space 

The domain, which is solved as a blade to blade plane, is shown in Figure 1 [Drela, 2008]. 
The blade to blade surface is assumed to be a surface of revolution. The blade profile is 
obtained by cutting the blade along the streamline. The resulted two dimensional 
computation domain is known blade to blade surface which is also known as m – rθ plane. 
Definition of the streamline comes from the throughflow solver. Throughflow solver generates 
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streamlines as a result of the solution of axisymmetric momentum equations in r – z plane. In 
addition to the definition of the streamline, the streamtube extraction/contraction also comes 
from throughflow solver. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discretization  

After the solution domain is generated, the spatial discretization is made on structured grid. 
In order to generate grid, two dimensional elliptic grid generation method is used. Two 
different methods are used in order to solve the discretized Euler equations. One method 
solves the steady form of the Euler equations together with the artificial compressibility. 
Energy equation is simply conservation of the rothalpy. 

 

� ����. ��	
 = 0 (1) 

�
�
���. ������ + ����	
 = � �������	∀ 
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� ����. ���	
 = 0 
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where, ρ is the density, V is the relative velocity, n is the unit vector normal to the cell 
surface,  P is the pressure, ds is the surface length of the cell, ∀ is the volume of the cell, fb is 
body force and I is the rothalpy. The relationship between total enthalpy and rothalpy is given 
as  

  

Figure 1 Computational Domain [Drela, 2008] 
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The details of the linearization and manipulation of the equations are not presented here 
since it is a very long process. The details of this process can be found in reference [Bilgic, 
2015]. The second method solves the unsteady Euler equations on m-rθ plane. The vector 
form of this equation can be written as 

 

 

where, t is time, W is conservative variable vector, Fc is convective flux vectorand Q is the 
source term vector. The details of the vector components can be found in any Computational 
Fluid Dyanmics (CFD) books. Since the equations are hyperbolic in time, the flow variables 
are marched in time. For the time integration, 4 stage Runge-Kutta time integration method is 
used.  

 

Source Terms  

The solution of the rotor requires the effects of the Coriolis and centrifugal acceleration. 
These effects are introduced by the source term. The contents of Q in equation (5) and fb in 
equation (2) are the same. The rotational effects are projected on m-rθ plane using some 
geometrical manipulations. The resulting body forces in m and θ direction can be written as 

 

�� = −2�� 
!�" 
!�# + ��� 
!�# (6) 

 

��$ = 2�� %&
" 
!�# 

 

(7) 

where, Ω is the rotational speed, β is the flow angle in relative frame, r is the radius 
measured from center of rotation and Φ is the streamline curvature angle.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Boundary Conditions 

The Newton solver imposes two different boundary conditions for unchoked and choked 
flows. If the flow is subsonic, simply Mach number is specified at the inlet plane. Once the 
Mach number is given, the mass flow rate is determined at the inlet. When the mass flow is 
fixed, it is not necessary to specify a variable at the exit plane for subsonic flow. However, 
when the flow is choked, the back pressure must be specified at the exit plane. Furthermore, 

 '
'( � )����	∀ + � *+����	, =  � -��	∀  (5) 

Figure 2 Terms appearing in B2B domain 
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if flow is supersonic at the inlet, specifying Mach number is not sufficient. Implementation of 
supersonic inflow boundary condition is not included in this study.  On the other hand, time 
marching solver imposes characteristic boundary conditions at the inlet and exit plane. 
Therefore, choking of the flow does not necessitates changing the specified variables at the 
inlet or exit boundaries. The remaining boundaries are the same for both solvers. On the 
blade surface solid wall boundary condition is imposed while periodic boundary conditions 
are imposed before and after the blade.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULTS  

The solvers are tested with various test cases. The results of the solvers are compared with 
two analytical results and one experimental result.  

 

Sanz Supercritical Compressor Cascade – Analytical Case 

The first case is the supercritical compressor cascade case which is taken from AGARD [AR 
275, 1990]. The inlet Mach number and flow angle are 0.711 and 30.81 degree respectively. 
The exit Mach number and flow angle are 0.544 and -0.35 degrees respectively. The 
reference result is obtained from the hodograph method. The results of the solvers are 
compared presenting both pressure coefficient and Mach number contours in Figure 4. The 
results agree well with the hodograph solution. The pressure ratios obtained from the time 
marching, Newton and hodograph method are 1.143, 1.144 and 1.145, respectively. At the 
trailing edge, Newton method imposes Kutta condition. Therefore, the pressure values on 
suction and pressure sides are compatible. However, a fluctuation seems in the result of time 
marching solver. Since the Kutta condition cannot be applied in the marching method, this 
fluctuation appears to be inevitable [Denton, 1999]. 

