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ABSTRACT

The main objective of this study is to contribute to the understanding of coherent structures
by looking at vortex clusters in turbulent boundary layers subject to strong adverse pressure
gradient (APG) that encountered on the suction side of a LPT blade. Statistical properties of
three-dimensional vortex clusters’ dimensions are determined and analyzed. Results show that
near wall clusters have more elongation on flow direction while clusters that located away from
the wall resemble cubic boxes. Furthermore, our study show that statistical characteristics of
vortex clusters do not change with the use of different vortex identification techniques.

INTRODUCTION

Understanding the wall bounded turbulent 
ows is crucial in improving the energy e�ciency of broad
engineering systems. Adverse pressure gradient (APG) boundary layer is an extensive part of wall
bounded turbulent 
ows. APG 
ows are commonly confronted in many engineering applications in-
cluding fans, turbines, pumps, jet engines, aircrafts, cars and turbo-machinery. APG is the most
in
uential factor in determining e�ciency of such devices. By the reason of this occurrence, under-
standing the behavior of APG 
ows have great practical importance.

Organized structures in turbulent 
ows have great importance to understand APG e�ect and expand
our knowledge on turbulent boundary layer 
ows; since, these coherent structures play essential role
in the production and dissipation of wall turbulence [Aubry et al, 1988]. Considerable statistical
information of turbulent 
ows has been acquired by using these coherent structures. Although co-
herent structures have not any universally accepted speci�c de�nition yet, [Hussain, 1983] explains as
”A coherent structure is a connected turbulent fluid mass with instantaneously phase-correlated
vorticity over its spatial extent.”.

Vortex clusters, on the other hand, is a special kind of coherent structure [Del �Alamo et al, 2006].
Unlike common coherent structure iso-surface visualization, vortex clusters show real appearance. Also
each vortex cluster represents single distinct structure. Therefore, vortex clusters are suitable tool to
investigate turbulent 
ows.

There are large number of experimental and numerical studies on the dynamics of coherent structures
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in wall-bounded canonical 
ows. However, the information on coherent structures found in APG
boundary layers is limited in comparison to canonical wall 
ows. Hence, the purpose of this study is
to contribute to the statistical understanding of coherent structures in APG 
ows.

NUMERICAL METHOD

Since direct numerical simulation (DNS) presents the most detailed interpretation of a turbulent 
ow
�eld as far as computational methods are concerned, the DNS of [Gungor et al, 2014] is used to
study vortex clusters in APG boundary layer 
ows. In the DNS setup, the 
ow of interest is formed
on a 
at plate boundary layer subject to a strong adverse pressure gradient similar to environment
of the suction side of T106C high-lift low-pressure-turbine blade. The desired pressure gradient is
controlled by imposing a positive uniform wall-normal velocity distribution at the upper boundary of
the computational domain. The transition to turbulence scenario is triggered by positioning a two
dimensional disturbance strip very close to the in
ow.

The simulation parameters are summarized in table 1. Lx, Ly, and Lz are the domain dimensions
along the cartesian axes, Nx, Ny, and Nz are the corresponding grid points, and ∆x+,∆y+min,∆z

+

are the resolutions in wall unit. Reθ is the Reynolds number based on momentum thickness and
free-stream velocity, and β is the pressure gradient parameter. A further information can be found in
[Gungor et al, 2014].

Table 1: Details of the DNS data.

(Lx × Ly × Lz)/θ0 Nx ×Ny ×Nz ∆x+,∆y+min,∆z
+ Reθ β

2380 × 450 × 1100 1537 × 201 × 768 2.2 × 0.2 × 2.0 ≈ 150 − 2200 5-100

Figure 1 shows the spatial development of the vortical structures. The 
ow is initially laminar which
then separates and transitions within the separation bubble, �nally turbulent 
ow develops under
strong adverse pressure gradient. As a major implication of transition, hairpin vortices are observed
as shown in the left box. Downstream, hairpin vortices lose their dominance until completion of
transition, then densely populated quasi-streamwise vortices emerge in the 
ow �eld. Due to presence
of APG, population density of these vortices decrease substantially.

Figure 2 presents the turbulent kinetic energy distribution. The time-averaged separation line is also
indicated in the �gure with white solid line. The growth of turbulence around the reattachment
region is apparent. The intensity of the turbulent kinetic energy decreases downstream while the peak
location moves away from the wall from the reattachment point to the end of the simulation domain
as a result of APG.

Instead of calculating vortex clusters in the whole simulation, the extracted sub-domain was used for
the vortex calculation. Along with this extracted domain selection, relatively small e�ect of separated
region on vortex clusters has achieved [Gungor et al, 2014] and the calculation time of clusters has
decreased. The dimension of the domain of interest along the three axes are Lx × Ly × Lz ≈
4.51δa × 2.02δa × 8.36δa. Here δa is the average boundary layer thickness of the selected domain.
Reynolds number, Reθ, ranges between 1200 and 1967, and shape factor, H, varies between 1.69 and
2.49 along the extraction box.

