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ABSTRACT 

The vibration isolation for vibration induced testing systems, such as, vibration testing and 
acoustic testing systems are crucially important for massive spacecraft testing systems. In this 
study, the base isolation systems for mechanical testing systems for spacecraft are analyzed 
using resiliently mounted rigid body dynamics. The general equation of motion is based 3-D 
rigid-body with 6-DOF generalized coordinates. The mass, stiffness and damping matrices are 
derived using rigid body dynamics with small deformation assumption. The model is compared 
with test results of real spacecraft vibration testing system. The results can be used for design 
and analysis of general base isolation systems. 
 

INTRODUCTION 

Main spacecraft mechanical tests causing vibrations during tests are vibration and acoustic 
tests. The shakers and chambers have to isolated from the surrounding due to high vibration 
levels. The vibration testing systems are used to simulate the vibrations caused by launchers 
and phases of launching operations and determine fundamental vibration frequencies of the 
spacecraft and subsystems. The test systems can be large and massive because it houses 
the spacecraft and testing systems. For example, a vibration testing system which can test a 
spacecraft with launch mass up to 5 tons, is around 350 tons. Similarly, the acoustic 
reverberation chamber is around 1000 metric tons. The test systems have to be isolated at a 
certain level so that vibrations do not cause any interference with other systems and satisfy 
acceptable level working conditions such as maximum 80 dB noise level.  

There are numerous studies on vibration isolation systems (Harris and Crede, 1991, ASHRAE 
1999). Analytical model for isolation systems can be represented by rigid body supported by 
elastic springs and dampers. A rigid body is a 6 DOF system with 3 translations and 3 rotations. 
Static and dynamic behavior of an elastically supported rigid body can be modelled as a 6-
DOF system with elastic supports. If the structure unsymmetrical and irregularly supported, the 
system becomes coupled and analytical solution for static and dynamic analysis becomes 
cumbersome. In some past studies, the governing equations for isolation systems were 
derived using dynamic/static equilibrium equations for each direction of 3-D. [Harris and Crede, 
1961]. Direct matrix methods are another approach and widely used in formulation of 
governing equation [Smollen, 1966]. Alternative derivations using rigid body dynamics can be 
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illustrative and innovative way for the mechanics literature. This idea is starting point of this 
study. In the following sections, the base isolation systems for mechanical testing systems for 
spacecraft are analyzed using resiliently mounted rigid body dynamics. The general equation 
of motion is based 3-D rigid-body with 6-DOF generalized coordinates. The mass, stiffness 
and damping matrices are derived using rigid body dynamics with small deformation 
assumption. The model is compared with test results of real spacecraft vibration testing 
system. The results can be used for design and analysis of general base isolation systems. 

 
THEORETICAL MODEL FOR ANALYSIS OF BASE ISOLATION SYSTEMS 

Consider an arbitrarily shaped rigid body attached to the rigid ground via mutually 
perpendicular elastic springs with dampers at some connection points. A Cartesian coordinate 
system o-xyz is selected as a fixed inertial coordinate system and its origin is assigned as the 
center of gravity of the whole system including the block and testing system on it. The model 
and related coordinate systems are shown in the Figure 1. The ground plane selected as x-y 
plane and consequently, the z-axis becomes perpendicular to the ground plane.  

The rigid body motion in 3-D is represented with a 6-DOF system which are three translations 
along and three rotations around three perpendicular directions. They also represent 
generalized coordinates in dynamic and static analysis of rigid bodies. The rotations around 
the x and y axes are usually termed rocking and rotation around the z axis is named yawing. 
The local body moving coordinate system coincides with the inertial coordinate system when 
the system is at rest. 

