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ABSTRACT 

The aim of this study is to develop an efficient fan/compressor rotor analysis tool using 
Newton-GMRES method. Three dimensional Euler equations are solved for transonic 
compressor rotor. Solution method is a matrix free solution technique hence it is not required 
the Jacobian matrix evaluation and flow equations are solved implicitly. Governing equations 
are casted into rotational coordinate system to make the problem available to use implicit 
solver. Computational domain is divided into optimum number of blocks and each block is 
solved by different processor using parallel computing. NASA Rotor 67 transonic fan is 
analyzed by solver and solutions are compared with the experimental test results of NASA. 
 

INTRODUCTION 

Researchers intend to solve a problem as accurate as and as fast as possible using 
computational fluid dynamics. Generally these two requests affect each other oppositely. 
Definition of a problem and chosing the effective solution method is the most important 
starting point for simulation. Considiring these situations, it will be a major mistake to expect  
a solution of unsteady problem from an implicit solver. Turbomachinery flow field is very 
complex and it includes wide range of time and length scales. This kind of flow can be 
named as highly unsteady and also the cost of the solution is very expensive [Adamcyzk, 
1984]. Althought turbomachinery problems need to unsteady solutions, flow field can be 
viewed or presented as steady state with casting equations into rotating coordinate system 
which is also can be called as non-inertial reference of frame [Ghosh, 1996]. It is provided by 
attaching the coordinate system to the blade. The success of casting equations in cylindrical 
rotating coordinate system for turbine blade was encoureged the researchers for different 
applications [Adamcyzk, Celestina, Beach and Barnett, 1990]. Axial compressor rotor was 
solved in rotating cartesian coordinate sytem [Chima, 1990] and it is effieciency was 
compared with fixed reference frame [Ghosh, 1996]. Method is widely using in rotational 
systems flow field analysis for example helicopter rotors [Agarwal and Deese, 1987; 
Srinivasan, Baeder, Obayashi and McCroskey, 1992] and turbomahinery applications 
[Holmes and Tong, 1985; Weber, Thoe and Delaney, 1989; Arnone, 1994]. Two important 
factors in coordinate tranformation are coriolis and centrifugal forces and their 
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implementations. The details of  the coordinate transform, effects of transforming on 
governing equations and residual vector is presented in chapter Method.  

Recent advances in computer technology and solution algorithms allow efficient solution of 
very large linear systems of equations. These advances have been motivating researchers to 
develop implicit algorithms to solve the flow equations since usage of implicit methods is 
more benefical compared to explicit ones. Implicit flow solvers are more stable and the 
residual can be reduced to very low values within a small number of iterations. In addition, 
the equations of different disciplines can be strongly coupled with flow equations in an 
implicit algorithm. Characterized by large variation in Mach number and unsteadiness 
turbomachinery flows are special flow types in which physical and numerical modeling is 
difficult. In such flow conditions, due to the numerical stiffness of the system, convergences 
problems may be observed. Implicit methods may have more advantages to avoid these 
problems. Providing quadratic convergence, Newton method is one of the preferred 
algorithms to solve non-linear equations. The requirement for the evaluation and the solution 
of large Jacobian matrix is the main disadvantage of Newton method.  The Jacobian matrix is 
evaluated by taking the derivatives of residual vector with respect to flow variable vector. 
Although the size of this matrix can be very large, it is sparse in the most of the flow 
problems. The selection of good initial solution is important in Newton method. If the initial 
solution is not chosen properly, Newton method may diverge. To keep the advantages and to 
avoid disadvantages of Newton method, in recent years, Jacobian-free Newton methods are 
getting more attention. One of these methods is Newton-GMRES method. Newton-GMRES 
method has been developed and applied in different areas of CFD. Some of these physics 
models [Knoll and Keyes, 2004]. A Newton-Krylov method can be summarized as an iterative 
method which is a combination of a linear iterative method. GMRES is used for solving linear 
systems which is a Krylov subspace method [Saad and Schultz, 1986]. In this study, Newton-
GMRES method is used for turbomachinery flow analysis. A cell centered finite volume code 
is developed by using the three dimensional Euler equations. The fluxes are computed using 
[Leer, 1982] upwind scheme. Flow equations are solved implicitly by Newton-GMRES 
method and the boundary conditions are implemented implicitly.  
 