500 instantaneous DNS �elds are processed to extract vortex clusters. As a result of this process
approximately two and half million vortex clusters are obtained.
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Laminar Transitional Turbulent

Figure 1: Computational domain, black represents iso-surfaces of the second invariant of the
velocity gradient tensor, red represents high speed streaks iso-surfaces of u′ = 0.8, blue represents
low speed streaks iso-surfaces of u′ = −0.8. Flow direction is from left to right.

Figure 2: Turbulent kinetic energy. The solid white line marks the time-averaged separated-
region. The black rectangular box shows the domain of interest.

VORTEX CLUSTERS

There are several reasons why vortex clusters are more suitable tools for investigating turbulent 
ows
than commonplace coherent structure. The �rst reason is that the coherent structure visualizations
are extremely chaotic as it can be seen in �gure 1. Hence, obtaining information from these excessively
cluttered coherent structure domains is a problematic issue [Del �Alamo et al, 2006]. Also, each vortex
cluster represents single distinct structure since the vortex clusters are isolated and classi�ed. Another
reason is that the most common coherent structure identi�cation criterion re
ects the information
about the iso-surface but not the structure inside. Vortex cluster visualizations, unlike coherent
structures, exhibit real appearance since a single vortex cluster is generated by connecting neighbor
grid points that satisfy a threshold condition. [Del �Alamo et al, 2006]

The three-dimensional vortex clusters are identi�ed as connected regions of intense discriminant of
the velocity gradient, D [Chong et al, 1990] that satisfy the following condition

D(x, y, z) > α
√
D′2(x, y) (1)
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Here α is the threshold constant and
√
D′2(x, y) is the standard deviation ofD. Figure 3a illustrates an

example of a vortex cluster that is generated by �lled nodes that satisfy equation 1 in two dimensional
grid points. The minimum vortex cluster volume is chosen as a 30 neighbour grid points in order to
eliminate redundant small structures.
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Figure 3: (a)Two dimensional example of a neighbour grid points of the vortex cluster algorithm.
(b)Percolation diagram of the vortex clusters, the volume of the largest cluster normalized with
total volume occupied by all clusters. Dashed-line is the threshold value α = 0.025

In order to determine α, we performed a threshold percolation analysis as in [Del �Alamo et al, 2006].
Figure 3b shows the volume ratio of the largest cluster, Vmax, to the overall volume of the all cluster,
V , inside the useful domain as a function of the threshold constant α. The volume ratio is dramatically
increasing after reaching enough low threshold values. The percolation threshold is de�ned as α value
for which the slope of the curve is maximum, which is equal to approximately 0.001. Below that
speci�c value of α, the clusters evolve into sizeable single sponge-looking structure where V = Vmax
[Del �Alamo et al, 2006]. The threshold parameter for identifying structures in this study is selected
as 0.025 which is a close value to the mid-point of the percolation transition. Also this threshold
parameter and volume ratio, Vmax/V , is approximately equal to the one used in a channel 
ow study
[Del �Alamo et al, 2006].

Figure 4 presents the joint probability density function (p.d.f) of the minimum ymin and maximum
ymax wall distances for the vortex clusters. The vortex clusters can be grouped into two subgroups
according to their wall normal position [Del �Alamo et al, 2006]. The �rst type exists in the near wall
region where ymin < 0.05δa. These structures are reaching to the wall, hence they are called wall-
attached clusters. The other subgroup vortex clusters are located away from the wall, ymin ≥ 0.05δa,
and they are called wall-detached clusters. Figure 5a shows the �rst subgroup of vortex clusters and
the �gure 5b demonstrates a wall-detached vortex cluster. These structures are intrinsically turbulent
and complex objects, and the two types of structures are di�erent in terms of size, shape and spatial
organisation.

Table 2: Total cluster numbers and volumes. Volume of the clusters are non dimensionalized
with the average boundary layer thickness, δa.

Total Attached Detached
Number of Clusters 2332430 491997 1840433

Total Volume of Clusters 1748.2 1397.8 350.4

Table 2 presents the total number of cluster and their total volume. The number of wall-attached and
4
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Figure 4: Joint probably density function of the vortex clusters as a function of their wall normal
minimum, ymin and maximum distances, ymax. Contour levels from 0.01 to 10.

(a) Wall-attached vortex cluster (b) Wall-detached vortex cluster

Figure 5: Representation of three dimensional vortex clusters coloured with distance from the
wall; dark blue for nearest to the wall and magenta for furthest to the wall.

detached clusters are also given in table. Although almost % 80 of the clusters are detached clusters,
the attached clusters occupy approximately % 80 total volume. Hence, attached clusters cannot be
ignored by looking their numbers even if they are less.

RESULTS AND DISCUSSIONS

Vortex clusters dimensions are taken as a distances of parallelepiped box of vortexes. We compare the
streamwise, ∆x, wall-normal, ∆y, and spanwise, ∆z, box dimensions with each other and with their
wall centre distances yc.