 

Figure 3 Boundary conditions 
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Sanz Subcritical Turbine Cascade – Analytical Case 

The second case is the subcritical turbine cascade case which is taken from again [AR 275, 
1990]. The inlet Mach number and flow angle are 0.343 and 36.0 degree respectively. The 
exit Mach number and flow angle are 0.765 and -57.35 degrees respectively. The reference 
result is again obtained from the hodograph method. The results of the solvers are compared 
using pressure coefficients in Figure 5. The results agree well with the hodograph solution. 
Trailing edge Kutta condition problem for the time marching solver again appears. The outlet 
flow angles obtained from the time marching and Newton methods are -57.42 and -57.38 
degrees, respectively.  

 

 

a) Comparison of Cp values obtained from solvers with the result of hodograph method 

b) Mach number contours 

obtained from time marching 

solver 

c)  Mach number contours 

obtained from the Newton solver 

Figure 4 Comparison of the result of the solvers with reference results and Mach number 
contours – supercritical compressor cascade 

 Numerical 

 [AR 275, 1990] 

Newton Solver 

Time Marching Solver 
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R030 Compressor Rotor – Experimental Case 

The third case is one stage compressor experiment taken from [AR 275, 1990]. In order to 
test the solvers for rotor case, the 18% height of the blade section is selected as the 
computation domain. Inlet Mach number of the rotor blade is 0.9215. Inlet flow angle and 
streamline curvature angle are 54.60 and 11.83 degrees, respectively. The pressure ratio of 
the compressor blade is 1.43. The pressure ratios obtained from the time marching method, 
Newton method and experiments are 1.453, 1.445 and 1.43, respectively. The pressure 
distribution of the blade is obtained from experimental results. The results have shown that 
both Newton and time marching solvers give quite accurate results. In Figure 6a, pressure 
distribution obtained from solvers agree with the results of experiment published in [AR 275, 

a) Comparison of Cp values obtained from solvers with the result of hodograph method 

b) Mach number contours 

obtained from time marching 

solver 

c)  Mach number contours 

obtained from the Newton solver 

Figure 5 Comparison of the result of the solvers with reference results and Mach number 
contours – subcritical turbine cascade 

Numerical AR 275, 1990] 

Newton Solver 

Time Marching Solver 
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1990]. Also the results are compared with the some other numerical results as shown in 
Figure 2b. The sudden acceleration at the leading edge of the rotor is the common behavior 
of the numerical results [Dunker, 1990], [Uzol, 1995]. Also the effect of the viscosity in the 
experimental results at the trailing edge can be seen clearly. However, the Euler solvers 
retain the pressure rise at the trailing edge. 

 

 

 

CONCLUSION 

In this study, in order to solve blade to blade flow through the axial turbomachinery, two 
different approaches are used. The results has shown that both methods have no superiority 
over each other in terms of accuracy. The Newton solver has some stability problems for 
blunt leading edges. Since the Newton solver recalculate the location of the grid points at 
each iteration (intrinsic streamline grid), locating stagnation point of the leading edge is 
problematic issue. Sometimes the grid quality near the leading edge get worse and 
convergence problems may arise. Also the stability of the solver has greatly depend on some 
factors like artificial compressibility factor. The time marching method does not face these 
kinds of stability problems. Furthermore, choking information must be known by the user if 
the Newton solver is to be used. On the other hand, there is no such problem for the time 
marching solver. Final observation is related to the future work of the methods. The Newton 
solver treats each horizontal gridline as a streamline. Therefore, the viscous flow modelling 
can only be made by solving Von Karman integral momentum equations. This restricts the 
possible future works for Newton solver. However, the time marching method is suitable for 
any kind of viscous modelling. The viscous flow can be modelled not only by the integral 
momentum equations but also by solving laminar and turbulent stresses within control 
volume. There is a huge difference between the methods in terms of computation time. For a 
moderate grid size (86 x 17), the Newton method solves the domain in two seconds. This 
time reaches about two minutes for the time marching solver. If finer grid is required for a 
case, the computation time for time marching method may reach about five minutes. Due to 
this drawback time marching solver may be seen unpractical but the speed of the methods 
can be increased implementing some acceleration techniques like multigrid acceleration.  

 

 

 

Figure 6 Comparison of the result of the solvers with reference results 

a) Comparison with experimental results b) Comparison with numerical results 

 
 Numerical [Uzol, 1995] 

Newton Solver 

Time Marching Solver 

Numerical [Dunker, 1990] 

Newton Solver 

Time Marching Solver 

Experimental [AR 275, 1990] 
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