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ABSTRACT 

Inertial Navigation Systems (INS’s) require some type of aiding and updating in the long term 

to remain valid. In many applications for purpose of INS’s error compensation its integration 

by GPS is preferred. A Kalman filter algoritm may be used for integration of INS and GPS. 

The Kalman filter forms estimates of the errors in position, velocity and attitude, as well as 

inertial sensor biases, scale-factor errors and misalignments. 

In this study the Kalman filter based loosely-coupled integrated INS/GPS is designed and 

investigated on the Boeing-747 Aircraft Model. 

 

INTRODUCTION 

Inertial navigation uses gyroscopes and accelerometers to maintain an estimate of the 

position, velocity, attitude, and attitude rates of the vehicle in or on which the INS is carried, 

which could be a spacecraft, missile, aircraft, surface ship, submarine, or land vehicle [5].  

After compensation for sensor errors and gravity, the accelerometers outputs are integrated 

once and twice to obtain velocity and position, respectively. The velocity errors are excited by 

accelerometer errors (primarily bias and scale factor) and imprecision in knowing local 

gravity, and the attitude errors are significant due to gyro precession. 

Dominant INS errors are caused by imperfect knowledge of initial conditions (for example, 

those existing after alignment) and by error propagation in time. The nine, nonlinear 

differential navigation equations – three from the fundamental equation of navigation, three 

from integrating velocity to get position, and three from the equation for direction cosine 

matrix rate of change – can be perturbed by a wide variety of error sources, not only those 

resulting from incorrect initial conditions [2]. The actual differential equations for INS 

operation are nonlinear, but the error equations are valid for linearized versions of these 

differential equations; hence, the requirement for the errors themselves to remain small, 

otherwise a linear analysis is not valid. 

The performance of an INS is characterized by a time-dependent drift in the accuracy of the 

position estimates it provides. The rate at which navigation errors grow over long periods of 

time is governed predominantly by the accuracy of the inertial alignment, imprefections in the 
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inertial sensors that the system uses and the dynamics of the trajectory followed by the host 

vehicle. Whilst improved accuracy can be achieved  through the use of more accurate 

sensors, there are limits to the performance that can reasonably be achieved before the cost 

of the inertial system becomes prohibitively large. 

For many vehicles requiring a navigation capability, there are two basic but conflicting 

requirements to be considered by the designer, namely those of achieving high accuracy and 

low cost. Many works [5,9,11]  examine the scope satisfying these demanding requirements 

by using integrated navigation systems, in which inertial navigation systems are used in 

conjunction with other navigation aids. The variety of modern  navigation aids now available 

is extensive and, coupled with advances in estimation processing techniques and high-speed 

computer processors, have resulted in greater application of integrated navigation systems in 

recent years. 

To compensate inertial sensors errors, INS  can be aided with information obtained from 

external sensors. For this purpose integrated  navigation systems with INS may be used. In 

such way aided inertial system, one or more of the inertial navigation system output signals 

are compared with independent measurements of identical quantities derived from an 

external source.  Corrections to the inertial navigation system are then derived as functions 

of these measurement differences. By judicious combination of this information, it is possible 

to achieve more accurate navigation than would be achieved using the inertial system in 

isolation. Navigation aiding of this type may be provided by baro or/and radar altimeters, 

Doppler radar, airspeed indicators, GPS, magnetic sensors etc. [10-11]. Such sensors may 

be used to provide attitude, velocity or position updates, any of which may be used to 

improve the performance quality of the inertial navigation system. 

Compensation of output errors of inertial sensors can be performed via calibration procedure. 

Calibration is the process of observing the gyroscope outputs with known inputs and using 

that data to fit the unknown parameters of mathematical models for the outputs (including 

errors) as functions of the known inputs. This relationship is inverted for error compensation 

(i.e., determining the true inputs as functions of the corrupted outputs) [2].  

Integrated GPS/INS applications effectively perform sensor error model calibration “on the 

fly” using sensor error models, sensor data redundancy, and a Kalman filter. A Kalman filter 

algorithm may be used for the integration of different measurement data with inertial 

measurements. It may be possible to allow some minor relaxation in pre-flight alignment 

accuracy and in the precision of the inertial sensors. Such techniques can be extended to 

achieve a measure of sensor calibration as part of the aiding process. The Kalman filter 

forms estimates of the errors in position, velocity and attitude, as well as inertial sensor 

biases, scale-factor errors and misalignments. 

The errors of INS are increased with passing of the time so some type of aiding is required to 

compensate errors. GPS integration is mostly used to minimize INS’s error in many 

applications. 

In this study the Kalman filter based loosely-coupled integrated INS/GPS is designed and 

investigated on the Boeing-747 Aircraft Model. 
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Error Model of INS 

In the study, the error model of INS is obtained from 9 parameters which are errors of 

position, velocities and attitudes with respect to coordinates in x, y and z directions. 