Figure 6 depicts the vortex clusters' cubic and wall centre distances on two dimensional cluster sketch.
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∆y
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Figure 6: Two dimensional sketch of a vortex cluster. Flow is from left to right. Cluster is
colored with distance to the wall

Wall-Detached Clusters

Figure 7 illustrates the joint probability density function of the logarithms of wall paralel box distances
of the detached clusters and their wall distances. The joint p.d.f. that is given in the �gures can be
organized along as

5 × ∆x = yc 5 × ∆z = yc ∆x = ∆y ∆z = ∆y (2)
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Figure 7: Joint probability density function of the parallelepiped box of the wall detached
clusters and their wall distances, dashed lines are 5 × ∆x = yc, 5 × ∆z = yc, ∆x = ∆y and
∆z = ∆y in (a),(b),(c) and (d) respectively.

As can be seen in equation 2, the detached vortex clusters have the same box length in all three
dimensions and these box lengths are proportional to their wall centre distances. This result indicates
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that the shape of parallelepiped box of wall detached clusters resembles to cubic boxes. Consequently,
the statistical characteristic of this chaotic structures is independent of the direction of 
ow. As
expected, this means that the detached structures show isotropic turbulence behavior in APG 
ow.

[Del �Alamo et al, 2006] shows that detached clusters in channel 
ow has di�erent parallelepiped length
ratio from their wall distances. Their streamwise lengths are more than wall-normal and spanwise
directions. Hence, wall-detached vortex clusters in APG 
ows have less elongation than channel 
ows.

Wall-Attached Cluster

Figure 8 illustrate the joint p.d.f of the logarithms of wall parallel box distances of the attached clusters
and their wall distances. The joint p.d.f. that is given in the �gures can be organized along as

0.7 × ∆x = yc ∆z = yc 0.7 × ∆x = ∆y ∆z = ∆y (3)

The wall-attached clusters are signi�cantly di�erent from than detached ones. As can be seen in
equation 3, the attached vortex clusters, unlike the detached ones, have more elongation on streamwise
direction and vortex clusters dimensions are proportional to their wall centre distances. The lengths
and widths of these wall-attached structures are proportional to wall normal, ∆y, distances. Also
these structures have same box lengths on wall normal and spanwise direction. Because of their large
size, attached clusters have more box lengths in x direction than their wall centre distances, unlike
wall-detached ones. On the other hand [Del �Alamo et al, 2006] illustrate that attached clusters in
channel 
ow have more elongation on x distances same as here in APG 
ows.
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Figure 8: Joint probability density function of the parallelepiped box of the wall attached clusters
and their wall distances, dashed lines are 0.7×∆x = yc, ∆z = yc, 0.7×∆x = ∆y and ∆z = ∆y
in (a),(b),(c) and (d) respectively.
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APG Effects on Clusters
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Figure 9: Probability density function of the wall centre distances. Clusters numbers are nor-
malized with their maximum cluster number in that location. Blue line at x/δavg = 12 and red
line at x/δavg = 15.

Figure 9 shows the APG e�ect on vortex distribution in the wall normal direction at two streamwise
location. There is a considerable decrease in the possibility of occurrence of wall-attached clusters as
the APG 
ow evolves in the streamwise direction. Also �gure indicates that as the 
ow proceed in
the streamwise direction with increasing APG e�ect, the vortexes tend to move away from the wall.

Vortex Clusters with Q Method

Vortex clusters that identi�ed with D method had analyzed statistically. Nonetheless there is more
than one vortex identi�cation method and there are no statistically signi�cant di�erences between
these vortex identi�cation methods [Chakraborty et al, 2005]. The di�erence between Q [Hunt et al,
1988] and D method is their power of the velocity derivatives. The D method is a sixth power of the
velocity derivatives and Q is a second power of the velocity derivatives [Chakraborty et al, 2005].

[Dong et al, 2017] uses Q criterion in their vortex cluster identi�cation and [Lozano-Dur�an et al, 2015]
stated that higher-order quantities have tendency to be meaningless when the resolution borderline.
To illustrate that the vortex cluster statistics are independent of their identi�cation method, the same
methodology used for the Q vortex cluster identi�cation method.

Although identi�cation method has changed, the percentage of the clusters numbers and their volume
occupation has not changed. Also exactly same vortex elongation and distribution as in D method
were obtained from Q method.

CONCLUSION

Statistical properties of vortex clusters in a turbulent boundary layer subjected to strong APG 
ow
are investigated using a DNS data which mimics the 
ow over suction side of a low pressure turbine.
Vortex clusters are identi�ed by using two criteria of vortex identi�cation techniques; Q criterion and
D criterion.

Results show that vortex clusters are split in to two groups according to their wall normal position:
wall-attached and wall-detached. The joint probability density function of the box distances of these
vortex clusters indicate that the box dimensions of the wall-detached ones are independent of the
direction of the 
ow. This behavior indicates that this type of clusters show isotropic behavior in APG

ow. While attached vortex clusters shows that they have more elongation on streamwise direction
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and their heights and widths are proportional to their wall normal distances.

The probability density function of the wall centre distances at two streamwise location clearly indicates
that as the APG 
ow evolves in the streamwise direction, the vortex clusters tend to move away from
the wall.

Additionally, the statistical characteristic of vortex clusters were shown to be unchanged with the
vortex identi�cation techniques.
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