
   
 
 

 

 

9th ANKARA INTERNATIONAL AEROSPACE CONFERENCE                      AIAC-2017-095 
20-22 September 2017 - METU, Ankara TURKEY 
 

IMPLEMENTATION AND COMPARISON OF DIFFERENT POSITION 
SOLUTIONS OF GPS RECEIVER IN SATELLITES 

Özgür GÜNDOĞAN1 
Middle East Technical University 

TÜBİTAK UZAY SPACE TECHNOLOGIES RESEARCH INSTITUTE 
Ankara, Turkey 

 

ABSTRACT 

Global Positioning System (GPS) receiver can solve and find its position by using pseudo-
ranges between receiver and satellites. By using non-linear least squares method, receiver 
position can be obtained instantaneously. The accuracy of the receiver position obviously 
depends on the observed pseudo-ranges and how well their error components are modelled. 
Pseudo-ranges can be obtained from 2 different types of signal information, C/A code phase 
and carrier phase. However, these pseudo-ranges have error terms which are ionosphere 
effect error, multipath error, satellite clock error, receiver clock error, troposphere effect error. 
Since this receiver is designed to use in low earth orbit satellites, multipath error and 
troposphere error will be ignored. Therefore, the largest error component arises from 
ionospheric delay effect on the signal. This ionospheric effect can be eliminated by using 
ionosphere free equations with dual frequency (L1-L2 or L1-L5) observations.  

Therefore, in this paper, the position of a GPS receiver will be calculated by using C/A code 
phase and carrier phase and then ionospheric effect will be eliminated by using dual frequency 
observations. At the end, the accuracy of 4 different types of solution will be compared. 
 

INTRODUCTION 

Global Positioning System (GPS) 

The whole GPS positioning contains 3 different task which are cascaded to each other which 
are acquisition, tracking and positioning. Acquisition task refers to search and find satellite 
signals and then extract satellite’s orbit information (ephemeris). Tracking task refers to being 
locked to the satellite signal and tracking the changes in signal quantity and quality. The final 
task is positioning of the receiver by using ephemeris information and receiver information.[ 
ESA] 

 

Through ephemeris messages, GPS satellites tell the receiver their keplerian orbit parameters 
and their clock parameters to calculate satellites’ clock correction. In other words, GPS 
satellites broadcast their position (Xk , Yk, Zk) and their atomic clock time (tk) where k is the kth 
satellite. When receiver detects the signal, it tags the signal with a timestamp with its clock (t). 
So, although receiver and satellite has asynchronous clock, the time difference between signal 
transmission and signal reception is Ԏ = t - tk. Since signal propagates with speed of light (c = 
3 x 108), the most rough pseudo-range between receiver and satellite will be P = Ԏ * c. 
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Code Phase Pseudo-range Observation Equation  

GPS code pseudorange mode is : 

 

 

 

(1) 

 
where  

R is the observed pseudorange,  
te denotes the GPS signal emission time of the satellite k,  
tr denotes the GPS signal reception time of the receiver i, 
c is the speed of light,  
subscript i and superscript k denote the receiver and satellite,  
δ tr and δ tk are the clock errors of the receiver and satellite at the times tr and te, 

respectively. 
The terms δion, δtrop, δtide and δrel denote the ionospheric, tropospheric, tidal, and relativistic 
effects, respectively. The multipath effect is omitted here. The remaining error is denoted as 
ε. 
 

 𝑞𝑘 =  √(𝑋𝑘 − 𝑋)2 + (𝑌𝑘 − 𝑌)2 + (𝑍𝑘 − 𝑍)2 (2) 

 

 

Since the geometric range is nonlinear as given Equation 2, linearized observation equation 
is (detailed analysis of linearization can be found in appendix) : 

 

 

 

(1) 

 
where 

lk is the observed minus computed pseudorange,  
vk is the residual, 
vector (Δx Δy Δz)T is the difference between the coordinate vector (xi yi zi)

T and the 
initial coordinate vector (xi0 yi0 zi0)

T, 

Δt is the receiver clock error in meters. 

 

 

Equation-3 can be written in a more generic form as in vectorized form :  

 

 

(4) 
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Equation-4 can be written in a matrix form :  

 

 

 

(5) 

 
where  

L is called the observation vector,  
X is the unknown vector,  
A is the coefficient matrix,  
V is the residual vector.  