The INS model error state vector is given in a below: 
T

x y z x y zx X Y Z V V V        

 

The position errors of INS are  :  [ X, Y, Z ] 

The velocity errors of INS are :   [ xV ,  
yV ,  zV ] 

The attitude errors of INS are :   [ x ,  
y ,  z ] 

 

The differential equations of INS errors are found from difference between true and 

estimated values. The equations are shown in the following [11]: 
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The error model of INS can be expressed in a discrete matrix form in a below: 
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In the INS error model the the parameter of Vx, Vy and Vz are taken from directly aircraft 

steady-level flight and the acceleration for each axis is zero. The gravitational accelaration 

(g) which is taken 32.174 𝑓𝑡/𝑠2. The symbol of R is the radius of the earth is 20.900.000 feet 

(6 378.1 km) and  ie  is 0.0000728. 

The position, velocity and attitude errors of INS can be measured by using Kalman Filtering 

method. The observation vectors are determined for 9 different state (position, velocity, 

attitude). 

 

The mathematical model of INS errors is used to determine real values of errors. The system 

model is where  is the transfer matrix of INS error model and w is composed by noises.  

 

                                                    ( 1) ( 1, ) ( ) ( )x k k k x k w k        (10) 

 

The observation vector of positions, velocities and attitudes are defined in equations as 

following; 

( ) ( ) ( ) ( )INS INS INS INSz k H x k v k k                                          (11)   

 ( ) ( ) ( )GPS GPS GPSz k H x k v k                 (12) 

( )INSz k  is the vector of INS measurements; INSH  is the measurement matrix of INS; ( )INSv k   is 

the INS measurement noise vector, ( )k is the  INS bias errors process, ( )GPSz k  is the  GPS 

measurements vector; GPSH  is the GPS measurement matrix; ( )GPSv k   is the GPS 

measurement noise vector. Assume that random vectors ( )w k ( )INSv k  and ( )GPSv k  are a 

Gaussian white noise. 

 

The measurement equations is written in matrix form: 
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The sum of standard deviations of the INS and GPS comprises the covariance matrix of 

measurement noise R(k) which is given a below: 
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Boeing 747 aircraft model  

The Boeing 747 aircraft model is as follows : 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐺𝑤(𝑘)       (15) 

𝑦(𝑘) = 𝐻(𝑘)𝑥(𝑘) + 𝑣(𝑘)  (16) 

Where x is the state vector, A is the system matrix, B is the control distribution matrix, G is 
the process noise transition matrix, u(k) is the control input vector, y the vector of 
measurements, H is the measurement distribution matrix, w(k) is the process noise and v(k) 
is the sensor noise.  

The aircraft state variables are: 

           𝒙(𝑘) = [𝑢(𝑘) 𝑤(𝑘) 𝑞(𝑘) 𝜃(𝑘) 𝑣(𝑘) 𝑝(𝑘) 𝑟(𝑘) 𝜙(𝑘) (𝑘)]𝑇       (17) 

 

Where u is the forward velocity, w is the normal velocity, q is the pitch rate,  is the pitch 

angle, v is the lateral velocity, p is the roll rate, r is the yaw rate, 𝜙 is the roll angle and  is 

the yaw angle. The units of the angles ( ,𝜙,) in degrees. The units of the angle rates (q, p, 

r) is 𝑑𝑒𝑔 𝑠⁄ . Finally, the unit of the velocity v, u and w is 𝑛𝑚/ℎ𝑟. 

 

The control input vector is: 

    𝑢(𝑘) =  [ 𝛿𝐸(𝑘) 𝛿𝐹(𝑘) 𝛿𝐴(𝑘) 𝛿𝑅(𝑘)]      (18) 
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Where E, F, A and R are elevator, flap, aileron and rudder deflections, respectively and the 
units are radians.  

     𝑨 =

[
 
 
 
 
 
 
 
 

1.0000 0.0000 0 −0.0322 0 0 0 0 0
−0.0001 0.9995 0.6730 0 0 0 0 0 0

0 0 0.9994 0 0 0 0 0 0
0 0 0.0010 1 0 0 0 0 0
0 0 0 0 1 0 −0.0010 0 0
0 0 0 0 −0.0027 0 0.0003 0 0
0 0 0 0 0.0012 0.9992 0.9998 0 0
0 0 0 0 0 05 0 1 0
0 0 0 0 0 0.0010 0 0 1]

 
 
 
 
 
 
 
 

  (19) 

 

                                                       𝐵 =

[
 
 
 
 
 
 
 

0.0008
−0.0046
−0.0030

0
0
0
0
0
0

      

0
0
0
0
0
0
0
0
0

  

0
0
0
0
0

0.0011
−0.0008

0
0

    

0
0
0
0
0

0.006
−0.006

0
0 ]

 
 
 
 
 
 
 

                (20) 

 

To avoid aircraft model being unstable, a linear quadratic controller is added to the aircraft 
dynamic model. 