METHOD 

Governing Equations 
Three dimensional unsteady Euler equations in fixed Cartesian coordinate system can be 
written as follows: 
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Total energy can be defined as:  
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Right hand side of equation (1) is equal to zero. Velocity components  , ,u v w  in flux vectors 

are absolute velocities so they denoted by subscript a  in stationary Cartesian coordinate 

system. These leads that residual vector only includes the flux residuals with absolute 
velocities. Converting the coordinate system from inertial to non-inertial disturbs the residual 
vector strictly in momentum equations which is named as source term. Velocities in flux 
vectors include the relative velocities with related in rotational direction. Equations (5) shows 

the three dimensional Euler equations in Cartesian  , ,x y z   coordinate system which is 

rotating with constant angular    velocity about the x  - axis [Weber et al. 1989]. 
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In equation (6), momentum equations in directions ,y z are affected from Centrifugal and 

Coriolis forces. Velocities in flux vectors are described with subscript r  which is refer to 
relative velocity components.  

The Cartesian equations are mapped to generalized  , ,    coordinate system using 

standard methods and resulting equations are as follows: 
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problem is solved as resulting steady-state form: 
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In equation (9) , ,U V W  and 
' ' ', ,U V W  represent absolute and relative contravariant velocity 

components respectively [Chima, 1990] 
 

 

'

'

'

x a y a z a x r y r z r

x a y a z a x r y r z r

x a y a z a x r y r z r

U u v w U u v w

V u v w V u v w

W u v w W u v w

     

     

     

     

     

     

  (10) 

 

where 
 

 

r a

r a

r a

u u

v v z

w w y



 

 

  (11) 

 

 and metric terms are given by the equations: 
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The inverse of Jacobian of the transformation is defined as 
 

 
1

x x x

y y y
J

z z z

  

  

  

   (13) 

 

Spatial Discretization 
A cell centered finite volume method can be written as a flux balance across a cell: 
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where , ,i j k  index denote the cell center location and 1/ 2, 1/ 2, 1/ 2i j k    corresponds to 

the cell inter face location. The fluxes are discretized by upwind scheme and method of van 
Leer [Leer, 1982] is used for flux vector splitting. Discretization scheme can be written as: 
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where , ,F G H  
 are called as splitted flux vectors. They are calculated using van Leer flux 

vector splitting method. ,L RQ  are left and right state flow variable vectors. Flow variables are 

calculated at the cell center so they are not stated at cell interface. They are interpolated 
from cell center to cell interface as follows: 
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Second order accuracy in upwind discretization is obtained using MUSCL (Monotonic 
Upstream Centered Scheme Conservation Law) [Leer, 1979]. 
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Higher order scheme is used to solve discontinuities (for example shock waves) with high 
accuracy. Sudden changing of flow variables between two neighbor cells, create numerical 

oscillations in the solution. In equation (17),  r  is the limiter function. Limiter functions 

should use to prevent oscillations in higher order schemes such as MUSCL. A limiter in 
MUSCL is used to reduce the scheme to one-sided in the shock region and oscillations are 
removed [Yıldırım, 2017]. Equation (17) can be rearranged using Van Albada Limiter as 
follows [Anderson, Thomas and Leer, 1986]: 
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and   is chosen as a small number such as 
61 10   for preventing division by zero. Lastly, 

in equation (19), chosen of  1    is corresponds to second order fully upwind differencing 

and  1/ 3   to third order upwind biased differencing. 