 

 

Figure 1: Typical base isolation system

 

The body has N-number of support points and is subjected to a dynamic load causing small 
translations and rotations. In that case, order of rotations becomes mathematically 
unimportant. When the center of mass is taken as origin, position of a support at the point-n 

on the body can be represented by a position vector 
n n n n

x y z= + +r i j k  with respect to the 

origin at rest. Displacement of the point-n 
nn n n

v wu += +i ju k  is due to rigid body translation  

oo o o
v wu += +i ju k  and rotation 

x y zθ θ θ+ +=θ i j k  of the body around the center of mass. 
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Using rigid body motion displacement concept, total displacement of the point-n can be written 
in matrix form of  
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where I  and 
n

R are identity matrix and skew-symmetric matrix form of the position vector 
n

r  

respectively [Angeles, 2002]. The right-side of the Eq. (1) can be cast into one matrix and 
can be written as 
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where 
T

T

o o o x y z
u v w θ θ θ =  q  are generalized coordinates of the system. The 

forces are induced to springs when the base isolation system is subjected to an external 
excitation. Assuming that the spring system at every support has mutually placed springs in all 
global three directions. The rotational stiffness of springs at the supports is assumed to be 
relatively small and they are neglected. The linear elastic stiffness matrix for support becomes 

 

0 0

0 0

0 0
ny

nz

nx

n

k

k

k

 
 

=  
  

k   (3) 

The forces due to displacement and rotation of the system becomes 

 , ,n n n n n n

T

n tt nn tr n
     = = = =     

Tf u R q I q KI Kk k k k R q   (4) 

where the sub-stiffness matrices .tt n n
=k k I  and . n

T

tr n n= k Rk  are corresponding to the 

translation and rotation-translation coupling for the spring system at the point-n respectively. 
Similarly, the moment tn caused by the forces on the springs is the cross product of the position 
vector rn and the force fn can be written as 

 
n n n n n n n n n n n n n
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 , ,rt n rr nn
=  t K K q   (6) 

Then stiffness matrix for the support-n can written as  
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  (7) 

The stiffness matrix can be explicitly written as 

 2 2
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The global stiffness matrix can be assembled by simply summation of all spring contributions  
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The same analogy can be used to obtain damping matrix as 
C

=F Cqɺ . Recall that the 

formulation derived above is based on the assumption that the mass center is the origin of the 
coordinate system. The mass matrix is independent of the location of supports and it becomes 
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  (10) 

where M submatrix is mass matrix for the translation and J is the inertia matrix for the angular 
movement. The zero submatrices are due to the fact that the center of mass is taken as origin. 
If the structure is symmetric in mass distribution, then the product inertia values 

0xy yz xzI I I= = =  become zero and mass matrix becomes diagonal. More general dynamic 

equilibrium equation including support excitation, such as earthquake, and dynamic loading 
caused by the equipment on the block can be written as 

 ( ) ( ) ( ) ( ) ( )G G G G g et t t t t+ + = − +M q C q K q M q Fɺɺ ɺ ɺɺ   (11) 

where the support (or ground) excitation qɺɺ  vector includes all components of ground 

accelerations including both translational and rotational components is given as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
..

, , ,|
T

T

gg g g g g g x g y g z
t u t v t w t t t tt t θ θ θ

   = =    
q u θ ɺɺ ɺɺ ɺɺɺɺ ɺɺ ɺɺ ɺɺ ɺɺ   (12) 

and external force vector 
e

F  is given as , , ,|
T

e x y z g x g y g z
F F F T T T =  F . Note that 

both components of support excitation ( )tqɺɺ  and the force vector F(t) are functions of time. For 

undamped free vibration analysis, the damping can be ignored and be written as 

 ( ) ( )G t t+ =GM q K q 0ɺɺ   (13) 

Using the separation of variables method for i te ω−
=q Q , the equation for free-vibration analysis 

reduces to  

 2ω − = K M Q 0   (14) 

where , , , , ,T

x y z x y z
U U U = Θ Θ Θ Q  is mode displacement vector. This is an eigen-analysis 

equation for the system. The system is solved and its 6 eigenvalues and eigen-modes are 
obtained. For asymmetrically supported body and unevenly distributed mass, eccentricities in 
one, two or three axes can occur depending upon the mass and stiffness distributions. For full 
symmetry in all axes, the stiffness matrix becomes diagonal and greatly simplifies the eigen-
analysis.  
 

