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ABSTRACT 

Rendezvous and docking of a pair of low Earth orbit spacecraft problem is addressed.  
Equations for nonlinear orbital motion of both spacecrafts are derived and a simulation code 
for this motion is developed. To control relative motion, linearized Hill-Clohessy-Wiltshire 
(HCW) equations are used in chaser-target spacecraft configuration. All authority is given to 
the chaser spacecraft, and the target is kept passive. The HCW equations are linearized 
assuming a circular orbit. Model Predictive Control (MPC) strategy is applied with constraints. 
Simulation results are given and discussed. A parametric study is also performed to obtain the 
proper prediction horizon as well as weighting matrices to be used in the simulations.  
 

INTRODUCTION 

The objective of rendezvous problem between two spacecrafts is to reach a prescribed relative 
configuration in each other’s proximity. In the literature, it is generally studied that one vehicle 
(chaser) is to be actively controlled, and the other (target) is kept passive like in rendezvous 
with a space-station or a Mars Sample Return capture scenario [Regnier et al., 2005]. The 
same configuration is used in this study as well. Satellite formation flying is basically concerned 
with the relative motion of the chaser with respect to the target, most commonly expressed in 
the rotating Hill reference frame. Although the actual relative dynamics of the chaser are 
nonlinear, and non-periodic, it is possible to derive a set of linearized ordinary differential 
equations which approximate the full dynamics, and have periodic solutions. These are 
commonly known as the Hill-Clohessy-Wiltshire (HCW) equations [Hill, 1878; Clohessy and 
Wiltshire, 1960]. These equations are also referred as Hill’s equations or the Clohessy-
Wiltshire (CW) equations in the literature. 

Autonomy is a key technology in the spacecraft operations. Round-trip communication delays 
are too long to react to unmodeled perturbations or critical situations. This is especially more 
pronounced for missions around distant bodies such as Moon or Mars [Fehse, 2003]. 

Model Predictive Control well suits to aerospace problems due to its re-planning nature, i.e., 
the explicit consideration of the system dynamics and constraint-handling ability. It is allowing 
fuel efficient, feasible plans to be determined autonomously and online. 
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Also, the disturbances in space environment such as air drag, solar pressure, and earth 

oblateness (𝐽2) effects can be compansated by MPC feedback [Di Cairano et al., 2012]. This 
makes it possible to use HCW model in which these effects are neglected. 

The purpose of this paper is to investigate the relative motion control problem of the 
rendezvous and docking of a pair of spacecraft in Low Earth Orbit (LEO). In particular, to 
investigate the applicability of the constrained MPC approach and its effectiveness in 
rendezvous and docking of orbiting spacecraft.  

This paper’s organization can be summarized as follows. In the following section, equations of 
motion of orbital relative motion is given. Both nonlinear models, and linear models are 
introduced. Then, the Model Predictive Control (MPC) method with constraints that are needed 
for spacecraft rendezvous is explained. Simulations with different tuning parameters and initial 
conditions are given and discussed next. Finally, conclusions are given. 

METHOD 

Orbital Relative Motion Model 

Many mathematical models for spacecraft rendezvous may be found in the literature [Carter, 
1998]. The choice depends on the parameters of scenario. In simulations it is more realistic to 
use general nonlinear equations of the relative motion between chaser spacecraft and passive 
target vehicle. These equations may be written for circular orbits with some assumptions [Wie, 
1998]:   
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Where x , y , and z are the components of the chaser spacecraft position relative to the target 

in the local vertical, local horizontal (LVLH) frame. In this frame, the x  direction is radial, y  is 

along-track, and z  completes the orthogonal set. Figure 1 shows the corresponding LVLH 
frame. 

 

Figure 1: Local Vertical Local Horizontal Frame  
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In the above equatıons, only two-body gravitational equations of motion with no perturbations 
are considered. It is also assumed that the target is in a circular orbit about the Earth, and the 
relative distance between the target and the chaser is much smaller than the target’s orbital 
radius.  

The above equations may be linearized about the nominal trajectory to obtain, 

 
23 2 xx n x ny f     

 2 yy nx f    (2) 
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Where, mean motion mean angular velocity is, [Seidelmann and Urban, 2013]:   
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In state space representation, the linearized HCW equations may be written as:  

 X AX BU    (4) 

Where 
6X  is the state vector and 

3U  is the control input vector and,  
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Model Predictive Control 

To apply the MPC method, the above continuous time system is discretized with sample time 

sT . 

 ( 1) ( ) ( )X k AX k BU k     (6) 

Optimal control input may be found by minimization of a quadratic cost function. Unlike the 
conventional Linear Quadratic problems which uses a cost function of present states and 
inputs, MPC input minimizes a cost function constituted of predicted state and input values 
over a prediction horizon. 
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Vectors including N predictions of states and inputs predicted at step k can be defined as, 
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With the predicted states at discrete intervals in time, discrete-time state space model may be 
written as, 

 ( ) ( ) ( )k x k kx u   (9) 
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Then the cost function to be minimized (Eqn. 7), may be written in matrix form as [Rossiter, 
2013]: 
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For unconstrained case, it is convenient to calculate an explicit solution for optimal input offline 
by equating gradient of (10) to zero.  

 
* 1( ) ( )k H Fx ku   (11) 

When there are constraints on inputs and states, optimization problem should be solved in 
each time step. This requires an online implementation of controller unlike the application of a 
constant feedback gain. Then, the input that needs to be applied becomes the solution of the 
optimization problem shown in Eqn. 12. 