Boundary Conditions 
Boundary conditions are another significant part of flow solvers. Implementing of proper type 
is essential to achieve accurate results. Types of boundary conditions are varied by flow 
problem. Turbomachinery flows are generally include inflow, outflow, wall and periodic 
boundary conditions.  
In rotating coordinate system solutions, flow variables are calculated from absolute velocities 
and fluxes are calculated from relative velocities. At inlet of transonic compressors, absolute 
velocity lie as subsonic but relative velocity passes from subsonic to supersonic while from 
hub to shroud due to increasing of radius. In this work, transonic fan is used as test case so 
subsonic inflow is chosen for absolute velocity which is called in literature as subsonic inflow 
with specified total conditions (total condition preserved boundary condition) [Chen, 1991]. 
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Total temperature, total pressure and flow angles is specified [Chima, 1990]. For subsonic 
case, four information (total temperature, total pressure, v  and w  velocities) are specified 

from outside the domain and one (upstream Riemann invariant) is extrapolated from the 

interior of the computational domain. Only upstream running Riemann invariant R
 is used in 

this type boundary condition. The Riemann invariant is calculated using absolute velocities. 

R
 and normalized contravariant velocity (U ) can be written with general notation as 

follows: 
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In this work, flow is perpendicular at inlet and there is only one component of velocity. Inlet 
face of computational domain is also perpendicular and there is only one component of 
metrics. Equation (21) is rewritten as [Chen, 1991]:  
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In equation (24), Riemann invariant is extrapolated from interior to boundary. Specified 
conditions are written using isentropic relations as follows: 
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where op  is the specified total pressure and oT  is the specified total temperature. The 

remained velocity components are also specified from outside the domain as equal to zero. 
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Mach number at the boundary can be calculated using the Rieman invariant and the 
boundary velocity which is the solution of the quadratic equation [Chima, 1990] in equation 
(28). 

 
      

2

01 2 1 4 1

1

p

b

R R C T
u

  



     



  (28) 



 
AIAC-2017-089                                                                       Özmen, Eyi 
 

7 
 Ankara International Aerospace Conference  

At the outlet, subsonic outflow boundary condition is implemented. Static pressure is 
specified from the outside of the computational domain as back pressure. Density and three 
velocities are extrapolated from the interior cells.  
For the solid walls (hub case, shroud case and blade), inviscid wall boundary condition is 
used for Euler equations. Wall boundary conditions are calculated at cell faces and fluxes 
use relative velocity therefore rotational velocity is added externally for inviscid wall boundary 
condition equations. Solution of Navier-Stokes equations is not required relative velocity 
modification due to zero velocity at viscous wall boundary condition. 
Turbomachinery problems are periodic flows. Characteristic of periodicity allows that solution 
does not require the fully flow domain. Generally, one passage between neighbor two blades 
is chosen as computational domain and periodic boundary condition is applied to starting and 
ending faces of periodicity. In this work, one blade flow domain is solved similar as literature 
works and periodic boundary type is implemented to provide periodicity.  
One-to-one blocking boundary conditions is used for between the two blocks in contacted 
with the same cell faces. At the matched faces, ghost cell variables are equalized the interior 
cell variables of neighbor block. In case of parallel computing while all blocks are solved by 
different processor, processors have to communicate each other and they have to send and 
receive variable information to the neighbors.    

Flow Solver 
Flow equations are solved implicitly by Newton-GMRES method. Newton method solves the 
system of nonlinear equations. Resulting of Newton method, the problem is converted to 
solution of linear system of equations. Linear systems can be solved directly or iteratively. 
UMFPACK [Davis, 2003] and PARDISO [Schenk and Gartner, 2004] are two of the well-
known direct solvers in academic area. High computational cost of direct solution is made 
iterative solvers more popular in last years and GMRES [Saad, 1986] is one of them which is 
categorized in Krylov subspace method. However, iterative solution of linear system is 
cheaper than direct solution, storage and solution of flow Jacobian is still expensive. Flow 
Jacobian matrix is occurred at the end of each exact solution of Newton iteration. Newton-
GMRES method overcomes from the cost flow Jacobian problem as using inexact solution of 
Newton method. Control the iteration number of Newton equations save the time as 
observable and keep the accuracy in reasonable level. As a result of Newton-GMRES 
method convergence is accelerated. The stopping criteria of Newton iteration is written as: 
 