 

Kalman filtering for integrated navigation 

 
The Kalman Filtering is used widely in navigation systems. The Kalman filter minimizes the 

measurement error such as accelerometers, gyroscopes and GPS sensor errors. To find 

best value of measured parameters the filter estimates and calculates the state vector of 

system and integrates systems such as INS and GPS.   

 

It assumes linear discrete dynamic system is taken. Dynamics of system is identified by 

system’s dynamic state equation where measurement equation is used to measure the 

system. Linear system equations are written in a below;  

 
State equation : 

                                                1 1, 1,x k Ф k k x k G k k w k        (21) 

 
Measurement equation 

                                                       z k H k x k v k       (22) 

 

( )x k  : N- dimensional state vector of system 

( 1, )k k   : N x N  transfer matrix of system 

( 1, )G k k  : N x R dimensional transfer matrix of the system noise   

( )z k  : S dimensional measurement vector 

( )H k  : S x N dimensional measurement matrix of the system 

( )v k : S dimensional measurement noise vector with zero mean and correlation matrix; 

[ ( ) ( )] ( ) ( )TE v k v j R k kj  
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( )w k : R dimensional random Gaussian noise vector (system noise) with zero mean and 

correlation matrix 

 

[ ( ) ( )]TE w k w j : correlation matrix, E is static average operator ( )kj  is Kroneker symbol 

 

[ ( ) ( )] ( ) ( )TE w k w j Q k kj  

( ) {1, ;0,kj k j k j     

 
The following equations composes Kalman Filtering algorithm which are used to estimating 

of state vectors [6]. The initial conditions are (0 / 0) (0)x x  and (0 / 0) (0)P P . 

 

                /  , 1   1 /  1 , 1 1 /  1ˆ ˆ ˆ  x k k Ф k k x k k K k y k H k Ф k k x k k            

     /  1 / 1ˆ  x k k K k k k                                           (23) 

     /  1 ,ˆ 1 ˆ 1 /  1x k k Ф k k x k k                                                                                        (24) 

     / 1  ˆ( ) /  1k k z k H k x k k                                                                                        (25) 

                P k / k P k / k 1 K k H k P k / k 1 I K k H k P k /  k 1                          (26) 

             T TP / 1 , 1 P k 1/  k 1   , 1 , 1 1 , 1k k Ф k k Ф k k G k k Q k G k k                (27) 

( 1) 1( ) ( / ) ( ) ( ) ( / 1) ( )[ ( ) ( / 1) ( ) ( )]T T TK k P k k H k R k P k k H k H k P k k H k R k                    (28) 

 

In the equations; ( / )x k k is the estimation value, I is the unity matrix, K(k) is the gain matrix 

of filter,  k  is innovation sequence, P(k/k) is the correlation matrix of estimation error, 

P(k/k-1) is the correlation matrix of extrapolation error, H(k) is measurement matrix of the 

system, R(k) is correlation matrix of measurement  noise, Q(k) is correlation matrix of system 

noise, G(k) is transfer matrix of the system noise, the index  k/k-1 indicates that one step 

predicted values;  where k/k symbolise the estimate values at time k using all measurements 

including z(k).  

 

 

Simulation results 

 
In the study Kalman Filter is used to estimate errors of state variables and simulation results 

show errors of positions, velocities and attitudes for three axes. The positions, velocities and 

attitudes error of integrated system are shown in simulation results. 

The noise correlation matrix is Q(k) and initial correlation matrix is P(0/0) of Kalman Filter 

given below: 

9 9( ) 10Q k I   ,             9 9(0 / 0) 10P I   

 

 

The simulation results are given in Figs. 1-6. The figures 2, 4 and 6 illustrate difference 

between model and estimation and they prove success of Kalman Filter algorithm. 
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Figure 1: Estimation of position error of INS for X, Y and Z axis 

                              
Figure 2: Difference between model and estimation for positions error 
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Figure 3: Estimation of velocity error of INS for X, Y and Z axis 
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Figure 5: Estimation of angle error of INS for X, Y and Z axis 

 

 

Figure 6: Difference between model and estimation for angle error 
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CONCLUSION 
 
The performance of an INS is characterized by a time-dependent drift in the accuracy of the 

position estimates it provides. To compensate inertial sensors errors, INS can be aided with 

information obtained from external sensors. For this purpose integrated  navigation systems 

with INS may be used. In this study the Kalman Filter is used to integrate loosely-coupled 

INS/GPS for Boeing-747 aircraft model. The estimation of INS errors of position, velocity and 

attitude for each axis is performed and investigated. The simulation results show that the 

integrated INS/GPS navigation system have high accuracy. 
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