 
*( ) min ( )k J k

u
u   (12) 

Optimal solution of Eqn. 12 is a stack vector of future control inputs in control horizon. At each 

time step, only the first input is applied, i.e., 
* *( ) 1 0 0 ( ).u k ku   
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Figure 2: Block diagram of controlled system 

 

Addition of Constraints 

Since the last term of summation in Eqn. 10 depends on the current and known states, it may 
be omitted from the optimization problem. Then, the optimization problem in Eqn. 10 may be 
rewritten as,  
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quad quadJ k k H k f ku u u   (13) 

The problem in Eqn. 13 constitutes a quadratic programming problem and existing solvers can 

be used for constrained optimization in this problem. In this work, Matlab’s ‘quadprog’ solver 

is used with linear constraints. 

First constraint is on control inputs. Available thrust is limited due to actuator capacities. 
Instead of saturating the control inputs, this limitation is considered as a constraint, and 
controller’s awareness of this limitation is maintained.   

 min maxu u u    (14) 

For cooperative targets it is necessary to stay in the Line of Sight of the sensors of the target. 
For uncooperative targets there is no such a limitation; however, it is essential to approach to 
the target through its spinning/tumbling axis. This can be implemented by creating a linear 

cone constraint, cone coneA x b , that chaser should be kept inside during the approach to target. 

Since states in z  direction are decoupled, for the sake of simplicity relative motion in orbital 
xy  plane is controlled. Cone constraint is considered as the cone’s projection on xy  plane 

with 45° conical half angle. For example for a target performing radial approach starting from            
(150, 30, 0) m, constraints that prevent overshoot and provide desired approach path is y x  

and y x  . These constraints are represented as,  
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With increasing number of constraints on states, same structure may be used by addition of 

new rows to the constraint matrix of Eqn. 15. 

Since the optimization variable is the control input, the states and constraints on them should 

be represented in terms of optimization variable. This may, for example, be written as, 

  0 0 0( )G k w E x k u   
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where, cone x fA A A   and an example of a state constraint matrix is given in Eqn. 15. Right 

hand side of the inequality is computed in each time step with the knowledge of current state 

values and associated constraint matrix become constant. 

SIMULATION, RESULTS AND DISCUSSION 

In the simulations, orbital parameter are chosen as 0.0011 /n rad s  which implies that 

spacecrafts are flying in a circular orbit at 500 km of altitude. Sampling period is selected as

1.5 secsT  . Control inputs are limited to 
20.5 /u m s .   

One of the most important tuning parameters in an optimal control problem is the weight 

matrices of states and inputs namely Q  and R . For parametric studies, the weighting matrices 

are selected as, 
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Where,   is the relative weight between the matrices. Terminal cost weight matrix Q  is 

chosen as the solution of Discrete Algebraic Riccati Equation. 

Simulations are carried out for different planning horizons and optimization weight matrices. 
To evaluate performance of controllers in different cases two performance metrics are used as 
in Eqn. 18.  
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The first metric indicates the fuel consumption where the second metric is the indication of 
energy used. Performance metrics for different planning horizons with constant weighting 

parameter 1   are shown in Table 1. From the figure it may be observed if distant horizons 

are selected, the fuel consumption is slightly increased. To obtain feasible solutions, the 
horizon length should not be too small since it may result erroneous results. On the other hand, 
since at each step, optimization problem is solved in this planning horizon, too long horizon 

means higher computational cost. For this reasons horizon length is taken as, 15.N   In 

simulations control and prediction horizons are taken to be same. 

Table 1. Performances of Controllers with different planning horizon lengths 

 N=15 N=20 N=25 N=30 N=35 N=40 

1J  32.8227 33.3431 33.3444 33.3451 33.3458 33.3463 

2J  26.9994 27.0900 27.0911 27.0916 27.0923 27.0927 
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For different weighting ratios or parameter in Eqn. 17, performance metrics are calculated 

together with the times past between initial condition and docking. Results are shown in Table 

2. From these results, best value for  is decided to be 1. Although higher   values yielded 

smaller fuel and energy metrics, docking times increased as well. 

Table 2. Performance of controllers with different weight matrix ratios 

  =10−6  =10−3  =1  =103  =106 

1J  32.8867 32.2871 22.6378 17.0239 10.3695 

2J  27.0551 26.5276 18.1171 13.5245 8.8741 

dockingt  34.5000 34.5000 34.5000 40.5000 84.0000 

Nonlinear simulations are conducted to make a rendezvous with the target starting from initial 

position (150, 30, 0) m. Due to given initial conditions, only along-track distance and radial 

distance need to be controlled. The results are presented in Fig. 3 and 4. It may be observed 

from the figures that the rendezvous with the target spacecraft is realized successfully. In Fig. 

3 relative distances and applied control inputs are given. 

  

Figure 3: Relative distances in orbital plane and applied control inputs during the rendezvous 
maneuver of the chaser 

The complete rendezvous path is given in Figure 4. Constraints are successfully satisfied and 

no overshoot or constraint violation is observed. Thus, the chaser approaches the target within 

the specified approach cone. 

 
Figure 4: Rendezvous path of Chaser spacecraft 
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Same simulation parameters are used controlling the chaser satellite starting from different 

initial positions. In Fig. 5 results are given. Similar success in satisfying constraints and 

preventing overshoot achieved for all cases. 

 

Figure 5: Rendezvous operation starting from different initial positions 

 

CONCLUSION 

In this study, spacecraft relative motion control is addressed. The rendezvous problem of the 
chaser spacecraft is solved using constrained model predictive control method. Constraints on 
both inputs and states are added to the optimization problem. It is demonstrated that 
constraints on states keep the chaser within the prescribed cone and help to achieve a safe 
trajectory. A parametric study is carried out to find the best prediction horizon and relative 
weight parameter. Results are tabulated and best values for a scenario starting from a fixed 
initial condition is found. It is observed that unnecessarily large horizons should be avoided 
because of both computational burden and high fuel consumption.  
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