 
2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( )k k k k kR Q R Q Q R Q     (29) 

 

where k  is control the accuracy of iterative solution while choosing  0,1 and ˆ
kQ  is the step 

size.  
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While using Newton-GMRES method, there is no need to compute Jacobian matrix which is 
one of the most important feature of this method. It only requires the action of the Jacobian 

 ˆˆ
kR Q  on a vector v  which can be approximated by finite difference and this process leads 

us to make computation without evaluating a matrix which means the process is matrix free 

[Knoll and Keyes, 2004]. Perturbation magnitude   is chosen as 
84 10  for optimum 

perturbation in Euler equations [Onur and Eyi, 2005]. Algorithm of Newton-GMRES can 
present as follows:  
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1) Initial guess for solution  0
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i m m ih w v i m     

11)            Orthogonalization 1 ,
1

ˆ
m

m m i m i
i

v w h v


     

12)            1, 1 2
ˆ

m m mh v    

13)     1 2
minm k m mJ y e H y    where      

 1 1 1
1,...,0 , ,m mm m m m

e y H
  

   

14)   Update solution 0k m mx x V y     where   1 2, ,...,m m m m
V v v v


   

RESULTS 

Test Case 
NASA Rotor 67 is transonic axial flow fan rotor which was designed and tested at the NASA 
Glenn center. It has 22 blades which are rotating 16043 rpm in the designed condition. The 
inlet relative Mach number is 1.38 at the rotor tip and tip speed is equal to 428.9 m/s. Tip 
radius is 25.7 cm at the leading edge and 24.25 cm at trailing edge. There is 1 mm tip 
clearance along the tip. The design pressure ratio is 1.63 at 33.25 kg/s mass flow rate. 
Geometry and flow conditions at inlet and outlet for near peak efficiency and for near stall 
conditions are presented in details at NASA report [Strazisar, 1989]. Computational results 
are compared with experimental results for both running conditions. 
 

             
 

Figure 1: Front and perspective view of NASA Rotor 67 hardware  
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Figure 2: Solid model of NASA Rotor 67 

 

         
 

Figure 3: Multi block grid of flow domain and blade surface grid 
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Figure 4.a: 10% span relative Mach number 

 

                   
Figure 4.b: 30% span relative Mach number 

 

       
Figure 4.c: 70% span relative Mach number 

 

Figure 4: Contours of relative Mach number near peak efficiency flow 
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Figure 5.a: 10% span relative Mach number 

 

             
Figure 5.b: 30% span relative Mach number 

 

          
Figure 5.c: 70% span relative Mach number 

 

Figure 5: Contours of relative Mach number near stall flow 
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Figure 6: Relative Mach number on blade surfaces near peak efficiency flow 

 

  

Figure 7: Relative Mach number at suction and pressure side near peak efficiency 

 

  

Figure 7: Stream traces near peak efficiency flow 
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CONCLUSIONS 
Test case is solved with 13 blocks which is obtained as optimum number of processor for 
parallel computing. Each block is solved by different processors in parallel computing. Speed 
up is reached to 3 as maximum value in 13 blocks/processors condition. Speed up is the rate 
of sequential computing time to parallel computing time. Increment of processor number is 
caused decrease in speed up due to communication cost of processes. MPI (Message 
Passing Interface) library is used as communicator. Point to point communication is used for 
sending and receiving the block interface boundary. Each process sends the residual by all 
to one communication command in MPI [Tokel and Yıldırım, 2016]. Grid is divided into blocks 
as possible as with equal cell numbers for load balance between processes. As a conclusion, 
multi block and parallel computing provides a significant computing efficiency in case of 
choosing optimum parameters.  
Near peak efficiency flow corresponds with the 0.85 non-dimensional back pressure and 
near stall flow non-dimensional back pressure is 0.90. Both running conditions are compared 
with experimental results in three different span location. Especially in %10 and %30 span, 
flow profile and relative Mach number are similar to experimental results. Shock can be 
observed as delayed due to the Euler solution. As a result, shock wave is located to closer 
the trailing edge. 
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