 

 

Carrier Phase Observation Equation 

Carrier phase measurement is the distance measure between satellite and receiver which is 
expressed with carrier phases. Position calculation can be done so precisely by using carrier 
phase, but the number of whole cycles between satellite and receiver is not measurable (called 
integer ambiguity). However, this integer ambiguity can be eliminated by using 2 consecutive 
samples if there is no cycle slip in the signal. 

Carrier phase pseudo-range observation equation as given below: 

 

 

 

(6) 

 
where  

λΦ is the observed phase in length,  
Φ is the phase in cycle,  
wave length is denoted as λ,  
Ni

k is the ambiguity related to receiver i and satellite k,  
Except for the ambiguity term and the sign difference of the term of ionospheric 

effect, other terms are the same as that of the pseudorange discussed at code phase 
pseudorange observation equation. 
 
Equation-6 can be written in a vectorised form which is so similar to Equation-4 : 
  

 

 

(7) 

 
Equation-7 can be written in a matrix form: 
 

  (8) 

 
 

where  
L is called the observation vector,  
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X is the unknown vector of coordinates and clock error,  
A is the X related coefficient matrix,  
E is an identity matrix of order K 
K is the number of observed satellites,  
N is the unknown vector of ambiguity parameters, 

V is the residual vector. 
 
If there is no cycle slip between consecutive samples, then ambiguity does not change. 
Therefore, if two consecutive samples are extracted from each other, ambiguities cancel out 
and remaining equation is without ambiguity. Resultant equation is: 

 

 

(9) 

where  
L is called the observation vector difference between 2 consecutive samples,  
X is the unknown vector of last sample,  
A is the coefficient matrix difference between 2 consecutive samples,  
V is the residual vector difference between 2 consecutive samples. 

 

Ionosphere-Free Code Observation Equation with Dual Frequency 

Since ionosphere changes the path of the signal, the reception time of the signal will be later 
than expected .Therefore, there will be ionospheric error on pseudorange measurement.  

The ionospheric error can be eliminated by using 2 different signal with different frequencies 
since ionosphere effect totally depends on frequency inversely [Borre et al., 2007]. 

Code observation equation for the first frequency is the same as with equation-5. 

 
 

(10) 

 

Code observation equation for the second frequency is also same as with equation-5. 

 

 

(11) 

 

Ionosphere-free combination of equation-9 and equation-10 can be formed: 

 

 

 

(12) 

 

where  

𝑓1 represents first frequency,  

𝑓2 represents second frequency. 
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Ionosphere-Free Phase Observation Equation with Dual Frequency 

Phase observation equation for the first frequency is the same as with equation-8. 

 
 

(13) 

 

Phase observation equation for the second frequency is also same as with equation-8. 

 

 

(14) 

 

Ionosphere-free combination of equation-12 and equation-13 can be formed: 

 

 

 

(15) 

 

where 𝑓1 represents first frequency, 𝑓2 represents second frequency and  

 

 

(16) 

 

 

Ionosphere-Free Phase-Code Combined Observation Equation with Dual Frequency 

Phase observation equation which is so similar to equation-8 is given below. 

 

 

(17) 

 
Code observation equation which is equal to equation-5 is given below. 

 

 

(18) 

In equation-11 and equation-12, 
index p and c denote the phase and code related variables,  
X1 is the vector of the coordinate and receiver clock error,  
N is the ambiguity vector,  
P is the weight matrix,  

V is the residual vector. 
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NON-LINEAR LEAST SQUARE SOLUTION 

 

Since pseudo-range observation is not equal to real geometric range, the error between 
observed range and geometric range should be minimized. In literature, it is common to use 
least square optimization to minimize error. Least square has different types like linear least 
square, nonlinear least square and weighted non-linear least square. If the model is nonlinear, 
then nonlinear least square is used to give a solution. In nonlinear least square method, model 
is linearized around the solution point and then standard least square is applied iteratively. 
Since all code and phase observation equations given above have already been linearized, 
standard linear least square solution procedure will be held. [Heij, C., de Boer, P., Franses, P. 
H., Kloek, T., & van Dijk, H. K., 2004] 

 

The general form of standard least square is  

 𝑨𝒙 = 𝒃 (19) 

 

It can realized that equation-18 has the same form all code and phase observation equations 
given above. Therefore, they can be used directly to calculate a position solution. 