APPLICATION 

The vibration isolation system for the application is an isolation system of the actual spacecraft 
vibration testing system specifically designed for large spacecraft up-to 5 tons. The shakers 
for the system are large and massive machines and require effective isolated base systems. 
Test limits of the system impose that the fundamental frequency must be smaller than 3 Hz 
and vibration isolation must be lower than a certain level. The fundamental frequency 
requirement comes from the fact that the vibration testing system has to be capable of 
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executing sine-sweep tests from 5 Hz to 2000 Hz. The second requirement is that the vibration 
isolation level at the point located 1 meter away from the testing system must be larger than -
20 decibel. The total mass of the vibration testing system is around 350,000 kg.(Figure 2) 
The inertia block of the isolation system has a shape of a deep beam with thick T-section and 
is made of reinforced concrete. Details of the block is shown on the Figure 3. The length and 
height of the block is 9 and 4 meter respectively. The web of the section has a shape of square 
with a size of 2.5x2.5 m and the flange size is 1.5x4.5 m. Selection of the T-section has two 
main advantages, first making the top of the block wider and it supports the block from flanges 
of the section. This shape is the optimal in terms of providing space for the equipment on top 
of it, and wider support area for the placement of springs and dampers under the block. The 
mass of the block itself.is 293000 kg. 
 

 
 

Figure 2: Spacecraft vibration testing system

 

 

 

a) Side and top views b) Cross-section of the system 

Figure 3: Base isolation for spacecraft vibration testing system
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Figure 4: The base isolation system vibration test 

The isolation block is supported by 20 equivalent spring systems, except 4 of them with 
additional viscous dampers, located by pairs along the length of the seismic block i.e. there 
are 10 lines of spring systems and each line has symmetric 2 spring systems (Figure 4). Each 
spring system has an assembly of 10 springs placed in line by pair or circular pattern (Figure 
5). The spring systems with centrally located dampers are placed around each corner of the 
block. The stiffness values of each spring system in horizontal and vertical directions are 2470 
N/mm and 1350 N/mm respectively. The masses of the spring systems without and with 
dampers are 230 and 327 kg respectively. The total mass of the springs around 5000 kg and 
can be neglected both in math and the finite element model since their mass are is less than 
1.5 percent of the total mass  

The payload on the block consists of the base plate, shaker and horizontal slip table. The 
heaviest part of the payload is shaker and it is exactly located at the middle of the block so that 
minimize eccentricity. On the other hand, the slip table, which have relatively smaller mass 
than the shaker, is located on the negative x-side of the block which causes relatively small 
eccentricity in the x-direction. Distance between the mass and stiffness center in vertical 
direction is also small because the mass center is around the level of the springs and this 
distance cause a small eccentricity too. Thus, the system has relatively small eccentricities 
both in x and z directions causing coupled behavior.  
 

 
 

a) Spring system without damper b) Spring system with damper 

Figure 5: Spring systems at the supports 
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Calculation 

The math model of the actual test system is based on the method described in the previous 
sections. The coordinates of the support locations and stiffness of the springs at each direction 
is substituted into the related equations and mass and static stiffness matrices of the system 
are obtained and python programming is used to calculate the eigen-frequencies and eigen-
vectors. The eigen-frequencies are found and compared with actual test results. The results 
agree well and shown on the Table 1. 

Table 1: The actual test and analytical model comparison 

Mode Test Math Mod. Test-Math 

No Shape f (Hz) f (Hz) % Error 
1 Pitching 1.27 1.233 2.76 
2 Rolling  1.32 1.36 -5.76 
3 Rocking  1.36-140 1.42 -2.9 
4 Rocking 1.84 1.882 -2.3 
5 Rocking 1.97 1.893 -3.9 
6 Pit. &Roll. 1.97 2.242 -13.0 

 

CONCLUSION 

In this study, the equation of motion for the dynamics analysis of vibration isolation system is 
derived by using the vector algebra. The static stiffness matrix for the system is derived by 
using rigid body motion of a massive block undergoing small deformations and supported by 
elastic mutually placed elastic springs. The system has 6 rigid body degree of freedom as 
generalized coordinates. The math model is applied to a real vibration isolation system 
manufactured for vibration testing of spacecraft systems and their subsystems. Unsymmetrical 
placement of the springs or unsymmetrical mass distribution cause eccentricity between the 
mass and stiffness center of the system. The eigen-analysis results obtained from math model 
are compared with the real test results. The results of the math model agree well with the test 
results. The math model can be used in design, analysis and test of the vibration isolation 
systems. The study can be extended to variety of related static and dynamic analysis of 
vibration isolation systems, such as analysis under dynamic excitation and loading. 
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