 

Least square tries to find x which minimizes 

 

 (𝑨𝒙 − 𝒃)𝟐 = 𝟎 (20) 

 

 

If there are more observations than the number of unknowns, then least square solution can 
be found. 

The solution of least square is 

 

 𝒙 = (𝑨𝑻𝑨)−𝟏𝑨𝑻𝒃 (21) 

 

 

EXPERIMENTS 

 

In this paper, nonlinear least square method is applied to code observation, time differential 
phase observation, ionosphere-free code observation and ionosphere-free phase – code 
combined observation equation. Observation and navigation data which are used in the 
experiments are obtained from low earth orbit satellites as in RINEX format [Rinex File 
Format]. Therefore, solutions are calculated in Earth Centered Earth Fixed (ECEF) 
coordinate system and compared with Standard Product #3 files (SP3) [Standard Product]. 
Therefore, errors which will be mentioned in the result part will in meters in ECEF coordinate 
system. 
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RESULTS 

 

Code Observation Solution 

Nonlinear least square method is applied to code observation equation and results are 
obtained. Error – sample graphs in ECEF coordinate for each axis can be seen below. 

 

Figure 1. Comparison of Code Observation Solution with Precise Position 

 

Since least square uses only the measurement at the epoch solution is calculated, the errors 
changes abruptly from one epoch to another. In other words, there is not any model to make 
errors consistent in consecutive epochs. 

Also, since prefiltering is disabled during experiments, there are some spikes in the errors.

Mean of magnitude of error is 4.24 meter and standard deviation is 4.414 meter. 

 

 

Time Differential Phase Observation Solution 

Time differential phase observation model assumes that ambiguity does not change between 
consecutive epochs if there is no cycle slip between 2 consecutive epochs. Although it is 
thereotically true, it does not work in practice if there is not a way to detect cycle slip in 
receiver hardware since cycle slip detection in software works with threshold mechanism. 
Therefore, if there is a cycle slip in data and software can not detect it, assumption will not 
exist anymore. However, software solves it as if there is no cycle slip since it can not detect 
it. Results of time differential phase observation solution is given below. 
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Figure 2.Comparison of Time Differential Phase Observation Solution with Precise Position 

 

Mean of magnitude of error is 669.35 meter and standard deviation is 354.71 meter.  

 

 

Ionosphere-Free Code Observation Solution 

Ionosphere-free code observation equation eliminates almost 99.9% of ionospheric delay. 
However, it is nosier than the individual codes since measurement is tripled (ex. If L1 and L2 
are used) because of combination equation. [Delay, S. H., Carrano, C. S., Groves, K. M., & 
Doherty, P. H., 2015] 
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Figure 3.Comparison of Ionosphere-Free Code Observation Solution with Precise Position 

 

Mean of magnitude of error is 8.77 meter and standard deviation is 9.59 meter. 

Although it eliminates the ionospheric effect, it gives a worse solution than standard least 
square since combination equation increases the measurement noise. 
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Ionosphere-Free Phase-Code Combined Observation Solution 

In this experiment, firstly ionosphere-free code and phase combination is calculated. Then, 
these combinations are merged. 

 

 

Figure 4.Comparison of Ionosphere-Free Phase-Code Combination Solution with Precise 
Position 

 

Although ambiguity is resolved in this method by converging the phase measurements to 
code measurements, this ambiguity resolution is really coarse and adds more noise into the 
solution. That is why the errors are more spiky than standard least square. 

Mean of magnitude of error is 7.29 meter and standard deviation is 7.70 meter. 
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CONCLUSION 

 

As can be seen in Table-1, time differential phase observation does not work at all by 
implementing cycle slip detection algorithm on software since cycle slip detection algorithm 
works based on thresholding mechanism and cycle slip occurs so commonly. To overcome 
this problem and solve ambiguity, lambda method is generally used by using double receiver 
which has a large distance between them [Inside Gnss]. However, having double receiver 
which far from each other is not possible on satellite. 

Although ionosphere-free equation eliminates the ionospheric delay, it makes solution noisier 
since combined equation makes noise tripled (if L1 and L2 are used). That is why its 
solutions are worse than standard least square. 

Although ionosphere-free solution is noisier, combination with phase measurements makes 
solution a little bit better. Although it gives a better solution, it needs much more computation 
to find a solution. Therefore, it is not so desired on board. 

 

Experiment Mean of Error (m) Standard Deviation of Error (m) 

code observation 4.24 4.414 

time differential phase 
observation 

715.45 823.45 

ionosphere-free code 
observation 

8.77 9.59 

ionosphere-free phase – 
code combined observation 

7.29 

 

7.70 

Table 1.Comparison of Errors in four experiments 
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Appendixes 

Code Observation Equation Linearization 

Since geometric range is a nonlinear function (Equation 6) with respect to receiver position (X, 
Y, Z), nonlinear least square will be used in this paper and that equation will be linearized and 
receiver position will be solved iteratively [He, Y., & Bilgic, A., 2011]. 

 

 𝑔(𝑋, 𝑌, 𝑍) =  √(𝑋𝑘 − 𝑋)2 + (𝑌𝑘 − 𝑌)2 + (𝑍𝑘 − 𝑍)2 (2) 

 

If Taylor expansion is applied to g(X,Y,Z) around (Xitr, Yitr, Zitr) and higher order terms are 
neglected , the next iteration will be  

 

 𝑔(𝑋𝑖𝑡𝑟+1, 𝑌𝑖𝑡𝑟+1, 𝑍𝑖𝑡𝑟+1) = 𝑔(𝑋𝑖𝑡𝑟, 𝑌𝑖𝑡𝑟, 𝑍𝑖𝑡𝑟) 

+
𝜕𝑔(𝑋𝑖𝑡𝑟, 𝑌𝑖𝑡𝑟 , 𝑍𝑖𝑡𝑟)

𝜕𝑋𝑖𝑡𝑟
∗ ∆𝑋𝑖𝑡𝑟 +

𝜕𝑔(𝑋𝑖𝑡𝑟 , 𝑌𝑖𝑡𝑟, 𝑍𝑖𝑡𝑟)

𝜕𝑌𝑖𝑡𝑟
∗ ∆𝑌𝑖𝑡𝑟 +

𝜕𝑔(𝑋𝑖𝑡𝑟, 𝑌𝑖𝑡𝑟, 𝑍𝑖𝑡𝑟)

𝜕𝑍𝑖𝑡𝑟
∗ ∆𝑍𝑖𝑡𝑟  

(3) 

 

 

where  

 

𝝏𝒈(𝑿𝒊𝒕𝒓, 𝒀𝒊𝒕𝒓, 𝒁𝒊𝒕𝒓)

𝝏𝑿𝒊𝒕𝒓
=  −

𝑿𝒌 − 𝑿𝒊𝒕𝒓

𝒒𝒊𝒕𝒓
𝒌

 

 

𝝏𝒈(𝑿𝒊𝒕𝒓, 𝒀𝒊𝒕𝒓, 𝒁𝒊𝒕𝒓)

𝝏𝒀𝒊𝒕𝒓
=  −

𝒀𝒌 − 𝒀𝒊𝒕𝒓

𝒒𝒊𝒕𝒓
𝒌

 

 

𝝏𝒈(𝑿𝒊𝒕𝒓, 𝒀𝒊𝒕𝒓, 𝒁𝒊𝒕𝒓)

𝝏𝒁𝒊𝒕𝒓
=  −

𝒁𝒌 − 𝒁𝒊𝒕𝒓

𝒒𝒊𝒕𝒓
𝒌

 

 

Therefore, linearized code phase pseudo-range observation equation becomes 

 

 
𝑃𝑖𝑡𝑟

𝑘 =  𝑞𝑖𝑡𝑟
𝑘 −

𝑋𝑘 − 𝑋𝑖𝑡𝑟

𝑞𝑖𝑡𝑟
𝑘

∗ ∆𝑋𝑖𝑡𝑟  + −
𝑌𝑘 − 𝑌𝑖𝑡𝑟

𝑞𝑖𝑡𝑟
𝑘

∗ ∆𝑌𝑖𝑡𝑟 + −
𝑍𝑘 − 𝑍𝑖𝑡𝑟

𝑞𝑖𝑡𝑟
𝑘

∗ ∆𝑍𝑖𝑡𝑟

+ 𝑐(𝑑𝑡𝑖𝑡𝑟 − 𝑑𝑡𝑖𝑡𝑟
𝑘) + 𝑇𝑖𝑡𝑟

𝑘 + 𝑙𝑖𝑡𝑟
𝑘 +  𝑒𝑖𝑡𝑟

𝑘 

(4) 

 
 
 
 
 
 
 
 


